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Abstract— Chronic wounds affect millions of people
worldwide every year. An adequate assessment of a
wound’s prognosis is a critical aspect of wound care since
it assists clinicians in understanding wound healing sta-
tus, severity, triaging and determining the efficacy of a
treatment regimen, thus guiding the clinical decision mak-
ing. The current standard of care involves using wound
assessment tools, such as Pressure Ulcer Scale for Heal-
ing (PUSH) and Bates-Jensen Wound Assessment Tool
(BWAT), to determine wound prognosis. However, these
tools involve manual assessment of a multitude of wound
characteristics and skilled consideration of a variety of fac-
tors, thus, making wound prognosis a slow process which
is prone to misinterpretation and high degree of variability.
Therefore, in this work we have explored the viability of re-
placing subjective clinical information with deep learning-
based objective features derived from wound images, per-
taining to wound area and tissue amounts. These objective
features were used to train prognostic models, that quan-
tified the risk of delayed wound healing, using a dataset
consisting of 2.1 million wound evaluations derived from
more than 200,000 wounds. The objective model, which was
trained exclusively using image-based objective features,
achieved at minimum a 5% and 9% improvement over PUSH
and BWAT, respectively. Our best performing model, that
used both subjective and objective features, achieved at
minimum an 8% and 13% improvement over PUSH and
BWAT, respectively. Moreover, the reported models con-
sistently outperformed the standard tools across various
clinical settings, wound etiologies, sexes, age groups and
wound ages, thus establishing the generalizability of the
models.

Index Terms— Chronic wounds, prognosis, health moni-
toring, contactless monitoring, wound imaging

I. INTRODUCTION

Chronic wounds impact a large segment of the world’s
population, and are estimated to affect 1-2% of the pop-
ulation in the developed nations [1]. These wounds fail
to heal in an orderly and timely manner [2], imposing a
considerable financial burden on the healthcare systems of
these countries and negatively impacting the quality of life

The work was supported by the Telewound Care Canada Project,
funded by Innovation, Science, and Economic Development Canada
through the Digital Technology Supercluster.

R. Gupta, L. Goldstone, S. Eisen, D. Ramachandram, A.
Cassata, R. D. J. Fraser, J. L. Ramirez-GarciaLuna, R. Bartlett
and J. Allport are with the Swift Medical Inc., Toronto, ON M5H
3W4, Canada (e-mail usernames: rishabh.gupta, lucas.goldstone,
shira.eisen, dhanesh.ramachandram, amy.cassata, rob.fraser,
jose.luna, bob.bartlett, justin.allport; domain: swiftmedical.com).

of patients suffering from chronic wounds [3]. Within the
USA, an estimated $25 billion is spent every year on wound
management and treatment costs [1]. Despite this massive
burden, efficient wound care treatment remains a challenge
even for experienced clinicians. Clinicians rely on standard
prognostic tools based on subjective wound assessments to
identify and triage worsening wounds, as well as to provide
reliable and quantifiable wound outcomes (e.g., probability
of delayed healing or amputation) to measure the efficacy of
different clinical interventions [4].

A typical wound assessment entails examining wound ex-
tent, burden and severity [2]. The wound extent is determined
by measuring the wound dimensions, e.g., area and depth,
and amounts of different tissues, e.g., epithelial and necrotic,
present within the wound bed. The amount of necrotic and
slough tissue within the wound bed has been found to be
directly related to the worsening of wounds [5]. The wound
burden is a function of wound extent and other attributes, such
as infection, inflammation, and wound edges. The amount and
type of exudate, along with markers of inflammation such
as induration (firmness of tissues with margin) and edema
(shiny and taut skin), help care providers flag local wound
infection[6]. On the other hand, the condition of wound edges
and surrounding tissue is an effective indicator of wound
healing. For example, the presence of attached wound edge
along with an advancing border of epithelium can indicate
that a wound is healing, whereas the presence of rolled edges
can indicate that a wound’s healing progress has stalled [7].
The wound severity is guided by wound burden, patient,
and environmental factors, such as age, sex, ethnicity, socio-
economic status, co-morbidities (e.g., diabetes mellitus, renal
disease) and systemic agents (e.g., dialysis, vasoactive drugs).
Together, these attributes can influence the access to as well
as the quality of care needed for ideal wound healing [2].

Standard wound assessment tools used in clinical practice
focus on subjectively quantifying wound extent and burden. A
majority of the wound assessment tools have been developed
for pressure injuries specifically. For instance, the Pressure
Ulcer Scale for Healing (PUSH) [8], specifically tracks the
healing progress of pressure injuries. PUSH uses only three
wound characteristics, which are wound area, exudate amount
and presence of a particular tissue within the wound bed. The
PUSH features were found to account for only 39-57% of the
variation in wound progress over time [9], [10]. Therefore,
other tools, such as, DESIGN [11], Wound Healing Scale [12],
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Sessing Scale [13] and Sussman Wound Healing Tool [14],
attempted to develop an improved tool to monitor the healing
of pressure injuries. These tools additionally rely upon char-
acterizing wound depth, infection, maceration, hemorrhage,
location and wound edges. Similarly, prognostic tools, such as
PEDIS [15], SINBAD [16] and diabetic foot ulcer assessment
scale [17], have been developed specifically for monitoring
diabetic wounds. The validity of these tools across different
wound types is limited [18]. On the other hand, the Bates-
Jensen Wound Assessment Tool (BWAT) is a prognostic tool
that has been used in various clinical trials and clinical settings
across chronic wound from a variety of etiologies [19]. Using
BWAT, clinicians monitor wound healing by subjectively as-
sessing eleven wound attributes, including wound area, depth,
edges, tissue types, exudate amounts and types, skin colour,
induration and edema.

The subjective assessment of wound characteristics is, time
consuming, susceptible to misinterpretation and high inter-
rater variability [20], [21]. Moreover, using integer numbers
for subjectively scoring wound characteristics leads to lower
sensitivity in tracking progress of smaller wounds or wounds in
the final stages of healing in comparison to larger wounds [9].
Furthermore, the clinicians’ level of expertise also contributes
to the accuracy of the assessment [22]. The camera-based
monitoring of wounds offers a non-contact way of assessing
wounds, while improving the sensitivity, accuracy and speed
of wound assessments [23], [24]. To this end, this study
explores the feasibility of replacing subjective factors, related
to wound extent, with their objective representations for wound
prognosis, derived from wound images obtained using Swift
Medical’s wound imaging platform. Swift Medical provides
a wound imaging platform that has been demonstrated to be
quicker [24], reproducible and accurate [25], as well as having
robust AI-integration for assessing wound areas, margins and
tissue composition [21], and is therefore ideal for the develop-
ment of objective metrics. Additionally, the wide adoption of
the solution has enabled a large dataset, for example a recent
study of Swift’s real-world dataset was ten times larger than
any previously published study [26]. This rich dataset is ideal
for the development of machine learning models for wound
care prognostics.

Deep learning based models have been found to perform
accurately on wound and tissue segmentation tasks, as reported
in [21], [27]–[30]. Therefore, these models are ideal candidates
for objectively determining wound characteristics, such as
wound size and tissue amounts, that quantify wound extent.
However, the prognostic capability of such techniques is not
very well understood. There have been some attempts to
develop an end-to-end system for wound prognosis using
wound size determined by wound segmentation models [31],
[32]. However these models were evaluated on a limited set
of wound etiologies and time-series. Moreover, these did not
evaluate the prognostic capability of deep learning based tissue
segmentation techniques.

Therefore, in the present study we have attempted to estab-
lish the prognostic capability of a system that replaces subjec-
tive representation of all aspects of wound extent, as shown in
Fig 1. To replace traditional clinician measurements of wound

TABLE I: Total wound series per wound type across skilled
nursing facilities (SNF) and home healthcare facilities (HHF)

Wound Type SNF HHF Total

PIs 138,125 5,353 143,478 (71.1%)

Arterial 11,626 383 12,009 (6.0%)

Diabetic 16,011 2,842 18,853 (9.4%)

Venous 23,838 3,285 27,123 (13.5%)

Total 189,600 (94.1%) 11,863 (5.9%) 201,463
PIs: Pressure Injuries

extent, we used wound segmentations and tissue amounts from
two pre-existing models called AutoTrace and Autotissue, as
described in [21]. These models were considered ideal for the
task as these were trained using significantly larger dataset and
validated across a larger variety of wound etiologies compared
to other deep learning models. The estimated wound area
and tissue amounts, along with other wound characteristics,
were then used to train prognostic models using the Cox
Proportional Hazards (Cox-PH) model [33]. These models
are easily interpretable and can be used for providing quick
and actionable insights to the clinicians related to wound
prognosis. Furthermore, we have provided a comparison of
our techniques against standard clinical prognostic tools, such
as PUSH and BWAT, using the dataset acquired from different
clinical settings across various patient demographics, and time-
to-heal. The study also provides a guide to the development
of completely objective prognostic models in the future by
identifying the features correlated with wound healing. To the
best of our knowledge such a comprehensive characterization
of wound prognostic techniques has not been reported in
previous studies.

II. METHODS

A. Dataset Description

The dataset was extracted from Swift Medical Inc’s
anonymized wound care database [21]. The study was deemed
exempt from informed consent requirements after review
from Research Review Board Inc., an independent review
board located in Ontario, Canada 1. This proprietary dataset
was derived from 2,361 skilled nursing facilities (SNFs) and
141 home healthcare facilities (HHFs), spread across North
America. The dataset focused on four frequently encountered
wound types including pressure injuries, venous ulcers, dia-
betic wounds and arterial ulcers. We included wounds having
at least four evaluations and were tracked for longer than
three weeks, which filtered out recently acquired wounds and
reduced artificially elevated levels of censoring in the dataset.

In total, the dataset consisted of 2,151,185 wound evalua-
tions and images derived from 201,463 wounds and 98,407
patients distributed across all of the aforementioned facilities.
The distribution of wound etiologies is shown in Table I, and
the distribution of patient sex and age are is shown in Table
II and Fig 2, respectively.

1Study ID: Swift Medical SW-13, Research Review Board ID: (2022.W006)
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Fig. 1: Individual modules of the end-to-end prognostic model trained using both subjective and objective features. Wound
severity is assessed using wound, patient and environment related factors [2]. In this system, we have used pre-existing deep
learning modules to quantify wound size and tissue amounts [21].

TABLE II: Sex distribution of patients across skilled nursing
facilities (SNF) and home healthcare facilities (HHF)

Sex SNF HHF Total

Male 40,638 3,313 43,951 (44.5%)

Female 50,984 2,900 53,884 (55.0%)

Unknown 14 558 572 (0.5%)

Total 91,636 (93.0%) 6,771 (7.0%) 98,407

Fig. 2: The distribution of patients according to age group in
the dataset.

B. Feature Engineering

Swift’s Skin and Wound App is used across different clinical
settings that include SNFs and home healthcare facilities. It
was observed from our dataset that different clinical facilities
leverage different wound assessment tools to monitor wound
healing. This necessitates engineering features compatible with
wound assessments used across facilities. In the following
subsections, the subjective and objective feature engineering
modules of our system are described. In the subjective feature
engineering module, we have described the transformations
that were used to create compatible features derived from
the subjective assessment of the wound. Whereas, machine
learning models and computational scaling techniques used to
extract objective information, from wound images collected as
part of every wound evaluation, are described in the objective
feature engineering module.

1) Subjective Feature Engineering Module: Various encod-
ing techniques were applied to wound and patient character-
istics, such as integer, boolean, float and one-hot encoding
for use in our new wound prognostic models (Table III).
Moreover, missing values for each feature were encoded as
boolean within a ‘Feature Unknown’ category 2, and wound
locations were mapped to six different body locations as shown
in Figure 3. The generated features were used to train new
wound prognostic models. For comparison, PUSH and BWAT
scores were computed based on their respective subjective
assessment guidelines. Missing PUSH or BWAT scores within
evaluations were imputed using a forward filling methodology,
meaning that missing values within a series of evaluations
were replaced with the immediately present preceding value.

2) Objective Feature Engineering Module: Objective fea-
tures were extracted directly from the images taken dur-
ing wound evaluations. Deep learning-based models were
employed for objective determination of wound region and
quantification of different tissue types within the wound re-
gion. The segmented wound regions and tissue regions were
subsequently used to objectively determine the wound area
and relative amounts of different tissue types within the wound
bed. The module adopted for wound region segmentation and
wound tissue segmentation are summarized in the following
subsections, and the methods and performance are described
in-depth in a separate article [21].

The wound segmentation module, called AutoTrace model,
is based on a deep convolutional encoder-decoder neural net-
work architecture with attention gates in the skip connections
and several other customizations which make it suitable to
run on mobile devices. The encoder block allows the model
to extract features, whereas the decoder block produces a
wound segmentation mask from the learned features. In total,
the AutoTrace model consists of approximately 3.5 million
parameters. Some specific customization within the AutoTrace
model architecture included replacing normal convolution
blocks with depth-wise separable convolutional layers to re-
duce the computations, and implementing strided depth-wise
convolutions that can learn to downsample activations.

AutoTrace was trained using more than 400,000 image-label
pairs with wound region labels determined by clinicians. The
model was tested on 2,000 image-label pairs of various wound

2Feature Unknown was set to True when the feature values were missing
and it was set to False when feature values were documented.
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TABLE III: Subjective feature list and feature engineering transformations

Feature Characteristics Encoding Mapped Feature

Tissue Type Epithelial Tissue Present Integer 1
Granulation Tissue Present Integer 2
Slough Tissue Present Integer 3
Eschar Tissue Present Integer 4

Exudate Amount None Integer 1
Scant, light or small Integer 2
Moderate Integer 3
Heavy Integer 4

Exudate Type None Integer 1
Serous Integer 2
Sanguinous Integer 3
Serosanguinous Integer 4
Purulent Integer 5
Seropurulent Integer 6

Edges Epithelialization, Indistinct One-hot True/False
Attached, Distinct One-hot True/False
Non Attached, Well defined One-hot True/False
Rolled Edge One-hot True/False
Fibrotic One-hot True/False

Edema None Integer 0
Under 4 cm Integer 1
Over 4 cm Integer 2
Under 4 cm with pitting Integer 3
Over 4 cm with pitting Integer 4

Induration None Integer 0
Under 2 cm Integer 1
2 to 4 cm, extends < 50% around wound Integer 2
2 to 4 cm, extends > 50% around wound Integer 3
Over 4 cm Integer 4

Wound Area Area computed from wound images Float 0 - inf cm2

Normalized Area Relative change in area compared to first evaluation Float 0 - inf

Log of Normalized Area Log-transformed Normalized Area Float -inf - 0

Wound Location See Figure 3 for body locations One-hot -

Wound Type Pressure Injury One-hot True/False
Diabetic Wound One-hot True/False
Arterial Wound One-hot True/False
Venous Ulcer One-hot True/False

Clinical Setting SNFs One-hot True/False
Home Health One-hot True/False

Age Groups 10 year buckets, See Figure 2 for age buckets Integer -

Sex Male One-hot True/False
Female One-hot True/False

types, including pressure injury, venous, diabetic and arterial
wounds. The model performance was characterized using
mean intersection over union (mIOU) between user traced
wound regions mask (target mask) and the AutoTrace pre-
dicted wound region mask (predicted mask), which represents
the ratio between the number of common pixels between the
target and predicted masks to the total number of pixels present
across both masks. The trained AutoTrace model achieved a
mIOU of 0.86 for wound region segmentation. Segmented
wound regions were then used to compute wound areas by
scaling wound regions with respect to a calibrant sticker of
known size, called HealX, which is typically placed on the
same plane close to the wound. The computed wound area
was then appended to the original wound series data, and
normalized relative to the initial wound area followed by log-

transformation for statistical normality [34].

The wound tissue segmentation module, called AutoTissue
model, is also based on an encoder-decoder neural network
architecture. However, it uses an EfficientNetB0 architecture
[35] as the encoder, whereas the decoder is made up of 4
blocks, each consisting of a single 2-D bilinear upsampling
layer followed by 2 depth-wise convolutional layers. In total,
the AutoTissue model consists of approximately 3.8 million
parameters.

AutoTissue was trained using 17,000 anonymized wound
images labeled by trained labelers and curated by wound
clinicians. The model segments detected wound region into
5 separate tissue categories including epithelial, granulation,
slough, eschar and other, the latter of which included mostly
healthy tissue and the HealX calibrant sticker. The model was
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(a) Anterior Body Locations

(b) Posterior Body Locations

Fig. 3: Wound locations are mapped across six color coded
body locations.

tested on a set of 383 images corresponding to stage 2 pressure
injuries, arterial, venous and diabetic wounds. The mIOUs for
other, epithelial, granulation, slough and eschar tissue were 1,
0.42, 0.69, 0.69 and 0.85, respectively.

Wound tissue amounts were extracted for each image by
first applying the AutoTrace model to focus on the wound
bed, followed by the application of the AutoTissue model to
determine various tissue regions within the wound bed. Next,
the number of pixels within each segment was counted and
the percent area of each segment was computed with respect
to the total number pixels that covered the wound bed. Finally,
the percentage area of each segment was log-transformed.

3) Feature Computation: As the image-based objective fea-
tures were not readily available for the majority of the ret-
rospective data collected using Swift Skin and Wound App,
these models were retrospectively applied on approximately
2.1 million images collected over time. In order to reduce the
processing time, the computation was executed on an Amazon
Web Services (AWS) r5a.2xlarge instance-based auto-scaling
cluster. Parallel batch jobs were orchestrated using Argo
Workflows, an open source container-native workflow engine.
Furthermore, computing objective features on the cloud miti-
gated the risk of raising Protected Health Information leakage
concerns from wound images, as the images were securely
stored on AWS and processed inside Docker containers. The
computation of objective features for 2.1 million images was
completed within 40 hours using 20 parallel running jobs,
effectively reducing computation time by 20x compared to

running the objective feature extractor sequentially on a set of
2.1 million images using an instance based on a single central
processing unit.

C. Dataset Preparation
The dataset from SNFs was stratified into training and

testing sets using an 80%-20% split, resulting in 151,680
training and 37,920 testing wounds. The train/test split was
performed such that the percentage of each wound type was
consistent between training and testing sets. The dataset from
home healthcare facilities was stratified such that the data
from facilities that employ the BWAT was set aside for
testing in order to have sufficient wound series for reliable
testing performance. This resulted in 10,118 training and 1,745
testing wounds. Finally, the training datasets from SNFs and
home healthcare facilities were combined to form a single
training set. The testing sets were split into ten and three
non-overlapping sub-samples for SNFs and home healthcare
facilities, respectively.

D. Prognostic Model Development
Survival analysis techniques allow researchers to investigate

the relationship between one or more predictor variable and the
time when an event (e.g. failure of a mechanical system, death
in biological organisms) occurs. Cox Proportional Hazards
models estimate the effect of a predictor variable on the hazard
function for the event of interest [33], and are one of the most
commonly used regression techniques in survival analysis
techniques. The hazard function describes the probability (or
risk) of occurrence of an event based on covariate levels. The
hazard function for the Cox PH model has the form:

h(t) = h0(t).e
(b1.X1+b2.X2+...+bn.Xn), (1)

where, h(t) is the expected hazard at time t, h0(t) is the
baseline hazard which represents the hazard when all the
covariates (X1, X2, ...Xn) are set to zero and b1, b2, ...bn
are the model weights that quantify the association between
covariates and the hazard function. The model weights are
computed by maximizing the partial likelihood which enables
the modelling of the effects of the covariates without the need
to model the hazards over time.

Commonly, the term exp(bn), is referred to as the Hazard
Ratio (HR) and is used to measure the magnitude of the
treatment difference [36], [37]. For example, when comparing
the effect of an investigational treatment, X represents the
treatment indicator. It is assigned a value of 1 for patients
who receive the treatment, whereas for patients in the control
group, it is assigned a value of 0. Then,

HR =
h0(t).exp(b× 1)

h0(t).exp(b× 0)
= exp(b), (2)

represents the HR between the two groups. A HR = 1 (b =
0) has no effect on event probability. However, if b > 0, then
HR > 1, which indicates an increase in event hazard and thus
a decrease in the length of survival. If b < 0, then HR < 1,
which indicates a decrease in event hazard and an increase in
the length of survival.
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Due to the straight-forward interpretation of model weights
that is possible with Cox PH models, these models can be
trained to characterize the effects of covariates on various
wound outcomes (or endpoints), including a healed or infected
status of a wound, or an amputation status of a limb. The
resulting predictions from the trained model can be used as a
prognostic index to alert clinicians of the risk of occurrence of
adverse wound outcomes. In this research, a prognostic model
was trained to characterize the effect of different covariates on
the ‘healed’ or ‘closed’ status of the wound. Specifically, we
trained our model using a variation of the Cox model called
Cox time-varying proportional hazards [38] which allowed
us to account for changes in covariates over time, such as
increases or decreases in wound area and tissue amounts.

1) Feature Selection: We selected the features used in our
models using a stepwise forward-backward selection process.
In the forward step, we trained multiple univariate models and
kept only the features that were significant using likelihood
ratio tests. Next, in the backward selection step, various
multivariate models were created by removing one feature at
a time and tested against a multivariate model with all the
forward selected features. The selection criteria was based on
a p-value threshold of 0.05 in both steps. The lifelines package
v.0.21 [39] for Python was used to train the Cox models and
compute likelihood ratio tests for feature selection.

The predictive information for a subset of features was
quantified using the adequacy index [40]:

A = LRs/LR, (3)

where, LRs is log likelihood explained by the subset of
features and LR is the log likelihood explained by the entire
set of features. The feature importance was computed as 1−A,
which represents the fraction of new information contributed
by the feature to the model. Finally, the features with feature
importance greater than a pre-defined threshold were selected.

2) Model Characterization: The selected features were used
to train six different models using different combinations of
features as listed in Table IV. Model1,2 were completely
based on subjectively assessed features. Specifically, Model1
included features that encapsulate wound extent along with
other wound severity related factors, whereas, Model2 only
included features encapsulating wound extent. In Model3, we
computed tissue amounts using the AutoTissue segmentation
model described before, thus making Model3 a hybrid model
that uses both subjective and objective information. On the
other hand, Model4 completely replaced subjectively assessed
wound area and tissue amounts with objectively computed fea-
tures using AutoTrace and AutoTissue models. Model5 lever-
aged hybrid information related to wound extent and severity,
where tissue amounts were computed using the AutoTissue
model. Finally, in Model6 we used hybrid information that
included objectively determined wound extent based features,
and subjectively determined wound severity related factors.

The models were trained using the data from four different
wound etiologies that included pressure injuries, diabetic,
venous, and arterial wounds, thus resulting in wound-agnostic
models. The trained models were compared against each other
and standard wound assessment tools, such as PUSH and

BWAT. Moreover, the wound-agnostic model performances
were characterized for different clinical settings (i.e., SNF vs.
Home-Health), sexes (i.e., Male vs. Female) and age groups
(e.g., 30-39 vs. 50-59). Finally, wound-specific models were
trained using the data from individual wound etiologies and
their performance metrics were compared against the wound-
agnostic models.

3) Performance Evaluation: Typically, the goodness-of-fit of
a risk-score producing models, such as the Cox model, is
quantified using the so-called Harell’s Concordance Index (or
C-Index) [41]. Given a prognostic model that produces risk
scores ‘ηi’ and ‘ηj’ for every pair of wounds ‘i’ and ‘j’
(with i ̸= j) with time-to-heal ‘Ti’ and ‘Tj’, respectively,
a pair ‘(i, j)’ is considered ‘concordant’ if ‘ηi > ηj’ and
‘Ti > Tj’, or ‘ηi < ηj’ and ‘Ti < Tj’. However, a pair
‘(i,j)’ is considered ‘discordant’ if ‘ηi > ηj’ and ‘Ti < Tj’,
or ‘ηi < ηj’ and ‘Ti > Tj’. In other words, a wound pair
is concordant if the wound whose event is more imminent is
given a higher risk score than the wound whose event is more
distant in time. The C-Index for such a model is computed as
follows:

C =
No. of Concordant Pairs

No. of Concordant andDiscordant Pairs
(4)

However, Harell’s C-Index is not appropriate for dynamic
prediction models that incorporate longitudinal covariate data.
As an alternative, the incident/dynamic time-dependent area
under the Receiver Operator Characteristic (AUCI/D) curve
is suitable for dynamic prognostic models [42], [43]. The
AUCI/D compares the predictions of incident cases, defined
as the wounds that heal at the time point at which the discrim-
inative ability is assessed, with dynamic controls, defined as
the wounds that have not yet healed. The AUCI/D assesses
the concordance of the predictions at time points ‘tk’ among
incident cases, i.e., wounds with time-to-heal T = tk, and
dynamic controls, i.e., wounds with T > tk and is defined as:

AUCI/D(tk) = P (Xi > Xj |Ti = tk, Tj > tk), (5)

where ‘Xi’ and ‘Xj’ are the risk scores generated for two
different wounds ‘i’ and ‘j’. The AUCI/D directly incorpo-
rates the effects of longitudinal covariates like wound area and
tissue amounts within wound bed, and can be interpreted as
the probability that a random wound that healed on a given day
is given a higher score than another random wound that has
not yet healed on that given day. Furthermore, a concordance
summary (Ct) can be estimated from AUCI/D as the weighted
average of the area under the time-specific ROC curves using::

Ct =

∫
t

AUCI/D(t).w(t)dt, (6)

where, w(t) = 2.f(t).S(t), f(t) represents the the distribu-
tion of failure times T and S(t) represents the survival time
[43]. We used AUCI/D and Ct to quantify and compare the
performance of different models.

III. RESULTS
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TABLE IV: Prognostic models and the features that were used to train them

Model Type Information Wound Extent Features Other Wound Severity Features

Model1 Subjective User Traced Area, Tissue Type Present Exudate Amount, Exudate Type, Edges, Location, Setting

Model2 Subjective User Traced Area, Tissue Type Present -

Model3 Hybrid User Traced Area, AutoTissue Amounts -

Model4 Objective AutoTraced Area, AutoTissue Amounts -

Model5 Hybrid User Traced Area, AutoTissue Amounts Exudate Amount, Exudate Type, Edges, Location, Setting

Model6 Hybrid AutoTraced Area, AutoTissue Amounts Exudate Amount, Exudate Type, Edges, Location, Setting

A. Feature Selection

The stepwise feature selection process helped identify the
significance of individual features in developing the prognostic
model for wounds. The feature representing Location-2 (torso
and back, as shown in Figure 3) was found to be insignificant
(p > 0.05) and was removed from further analysis. The
importance of each remaining feature was quantified using the
Adequacy Index, and the resulting relative feature importances
are shown in Figure 4. The features with Adequacy Index
greater than the empirically determined threshold of 0.5 were
finally selected.

Fig. 4: Feature importance as determined using Adequacy
Index. The selected features are shown with an asterisk (∗).

B. Wound-Agnostic Model Coefficients

The selected features were used to train multiple prognostic
models as outlined in previous sections. Table V lists the
model coefficients and hazard ratios per feature per prognostic
model. It can be noted that HRs per feature were consistently
greater than or less than 1 across different models, except HRs
for SNF and Location-5. Generally, other tissue amount, ep-
ithelialized and attached edges, missing features and location
features had HR > 1, whereas the remaining features, such
as wound area, slough and eschar amounts, had HR < 1.

C. Wound-Agnostic Model Performance

The performance for each prognostic model was determined
using the concordance index (Ct) of wound pairs in the testing
set. Table VI shows the Ct for each model at skilled nursing
facilities and home health facilities, respectively. Moreover, it

compares the performance of each individual model across dif-
ferent wound types3. Using an Analysis of Variance (ANOVA)
model, it was determined that there was a statistically signifi-
cant effect of model types on Ct (F9,50 = 673.52, p < 0.001).
Tukey’s post-hoc tests revealed significant differences between
all combinations except: Model1 vs. Model3, Model1 vs.
Model4, Model3 vs. Model4 and Model5 vs. Model6. It can
be seen that Model5 and Model6 were the best performing
models across different clinical settings and wound types, and
Model2 performed the worst.

An additional ANOVA model determined that there was
a statistically significant effect of wound type on model
performance with F4,15 > 15, p < 0.001 for Model3−6.
Subsequent Tukey’s post-hoc tests revealed that Model3−6

performed statistically significantly better for pressure injuries
compared to venous and diabetic wounds within SNFs. Fur-
thermore, using Bonferroni corrected independent t-tests it was
found that all prognostic models, except Model2, performed
significantly better (t > 5.74, p < 0.0084) under the home
health setting.

Figure 5 compares the performance of prognostic models
against PUSH scores at skilled nursing facilities, specifically
for pressure injuries (as PUSH is not valid for other wound
types). The best performing prognostic models (Model5,6)
performed at least 8-9% better than PUSH and 7% better
than PUSH when missing PUSH values were imputed using
a forward filling technique. ANOVA showed that there was
a significant effect of model type on Ct for pressure injuries
(F9,70 = 673.52, p < 0.001). Tukey’s post-hoc tests revealed
significant differences between all prognostic models and
PUSH. The forward filled PUSH scores had significantly
higher Ct compared to normal PUSH scores.

Figure 6 compares the performance of prognostic models
against BWAT scores at home healthcare facilities for pres-
sure injuries, venous, arterial and diabetic wounds. The best
performing prognostic models (Model5,6) performed at least
13-14% better than BWAT and 11-12% better than forward
filled BWAT. ANOVA showed that there was a significant
effect of model type on Ct with F2,21 = 34.93, p < 0.001.
Tukey’s post-hoc tests revealed significant differences between
BWAT and all prognostic models, except Model2. The for-
ward filled BWAT score had slightly higher Ct compared to
normal BWAT score, but this observation was not statistically
significant.

3It should be noted that the AUCI/D for arterial wounds within home
health setting was not reliable due to limited amount of data.
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TABLE V: Model coefficients (bn) and hazard ratios (HR), shown inside brackets, per feature for each prognostic model,
along with their effect on wound healing.

Feature Model1 Model2 Model3 Model4 Model5 Model6 *Effect on healing

Tissue Type Presence -0.12 (0.89) -0.16 (0.85) - - - - -ve

Tissue Type Unknown -0.06 (0.94) -0.02 (0.98) - - - - -ve

Log Granulation Amount - - -0.02 (0.98) -0.02 (0.98) -0.01 (0.99) -0.01 (0.99) -ve

Log Slough Amount - - -0.07 (0.93) -0.07 (0.93) -0.06 (0.94) -0.06 (0.94) -ve

Log Eschar Amount - - -0.05 (0.95) -0.05 (0.95) -0.06 (0.94) -0.06 (0.94) -ve

Log Other Amount - - 0.13 (1.14) 0.13 (1.14) 0.10 (1.11) 0.10 (1.11) +ve

Log Normalized User-traced Area -0.07 (0.93) -0.09 (0.91) -0.05 (0.95) - -0.05 (0.95) - -ve

Log Normalized Auto-traced Area - - - -0.03 (0.97) - -0.02 (0.98) -ve

Edges Epithelialization 0.17 (1.19) - - - 0.13 (1.14) 0.15 (1.16) +ve

Edges Attached 0.13 (1.14) - - - 0.14 (1.15) 0.13 (1.14) +ve

Edges Non Attached -0.56 (0.57) - - - -0.46 (0.63) -0.48 (0.62) -ve

Edges Rolled Under -0.86 (0.42) - - - -0.75 (0.47) -0.75 (0.47) -ve

Exudate Amount 0.48 (0.62) - - - -0.37 (0.69) -0.39 (0.68) -ve

Exudate Amount Unknown 1.50 (4.52) - - - 1.11 (3.03) 1.16 (3.20) +ve

Exudate Type -0.10 (0.90) - - - -0.08 (0.92) -0.08 (0.92) -ve

Exudate Type Unknown 0.68 (1.98) - - - 0.47 (1.60) 0.47 (1.60) +ve

Location-1 0.49 (1.64) - - - 0.42 (1.52) 0.41 (1.51) +ve

Location-3 0.20 (1.22) - - - 0.15 (1.16) 0.17 (1.18) +ve

Location-4 0.25 (1.28) - - - 0.25 (1.29) 0.26 (1.30) +ve

Location-5 -0.03 (0.97) - - - 0.02 (1.02) 0.02 (1.02) Inconclusive

Location-6 0.35 (1.42) - - - 0.37 (1.45) 0.38 (1.46) +ve

SNF -0.21 (0.81) - - - 0.09 (1.10) 0.10 (1.11) Inconclusive
*In the context of the current study, the event of interest is the ‘healed’ status of the wound (or survival of a wound). Therefore, bn > 0 (HR > 1)
leads to a positive effect on healing by increasing the wound healing probability, whereas, bn < 0 (HR < 1) leads to a negative effect on healing
by decreasing the wound healing probability.

Fig. 5: Ct across different models and PUSH score for
Pressure Injuries at SNFs.

1) Dynamic Performance: Figure 7 shows the dynamic
AUCI/D for each prognostic model along with standard
wound assessment tools used across different clinical settings
for pressure injuries. In order to completely characterize the
behaviour of the prognostic models across time, the dynamic
AUCI/D was computed for an augmented testing dataset. The
augmented testing dataset consisted of the original testing data

Fig. 6: Ct across different models and BWAT scores for
Pressure Injuries, Venous, Arterial and Diabetic wounds at
Homehealth facilities.

along with wound series that were shorter than three weeks
in age. Model5,6 consistently performed better than PUSH,
forward filled PUSH, BWAT and forward filled BWAT scores
across different time points. Generally, each prognostic model
performed better than standard wound assessment tools with
the exception of Model2, which was trained using subjectively
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TABLE VI: Prognostic model comparison across clinical settings using concordance (Ct)

Clinical Setting Model All Wound Types PIs PIs* Diabetic Venous Arterial

SNF Model1 0.68 0.68 0.67 0.65 0.66 0.66

SNF Model2 0.62 0.62 0.60 0.60 0.60 0.63

SNF Model3 0.68 0.69 0.69 0.65 0.65 0.66

SNF Model4 0.68 0.69 0.68 0.64 0.64 0.66

SNF Model5 0.71 0.72 0.71 0.67 0.68 0.68

SNF Model6 0.70 0.71 0.71 0.66 0.67 0.68

SNF PUSH NA 0.64 0.62 NA NA NA

SNF PUSHF NA 0.66 0.64 NA NA NA

HHF Model1 0.73 0.72 0.72 0.73 0.75 0.74

HHF Model2 0.60 0.57 0.56 0.59 0.63 0.55

HHF Model3 0.73 0.75 0.75 0.73 0.70 0.61

HHF Model4 0.72 0.74 0.75 0.72 0.69 0.63

HHF Model5 0.77 0.78 0.78 0.77 0.76 0.70

HHF Model6 0.76 0.77 0.78 0.77 0.75 0.70

HHF BWAT 0.63 0.65 0.64 0.63 0.63 0.54

HHF BWATF 0.65 0.66 0.66 0.68 0.63 0.64
NA - not applicable, as PUSH is not valid for wounds other than Pressure Injuries; PUSHF and
BWATF represent the features computed by forward filling PUSH and BWAT values, respectively,
when the information is missing; PIs: Pressure Injuries; PIs*: Ct was computed on the augmented
testing dataset consisting longer and shorter than 3 weeks old wounds

identified tissue presence and user traced wound area. The t-
tests with Bonferroni-corrected p-values were performed on
the SNFs dataset to reveal significant differences between
all models across each time point. We found that Model5,6
performed better than PUSH and forward filled PUSH scores
at least until 150 days since the first evaluation of the
wound. Moreover, there was no significant difference between
Model5,6 across time. Similarly, significant performance dif-
ferences between Model5,6 and BWAT were observed in home
healthcare facilities, at least until day 80.

2) Sex-wise: Figure 8 shows the performance of wound-
agnostic models across female and male demographic of the
population, highlighting that all models performed equally
well across sexes. A Mood’s median tests performed per
model confirmed that there was no significant difference in
performance between female and male demographics (χ2 ≤
1.8, p > 0.1).

3) Age-wise: Figure 9 shows the performance of wound-
agnostic models across different age groups of the population.
Models performed well across different age groups.

D. Wound-Specific Model Performance

The performances of the wound-agnostic models were com-
pared against wound-specific models developed using data
from specific wound types. Figure 10 illustrates the perfor-
mance comparisons between the wound-agnostic and wound-
specific models for pressure injuries, diabetic, arterial and
venous wounds at SNFs. Mood’s median tests performed
across model types did not reveal any significant differ-
ence between wound-agnostic and wound-specific models for

pressure injuries. However, Model3,4,6 showed statistically
significant (χ2 = 4.05, p < 0.05) minute differences (up to
1%) between wound-specific and wound-agnostic models for
arterial, venous and diabetic wounds.

IV. DISCUSSION

The feature importance analysis identified the most predic-
tive features for wound prognosis, and the most important
feature in this analysis was determined to be the amount
of exudate. Exudate is a part of the normal wound healing
process, however, in chronic and non-healing wounds with
persistent inflammation or infection, it leads to delayed healing
due to the presence of excess bacteria and abnormal levels
of inflammatory mediators and protein digesting enzymes [6].
Furthermore, the remaining features identified as significantly
predictive are also directly associated with wound healing. For
instance, a firmly attached wound edge has been found to
promote wound healing, dark red or beefy-looking granulation
tissue within the wound bed is indicative of infection, and
wound area is directly correlated with wound closure and
healing [7]. Induration and edema were selected during the
stepwise selection process, but individually, these features did
not account for significant amounts of variations within the
data, suggesting that other features encoded a portion of the
underlying information represented by induration and edema.

Feature importance information also serves as a guide to
build an objective prognostic tool for wound care. Individual
machine learning models can be trained to objectively quantify
and characterize the relevant features. The resulting objective
features can be used downstream to build a prognostic tool
through replacing their subjective feature counterparts. To this
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(a) Skilled Nursing Facilities

(b) Homehealth Facilities

Fig. 7: Dynamic AUCI/D across different models different
clinical settings.

Fig. 8: Ct for male and female demographic across different
models at SNFs.

Fig. 9: Ct per age group across different models at SNFs.
Note that Ct was not computed for age < 30 years due to the
absence of sufficient data.

end, the results of this research have shown the feasibility of
developing prognostic models using objective representations
of wound extent. The results from the analysis surrounding fea-
ture importance indicate that future research can benefit from
focusing on the development of objective representations of
factors affecting wound burden by modelling and quantifying
exudate amount and wound edges.

The developed prognostic models are directly interpretable
through hazard ratios corresponding to features constituting
a particular model. A feature with HR > 1 leads to early
wound healing (or decrease in wound survival time), whereas
a feature with HR < 1 leads to delayed wound healing (or
increase in wound survival time). The features with HR < 1
that are numerically encoded, such as tissue type presence,
normalized wound area, objectively determined granulation,
slough, or eschar amounts, exudate amount, and exudate
type are features for which an increasing value corresponds
to delayed wound healing. Therefore, if necrotic tissue is
identified in the wound bed, or wound area increases, or
amount of slough tissue increases, or heavy exudate amount
is observed at the following wound evaluation, then the risk
of delayed wound healing increases. In contrast, features
with HR > 1 that are numerically encoded, such as other
tissue amounts, are features for which an increasing value
corresponds to faster wound healing, and thus reduced risk
of delayed wound healing. This observation is corroborated by
the findings in [21], where the ‘other’ tissue feature was found
to predominantly quantify the amount of healthy tissue. One-
hot encoded and boolean features can be interpreted similarly.
Therefore, the presence of a feature with HR < 1, such
as the presence of non-attached or rolled wound edges, or
a wound location as on the foot (Location-5), are features
that correspond to delayed wound healing. Conversely, the
presence of a feature with HR > 1, such as the presence of
attached or epithelializing wound edges, or a wound location
as on the face (Location-1), are features that correspond to
faster wound healing.

In this work, a new prognostic model based on subjective
features, Model1, was introduced and demonstrated to lead
by 4% and 7% over PUSH and BWAT, respectively. Through

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3251901

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



GUPTA et al.: TOWARDS AN AI-BASED OBJECTIVE PROGNOSTIC MODEL FOR QUANTIFYING WOUND HEALING (AUGUST 2022) 11

(a) Pressure Injuries (b) Diabetic Wounds

(c) Arterial Wounds (d) Venous Wounds

Fig. 10: Comparison of wound-agnostic and wound-specific models across wound types

(a) Risk trajectory of a healing wound (b) Risk trajectory of a non-healing wound

Fig. 11: An example of the clinical use of the risk or prognostic index derived from Model6. Risk profile percentiles were
computed using risk trajectories of wounds within our dataset. Panel (a) represents the trajectory of a wound on track for healing
with decreasing risk score during a 40-day period. In contrast, panel (b) shows a non-healing wound with repeated observations
consistently above the 90th percentile. For non-healing wounds, our risk model can help in triggering early in-depth wound
assessments to identify the reason for non-healing (i.e. infection, use of repair inhibiting drugs, change in dressing type, etc.).

comparing Model1 to Model5,6, and Model2 to Model3,4, it
is evident that replacing subjective information with objective
information leads to more accurate prognostic models. The
worst performing model, Model2, indicates that using very
few subjectively assessed features do not capture the complete
information needed to track the progress of wound healing.

The purely objective prognostic model, Model4, consistently
performed 6% and 9% better than PUSH and BWAT, re-
spectively, thus providing further validity to the information
extracted from the AutoTrace and AutoTissue wound segmen-
tation models. AutoTrace and AutoTissue simply require an
image of the wound to compute accurate wound area and tissue
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composition, thus Model4 can serve as a faster and more
reliable prognostic tool for wound care assessment compared
to standard wound assessment tools. Using a hybrid approach
such as Model5,6 results in an even more accurate prognostic
index. A further benefit of the developed models is that they
are wound agnostic in nature and have been validated for four
different wound etiologies, including pressure injuries, venous,
arterial and diabetic wounds. Although, both Model5 and
Model6 perform equally well, Model6 would be preferable
in practice, as it uses more objective features which are
expected to reduce subjectivity and allow quicker assessment
of wound severity. The performance of the prognostic models
proposed here are expected to be directly correlated with the
accuracy of the features derived from the segmentation models.
Therefore, it is easy to replace AutoTrace and AutoTissue
modules with more accurate segmentation models. However,
for most accurate results it would be appropriate to retrain the
prognostic models using the new information.

The developed prognostic models performed better than
the standard wound assessment tools across two clinical
settings, four different wound types, sexes and age groups,
establishing their validity across different segments of the
dataset. The Ct for the best performing models, Model5,6,
was at least 0.70 and 0.76, across SNFs and home healthcare
settings, respectively. This indicates that the probability of
the model-derived risk score being lower for a faster-healing
wound than for a longer-healing wound is 70% for SNFs
and 76% for home healthcare facilities, assuming that the
healed event occurred within the first 180 days of the wound’s
existence. For home healthcare, this represents a large increase
in concordance relative to BWAT, a widely used etiology-
agnostic wound assessment tool, which is only about 65%
concordant. The differences in concordance across settings
also suggest that the models performed better under home
healthcare compared to SNFs, though the reason for this
observation is unclear. Across SNFs the models performed
better for pressure injuries compared to venous and diabetic
wounds. This bias could be due to pressure injuries comprising
approximately 70% of the total dataset used in training the
models. Therefore, wound-specific models were developed by
training prognostic models on datasets consisting of specific
wound types. Comparing against wound-agnostic models, it
was observed that wound-specific models offered statistically
significant improvements, though the magnitude of improve-
ment was minuscule (1-1.5%). However, the generalizability of
wound-agnostic models across different wound etiologies far
outweigh the improvement in performance offered by wound-
specific models.

The model performance did not show any significant differ-
ence in performance between sexes, thus establishing model
generalizability across both males and females. Unfortunately,
the model performance could not be characterized across a
younger (< 30 years old) population due to insufficient data, as
chronic wounds are rare in younger demographics. However,
Ct was computed for older populations per age group and the
developed models were found to be adequate, with the best
performing model resulting in Ct ≥ 0.70. This establishes the
fairness of our prognostic models with regard to demographic

segments of sex and age. The generalizability of our models
across different ethnicities remains to be tested in future work.

The model performance was characterized across time using
dynamic AUCI/D. It was used to compare model performance
against standard wound assessment tools used across different
clinical settings. The AUCI/D computed for SNFs showed
an increase in performance initially up to the first 21-28 days
since the first evaluation of the wound, reaching a stable
performance state up to 90 days and then slowly decreasing in
model performance up to 180 days. Specifically, for Model5,6
the AUCI/D ranged between 0.71 and 0.72 within the first 20-
120 days of evaluation, indicating that on any day t between
20 and 120 days of evaluation, the probability of a lower risk
wound healing faster than a higher risk wound, as predicted
by the prognostic models, is at least 0.71. Moreover, we
observed that throughout the evaluated time range, our models
performed significantly better than the PUSH scores. Simi-
larly, under home healthcare settings, the prognostic models
performed better than BWAT scores across time, though the
results were not significant after 80 days of evaluation. The
lower performance on the initial few weeks of evaluation at
SNFs indicates that it is likely difficult to determine wound
prognosis for relatively younger wounds using the features
used in this study. However, this observation could not be
corroborated at home healthcare facilities.

V. FUTURE WORK

The future analysis will explore the feasibility of objectively
determining features related to wound burden, such as wound
edges, exudate amount and exudate types, and their prognostic
abilities. In addition, the future models would leverage ma-
chine learning techniques, such as random survival forest [44],
DeepSurv [45], that model non-linear interactions between
features. This will lead to the development of a completely
objective, more accurate and faster prognostic tool. We will
also explore the generalizability of the reported models across
different ethnicities, which is absent from the current analysis
due to the unavailability of the information.

Moreover, the current analysis does not consider the impact
of prognostic indices on clinical interventions. As future work,
we aim to develop a decision support system, as shown in
Figure 11, that can assist clinicians in determining the optimal
interventions needed to heal the wounds quicker. Given the
wound care challenges dependent on skills and experience,
being able to suggest clinical interventions that could alter the
risk trajectory may provide significant clinical value and make
wound care more equitable.

VI. CONCLUSION

In conclusion, this study demonstrates the feasibility of
developing prognostic tools based on the objective information
derived from wound imaging. The feature importance inves-
tigation equips researchers with a guide to develop a more
accurate, objective prognostic tool. Furthermore, this study
presents superior prognostic models compared to standard
wound assessment tools used in the field today across different
clinical settings, wound etiologies, sex, age-groups and time.
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This indicates that the inclusion of the newly developed
prognostic tools into standard wound care practice can aid
in accurate and faster detection of high risk wounds, assisting
clinicians in better decision making and improving outcomes.
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