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Abstract—Hepatocellular carcinoma (HCC), the most
common type of liver cancer, poses significant challenges
in detection and diagnosis. Medical imaging, especially
computed tomography (CT), is pivotal in non-invasively
identifying this disease, requiring substantial expertise
for interpretation. This research introduces an innovative
strategy that integrates two-dimensional (2D) and three-
dimensional (3D) deep learning models within a federated
learning (FL) framework for precise segmentation of liver
and tumor regions in medical images. The study utilized
131 CT scans from the Liver Tumor Segmentation (LiTS)
challenge and demonstrated the superior efficiency and ac-
curacy of the proposed Hybrid-ResUNet model with a Dice
score of 0.9433 and an AUC of 0.9965 compared to ResNet
and EfficientNet models. This FL approach is beneficial for
conducting large-scale clinical trials while safeguarding pa-
tient privacy across healthcare settings. It facilitates active
engagement in problem-solving, data collection, model de-
velopment, and refinement. The study also addresses data
imbalances in the FL context, showing resilience and high-
lighting local models’ robust performance. Future research
will concentrate on refining federated learning algorithms
and their incorporation into the continuous implementation
and deployment (CI/CD) processes in AI system operations,
emphasizing the dynamic involvement of clients. We rec-
ommend a collaborative human-AI endeavor to enhance
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feature extraction and knowledge transfer. These improve-
ments are intended to boost equitable and efficient data
collaboration across various sectors in practical scenar-
ios, offering a crucial guide for forthcoming research in
medical AI.

Index Terms—Deep learning, federated learning, hepato-
cellular carcinoma, image segmentation, transfer learning.

I. INTRODUCTION

H EPATOCELLULAR carcinoma (HCC) poses a major
threat to public health and will affect over 1 million

individuals globally by 2025. HCC and colon metastasis are the
predominant forms of primary and metastatic liver cancer [1].
Sub-Saharan Africa and Eastern Asia have a higher incidence of
HCCs than other regions due to hepatitis B and C virus infection.
Dynamic computed tomography (CT) is one of the main methods
for diagnosing HCC according to many practice guidelines [2],
[3]. However, interpreting CT images slice-by-slice is an ar-
duous and time-consuming task that demands the expertise of
hepatologists, surgeons, oncologists, or radiologists [4]. Doctors
can reduce their workload and minimize subjective errors by
using computer vision techniques for feature extraction and
pattern recognition [5]. Using computer vision techniques to
automate liver tumor identification enhances liver cancer diag-
nosis efficiency and accuracy. It facilitates early detection for
optimal treatment and increases survival rates [6].

Segmenting liver tumors from CT images is challenging (as
illustrated in Fig. 1). Contrast-enhanced studies typically exhibit
hyperdense contrast enhancement during the arterial phase and
hypodense contrast washout during the portal venous or delayed
phase. Consequently, identifying small tumors becomes more
complicated since they have similar grayscale intensities to the
surrounding liver tissue [1]. Moreover, accurately delineating
tumors from adjacent tissue poses a challenge due to the complex
and indistinct boundaries tumors often exhibit [7].

Deep learning (DL) techniques, such as voxel-wise segmen-
tation models, have recently gained prominence as primary
approaches for clinical data analysis and have demonstrated
effectiveness in identifying liver contours and calculating vol-
ume [8]. Notably, UNet models and their variations have proven
valuable in segmenting the liver and tumors from medical images
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due to their convolution and deconvolution processes [9]. UNet
models, based on the dimensions of their input training data, can
be categorized into two-dimensional (2D) [10], two-and-a-half
dimensional (2.5D) [11], [12], [13], [14], or three-dimensional
(3D) [15], [16] models. The 2.5D model bears similarity to the
2D model, with the 2D model’s input data being either one
channel or three channels, depending on whether it is a grayscale
or RGB image. The 2.5D model is characterized by its use
of a stack of adjacent slices (more than three slices) as input
and generates a segmentation map for the central slice. This
approach of using 2.5D input effectively reduces the model’s
size. In the studies by Zhou et al. [12] and Qin et al. [13],
varying numbers of slices (3, 5, 7, etc.) from a scan were used to
create a segmentation map for the middle slice. In contrast, 3D
models involve inputting all slices into the deep learning model
for prediction.

Furthermore, these models can be organized based on their
intended use and processing methodology. For instance, one
model may be more suitable for liver segmentation, while an-
other may be better suited to tumor segmentation. Additionally,
preprocessing can improve accuracy and reduce computational
resources. It is also a flexible way to customize the UNet model
autoencoder architecture [17].

However, the challenge of insufficient data for training deep
learning models in medical imaging is substantial. Federated
learning (FL) presents a viable solution to this challenge [18],
[19]. FL enables the development of models using a decentral-
ized architecture, eliminating the need for a centralized database
or the exchange of images among multiple hospitals, thereby
addressing privacy and regulatory compliance concerns [19].
Consequently, this study focused on employing global FL al-
gorithms to improve segmentation results without the need to
share local datasets. This approach not only maintained data
privacy but also achieved high levels of accuracy and efficiency.
Additionally, the study underscored the clinical significance of
CT imaging in the diagnosis of HCCs. These enhancements
strengthen the foundation of this paper and ensure it accurately
reflects current advancements in our research field.

This study aimed to enhance the accuracy of liver tumor
segmentation models for hepatocellular carcinoma detection
using deep learning techniques. However, regulatory and privacy
concerns restrict cross-hospital sharing of medical data for cen-
tralized learning [20]. Hence, we sought to design appropriate
liver tumor segmentation models and an integrated federated
learning framework to address the cross-hospital data-sharing
problem. To our knowledge, this study is the first research to
use a federated learning algorithm to address and solve the
cross-hospital data-sharing problem for HCC detection. The key
contributions are as follows:

� We have developed an advanced hybrid network architec-
ture with technological innovations aimed at accurately
defining the borders and locations of the liver and tumors.
Our model employs both 2D and 3D cascading approaches
to focus on specific image areas, thereby enhancing tumor
detection and reducing the workload for clinicians. This
approach also offers significant clinical value by providing
spatial information, which improves image readability

for subsequent applications. For instance, by stacking
segmented slices of the liver, our model is capable of cal-
culating liver volume. This feature is particularly useful in
surgical planning as it helps in determining the remaining
liver volume.

� We also demonstrated that our proposed hybrid model
excelled in liver tumor detection and segmentation. It
seamlessly integrated into a federated learning framework
for clinical assessment, upholding data privacy through
local training and enabling its application across various
clinics.

� In conclusion, our study employed an FL framework that
trained the model on distributed datasets, accommodating
both balanced and imbalanced scenarios. This framework
supported the development of a model that is generaliz-
able for all participants, making it suitable for use across
medical clinics. Moreover, it enabled the gathering of
more training data, resulting in more effective models
with improved accuracy. In this way, we can exchange
parameters for modeling rather than patients’ images for
training among institutes. This result proposed a way to
improve accuracy and keep data safety and confidentiality.

In summary, this paper presents a method to enhance clinical
decision-making by employing a deep learning and federated
learning model based on radiologist-annotated CT scans. The
goal is to improve the assessment of patient conditions. Cur-
rently, our proposed Hybrid-ResUNet method combined with
FedAvg demonstrates improved efficiency and accuracy, achiev-
ing a Dice score of 0.9433 and AUC of 0.9965. Future objec-
tives include developing HCC-specific deep learning models for
malignancy risk prediction and treatment planning, optimizing
algorithms for HCC analysis in CT images within a federated
learning framework, and commercializing the predictive model
as a software as medical device (SaMD) for practical use and
ongoing optimization. This SaMD, having been validated across
multiple hospitals, will deliver essential information to doc-
tors and patients, aiding in the prediction and prevention of
liver diseases. This underscores our dedication to advancing
medical AI.

II. RELATED WORK

The following subsections provide an overview of two re-
lated topics: (1) hybrid deep learning models and (2) federated
learning algorithms.

A. Hybrid Deep Learning Models

The minimization of computing resources is crucial for cost-
effective liver tumor segmentation. While 2D models require
fewer resources, their accuracy is lower [21]. On the other
hand, 3D models demand more resources and time but pro-
vide more accurate results [16]. Practical computing constraints
should be considered when selecting models for clinical set-
tings. Various studies have focused on semantically segment-
ing medical images. For instance, the H-DenseUNet, a hybrid
densely connected UNet, was introduced for liver and tumor
segmentation [22]. It integrates a 2D DenseUNet for slice-based
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Fig. 1. Hepatocellular carcinoma in CT images. (a) Arterial phase.
(b) Portal venous phase.

feature extraction and a 3D DenseUNet for hierarchical context
aggregation. Another example is the hybrid CNN combined
with a 3D V-Net model for automatic lung tumor delineation
in CT images [21]. This model utilizes an encoder-decoder
structure with dense connections and combines 2D and 3D
features into a single module. A two-stage approach to liver
tumor segmentation was proposed, leveraging 3D models and
employing a cascaded fully convolutional network (FCN) based
on the improved 3D-ResUNet [23]. The first FCN segments the
liver as regions of interest (ROIs), while the second FCN focuses
on tumor segmentation. In this paper, the overall processing flow
of the proposed model can be modified by employing 2D, 3D,
or hybrid models. It can be done by narrowing down the ROI
in stages and conserving computing resources. The cascaded
approach (Hybrid-ResUNet) can also be split into two phases;
the first stage is a 2D model and the second is a 3D model for
tumor detection.

B. Federated Learning Algorithms

Federated Learning involves multiple clients exchanging
model parameters with a server while keeping their datasets local
and not shared [20]. Each client trains a model on its data, and
a central system aggregates the model parameters. The server
processes these parameters to update an aggregated model, that
is then shared with clients. This approach ensures data privacy
and avoids sensitive data sharing. However, FL models have
limitations, prompting the development of various methods such
as data partitioning techniques, advanced privacy protection
mechanisms, communication architectures, and system hetero-
geneity [24]. FL models can be updated between clients using
sequential or cyclic parameter updating. The federated averaging
(FedAvg) method is commonly used in FL to optimize model
weights [25]. The server gathers and averages gradients from
each local client, distributing the results to clients for model
updating and further training. FedAvg has performed well in
multi-tasking learning studies [26]. FL has been applied to
various tasks, including mining industrial data, secure image
analysis, and training models on decentralized medical datasets.
During the COVID-19 pandemic, FL trained a global model for
distributed disease detection from CT images [27]. FL can be
implemented as cross-silo or cross-device learning. Cross-silo
learning in multihospital systems requires stable connections
and reliable client computing environments. Based on previous
studies, FL offers a practical and cost-effective framework for

decentralized learning using private medical data to optimize
clinical outcomes systematically.

In the field of medical applications, researchers led by Houda
introduced a novel framework named HealthFed, which employs
FL and blockchain technology [19]. This framework enables
multiple clinical practitioners to engage in privacy-protected and
decentralized learning. Extensive experiments conducted using
a publicly available breast cancer dataset demonstrated that
HealthFed not only ensures the privacy of each collaborator’s
sensitive data but also delivers accurate learning models. These
results position HealthFed as a promising framework for medical
systems.

C. Summary

This paper introduces Hybrid-ResUNet, a cost-effective hy-
brid model that combines 2D and 3D segmentation techniques
for liver and tumor detection in stages. It balances accuracy and
performance, making it suitable for affordable AI applications
and integration into clinical FL architectures. FedAvg improves
performance without exchanging medical information. Added
more hospitals increased model complexity due to increased
dataset access. The FL framework ensures all participants re-
ceive the optimized model. The hybrid model within the FedAvg
framework was evaluated for balanced and imbalanced data
scenarios, yielding promising results. The proposed approach for
HCC detection can be applied to medical system alliances, en-
hancing performance without data sharing. This can potentially
improve diagnostic accuracy in small hospitals at a reasonable
cost [28].

III. PROPOSED METHODS

A. Ethical Approval

The protocols and waiver requests for retrospective data col-
lection and existing biosamples (REC No. 202109100RINC)
have been approved by the 148th meeting of the Research
Ethics Committee C of the National Taiwan University Hospital.
Government regulations and Good Clinical Practice guidelines
are followed in the conduct of the experiments. Written informed
consent is not required from study participants. The liver tumor
segmentation study utilizes the liver tumor segmentation (LiTS)
dataset, a publicly available dataset without patient identifica-
tion, hence the waiver of consent [29].

B. Model Architecture

This study proposed a two-stage approach for liver tumor
detection, as shown in Fig. 2. The UNet model serves as the
baseline in both stages. In the first stage, medical images are
subjected to windowing and preprocessing to amplify the liver
region’s intensity. The ResNet-50 model is then utilized to
isolate liver slices from the original dataset. Subsequently, in
the second stage, the isolated liver data is inputted into a 2D-
UNet model to assess the influence of various encoders on liver
and tumor detection accuracy. Ultimately, a 3D-UNet model
is deployed for the segmentation of liver tumors. Conversely,
3D models process by inputting the entire stack of slices into



HSIAO et al.: PRECISION AND ROBUST MODELS ON HEALTHCARE INSTITUTION FEDERATED LEARNING FOR PREDICTING HCC 4677

Fig. 2. Flowchart of the two-stage liver segmentation and tumor iden-
tification approach.

the deep learning model for comprehensive prediction. This
creates a hybrid model that incorporates 2D and 3D methods for
liver tumor identification. Utilizing the 2D and 3D models for
liver tumor detection enhances the hybrid model’s performance
and accuracy. Consequently, by combining the data from the
2D model, the 3D-UNet model achieves better tumor detection
within the liver region. The study also investigated the influence
of various loss functions on model performance during training.

1) UNet Model: UNet is widely recognized for its effective-
ness in biomedical image segmentation [9], [30]. Its encoder-
decoder structure and skip connections enable efficient train-
ing on small labeled datasets. The compact encoder extracts
high-level features, which are then resampled and combined
with low-level features by the decoder to segment small tar-
gets accurately. Unlike traditional segmentation methods, UNet
avoids error propagation by directly incorporating input and
output feature through skip connections. Additionally, UNet’s
convolution and pooling operations allow it to process images
of varying sizes. This study employed ResNet, DenseNet [31],
and EfficientNet [32] as encoders for liver area segmentation.
The performance of each encoder model was evaluated in the
first-stage 2D model.

2) 2D-UNet With Distinct Encoders: He et al. [33] developed
a residual learning framework to tackle the degradation issue
encountered with the increase of layers in ResNet architec-
tures. ResNet is structured into stages, each comprising multiple
building blocks. Variants such as ResNet-18, ResNet-50, and
ResNet-121 utilize distinct layers of building blocks to improve
accuracy. Notably, ResNet-50 incorporates bottleneck blocks,
which enable more efficient parameter reduction compared to
the ResNet-18 or ResNet-34 models that use standard residual
blocks.

DenseNet [31] distinguishes itself from ResNet by employing
a dense concatenation strategy that connects all layers linearly,
facilitating a direct link between the initial and subsequent
layers. With n(n+1)

2 connections among its n layers, DenseNet
promotes feature reuse by concatenating feature maps from
various layers. This methodology not only boosts performance
but also significantly reduces the number of parameters and

computational expenses. The dense connection technique en-
sures uniformity in feature maps. Additionally, transition layers
that function as pooling layers are placed between consecutive
dense blocks, effectively reducing the dimensions of feature
maps. In our study, we selected the DenseNet-121 model, pre-
trained with ImageNet weights, to serve as the encoder within
the UNet architecture.

EfficientNet models, spanning from B0 to B7, employ the mo-
bile inverted bottleneck (MBConv) as their fundamental building
block [32]. These models utilize a compound scaling method that
harmonizes network width, depth, and resolution, scaling them
based on a fixed constant. By adjusting this constant, the network
can be expanded, leading to variations from EfficientNet-B1
through EfficientNet-B7. In this experiment, the noisy student
technique alongside pre-trained weights of EfficientNet was
employed to deploy EfficientNet-B0 and EfficientNet-B5.

Li et al. [22] introduced H-DenseUNet, a method that starts
by dividing original CT images into adjacent slices for input
into a 2D model. Following this, 3D features extracted by a 3D
model are combined with the 2D and 3D inputs through hybrid
feature fusion, resulting in the output of the 3D model. This
integration of 2D and 3D models preserves the 3D features that
are otherwise lost in purely 2D modeling, while also alleviating
the computational burden associated with fully 3D models.

Therefore, due to the significant memory usage caused by the
extensive concatenation in the DenseUNet approach, we chose
to adapt the 2D, 3D, and hybrid models into 2D-ResUNet, 3D-
UNet, and Hybrid-ResUNet in stage 2, respectively, with the
goal of reducing computational requirements.

The 2D-ResUNet architecture features several stages, each
incorporating a variety of building blocks. This model resembles
the 2.5D model with the input image size set to 160x160x3,
where the input comprises three channels from a stack of
adjacent slices, creating a segmentation map for the central
slice, thereby effectively minimizing the model’s size. Notably,
the ResNet-50 encoder utilizes bottleneck blocks, enabling a
more efficient reduction of parameters compared to ResNet-18
or ResNet-34 models, which employ general residual blocks.
The network architecture of the 2D-ResUNet is illustrated in
Fig. 3. The 2D-ResUNet model integrates the skip connec-
tions from ResNet into the UNet architecture to improve the
performance of semantic segmentation. It begins with initial
processing steps, including convolution with 64 filters and batch
normalization, followed by max-pooling for downsampling.
Residual blocks in stages 2 to 5 maintain spatial dimensions and
perform spatial downsampling as needed. During upsampling,
skip connections are integrated, enriching contextual under-
standing and preserving details. Upsampling involves convo-
lutional layers with decreasing filter sizes, followed by batch
normalization and ReLU activation. Dropout regularization can
be applied for overfitting control. For multi-class classification,
the last layer lowers the channels to three classes using softmax
activation.

The 3D-UNet model includes stages in the downsampling
path, each with two 3D convolutional layers (3x3x3 kernel size),
batch normalization, ReLU activation, and max-pooling after the
first two stages. The image size is 160x160x64. Feature maps
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Fig. 3. Depiction of the 2D-ResUNet model architecture.

Fig. 4. Depiction of the 3D-UNet model architecture.

are stored for concatenation in the upsampling path. The upsam-
pling path also consists of stages with 3D transposed convolu-
tional layers, concatenating with corresponding downsampling
features. Each upsampling stage includes two 3D convolutional
layers, batch normalization, and ReLU activation. The final layer
is a 3D convolutional layer (1x1x1 kernel size) for multi-class
segmentation. The architecture is illustrated in Fig. 4. Com-
pared with the 2D model, the convolution layers of the 3D
model include filters with 3D size. The 3D convolution layers
can capture spatial information, meaning the 3D model needs
more parameters and more computing resources. The batch
size when the training stage cannot be set to a sufficient size.
In addition, the 3D model has another problem. That is, the
3D model architecture lacks the weights of pre-trained models
to load. Therefore, many types of research that use the 3D
model are not satisfactory, even worse than some outstanding
2D models.

This modified model architecture, referred to as Hybrid-
ResUNet, is depicted in Fig. 5. The hybrid model combines
2D-ResUNet and 3D-UNet branches to leverage both 2D and 3D

Fig. 5. Proposed Hybrid-ResUNet model architecture as a fusion of
the 2D-ResUNet and the 3D-UNet.

information for enhanced feature extraction and classification.
The model’s core consists of an input layer for 3D volumetric
data (160x160x64), which is processed in batches through the
2D-ResUNet branch. This branch extracts features from each
2D slice of the input volume and combines adjacent slices using
concatenation operations, creating a comprehensive representa-
tion of the 2D information.

C. Transfer Learning

Due to the scarcity of annotated training data for liver seg-
mentation, this paper leverages transfer learning as an effec-
tive solution. Specifically, the kidney tumor segmentation 2019
(KiTS19) dataset [34] was employed as the source data and the
LiTS Challenge dataset as the target data for HCC segmentation.
Both datasets are formatted in NIfTI (.nii). A notable challenge
in transfer learning is the potential mismatch of features when
the target and source datasets significantly differ. To mitigate
this, the coordinate system of the LiTS dataset was adjusted
to match KiTS19. The approach involved initializing the pro-
posed Hybrid-ResUNet model with weights from a pre-trained
kidney tumor detection model based on the KiTS19 dataset.
This strategy enabled the effective use of pre-trained weights in
the retraining and prediction phases for HCC detection, thereby
accelerating training and improving accuracy with a model
initially trained on an extensive dataset.

D. Loss Function

Deep learning utilizes a loss function to gauge the difference
between predicted and actual outcomes, aiming to minimize this
function during training to improve accuracy [35]. The objective
is to understand the relationship between features and labels in
the training data to accurately predict outcomes in testing data.
Choosing the right loss function is pivotal for the performance
of medical image segmentation, as different loss functions may
be more effective depending on the data characteristics and the
model’s architecture. In this research, four distinct loss functions
were evaluated for their effectiveness with the 2D-ResUNet and
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Hybrid-ResUNet models to identify the most suitable one for our
application. A particular challenge was the misclassification of
small-sized liver tumors in CT images to background, prompting
the adjustment of weights to 8.57 for tumors and 0.7 for liver
regions, respectively.

1) Categorical Cross-Entropy Loss: Categorical cross-
entropy loss has advantages in medical image segmentation: it
is simple to implement and commonly used in deep learning
models, making it convenient for practical applications.
Gradients can be calculated with predicted probabilities and
proper labels, improving segmentation accuracy. It is also
suitable for various classification tasks, including binary and
multiclass classification, making it widely used in medical
image segmentation. However, it has limitations in handling
imbalanced classes and voxel correlation, which must be
considered for accurate and stable segmentation results. In
multiclass tasks, categorical cross-entropy is often called binary
cross-entropy and utilizes a softmax activation function at the
final neural network layer.

L(y, ŷ) = −
C∑

i=1

yi log(ŷi) (1)

wherey = [y1, y2, . . ., yC ] is the true one-hot encoded label vec-
tor with C categories, and ŷ = [ŷ1, ŷ2, . . ., ŷC ] is the predicted
probability vector over the same C categories in (1).

2) Dice Loss: The Dice loss function is ideal for medical im-
age segmentation, especially in imbalanced class distributions.
It effectively addresses situations where the number of voxels
for different classes varies significantly. This loss function pri-
oritizes the minority class, improving segmentation accuracy.
Moreover, it captures intervoxel relationships by calculating
the Dice coefficient between predicted and actual segmentation
results, resulting in contiguous segmentation regions. The Dice
loss function also provides clear gradient signals, facilitating
better model training and faster convergence for enhanced seg-
mentation accuracy. It was specifically chosen to improve liver
tumor segmentation.

LDice = 1− 2
∑N

i=1 yiŷi + ε
∑N

i=1 yi +
∑N

i=1 ŷi + ε
(2)

where yi and ŷi are the actual label and predicted probability
of the ith voxel, N is the total number of pixels or voxels in
the image, and ε is a small constant (either 1 or 1e−5) added
to the denominator to avoid division by zero in (2). The Dice
Loss is used in image segmentation tasks to optimize the overlap
between predicted and actual segmentation masks. This measure
mitigates overfitting and ensures numerical stability.

3) F-Score Loss: The F-score loss function effectively ad-
dresses imbalanced class distributions in medical image segmen-
tation. It improves the segmentation accuracy of the minority
class by assigning it more weight while maintaining a balance
between precision and recall. The F-score loss also provides
clear gradient signals, aiding model training and convergence
for superior segmentation results. F-score loss parameters can
be fine-tuned to meet specific practical requirements for optimal
segmentation outcomes. In (3), the coefficient β balances the

precision-recall ratio, with a higher value emphasizing precision.

Fβ = (1 + β2) · precision · recall
(β · precision) + recall)

(3)

F-scores can be used for micro-averaging or macro-averaging.
In micro-averaging, the average is calculated across all samples,
regardless of their class. The macro-averaging method calculates
the average for each class. F-score values range from 0 to 1, with
higher values indicating better performance. The loss function
can be optimized as (1 − F-score).

4) Combo Loss: The combo loss combines the cross-
entropy and Dice loss functions, merging their strengths to
enhance model performance. It leverages Dice loss’s ability to
handle class imbalance, voxel correlation, and cross-entropy
gradient signals. By overcoming the limitations of each loss
function, such as the local minima trap of Dice loss and poor per-
formance with imbalanced classes of cross-entropy, the combo
loss aims to improve recall while maintaining accuracy for
superior segmentation outcomes. It provides clear gradient sig-
nals, aiding in model training and convergence and improving
segmentation results. This versatile function can be applied to
both binary and multiclass segmentation tasks. See (4) for the
combo loss description.

L = LCE + LDice (4)

E. Federated Learning Algorithm

Federated Learning enables model training on distributed
devices while preserving user privacy. It is particularly suitable
for medical image segmentation, where centralized training is
not feasible due to data privacy concerns. Training data remains
on local devices in FL, and only model parameters are aggre-
gated on a central server. FL benefits from diverse data sources,
enhancing model generalization. Medical image segmentation
datasets often suffer from class imbalance and high annotation
costs, which can be addressed through local training in FL.

Our study employed an FL framework for liver tumor seg-
mentation in CT images using distributed datasets and Hybrid-
ResUNet models. The framework involved three clients ex-
change model weights with a central server through commu-
nication rounds. The FedAvg algorithm, proposed by McMahan
et al. [36], was used for FL training. The algorithm consists of
local and global training steps, with computational requirements
determined by the number of communication rounds (R) and
local training epochs (E).

During the local training step, the server broadcasts the current
model parameters (w0) to all participants. Each client initializes
their local model with these parameters (wj) and trains it on
their respective dataset Dj . After training, the updated model
parameters (wr+1

j ) are sent back to the server, which aggregates
them to generate a revised server model (wr+1

G ). This updated
model is then distributed to all clients for further training. This
process is repeated until a stopping criterion is met, resulting
in a global model (WG) for the distributed dataset. Early stop-
ping can be implemented to monitor model performance during
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Fig. 6. Comparison of images with and without the windowing method.
(a) No windowing. (b) HU values set to −200 to 250.

Algorithm 1: FedAvg [36].
Input: Number of communication rounds R,

Number of local epochs E,
Local minibatch size B,
Learning rate η

Output: Global Model WG

1: Function SERVERPROCESS � Run on the
server

2: initialize w0

3: S ← (a set of N clients)
4: for each round r from 1 to R do
5: for each client j ∈ S Parallel do
6: wr+1

j ← CLIENTUPDATE(j, w,E)
7: end for
8: wr+1

G ←∑
j∈S

nj

n wr+1
j

9: end for
10: end function
11:
12: function CLIENTUPDATEj, w,E � Run on client

j
13: B ← (split Dj into batches of size B)
14: for each local epoch e from 1 to E do
15: for batch b ∈ B do
16: w ← w − η�l(w; b)
17: end for
18: end for
19: return w to server
20: end function

training. The complete pseudo-code for the FedAvg algorithm
can be found in Algorithm 1.

IV. EXPERIMENTS

A. Dataset

This study used the LiTS dataset, which includes 131
cases [29]. All cases include contrast-enhanced CT volumes in
the portal venous phase, with ground truth data available for
the training cases. Each slice in the dataset is in NIfTI format,
with a resolution of 512 pixels x 512 pixels. The number of
slices in each volume ranges from 42 to 1026. The ground-truth

data includes three labels: 0 for background, 1 for liver regions,
and 2 for liver tumor regions. A few non-tumor cases are also
included in the dataset (e.g., cases 32, 34, 38, 41, 47, 87, 89, 91,
105, 106, 114, 115, and 119). The dataset was collected from
multiple clinics and research institutions and manually labeled
by three independent radiologists. Liver tumors exhibit signif-
icant variations in contrast, size, and shape due to individual
physiological differences. The dataset’s diverse sources include
different machines and measurement protocols. Some tumors
may resemble healthy liver regions or be too small to detect.
Training deep learning models with these divergent features is
challenging.

B. Data Preprocessing

1) Windowing Process: CT volumes are quantified in
Hounsfield units (HUs), which span from−1024 to 3071, vary-
ing with the organs or tissues under examination. The broad
spectrum of voxel values in CT images necessitates complex
processing. Preprocessing CT images is crucial for minimizing
irrelevant voxel values and converting the image into a grayscale
format, with values between 0 and 255. Insufficient prepro-
cessing can skew the distribution of HU values for the liver,
resulting in diminished contrast, increased noise, and challenges
in differentiating the liver on a grayscale image. Windowing is a
technique applied to improve contrast by focusing on a specific
HU range. In this research, the min-max normalization method
was utilized, transforming CT scans into grayscale images by
adjusting values outside the selected HU range to the range’s
minimum and maximum values. The HU value ranges were
established using (5) for windowing.

HUmax = WindowLevel +
WindowWidth

2

HUmin = WindowLevel − WindowWidth

2
(5)

The min-max normalization method may cause information
loss, and it can remove excessive image details by restricting
the wide range of HUs to a specific interval. In this study,
the final preprocessing step did not utilize min-max normal-
ization. Instead, a HU window range of -200 to 250 was chosen,
demonstrating optimal performance for tumor segmentation but
deviating from the conventional clinical window range of -79
to 304. Fig. 6 illustrates that more information was preserved
using this windowing technique, enabling visualization of the
liver and tumor.

2) Data Augmentation: Due to the limited number of sam-
ples in the LiTS dataset, data augmentation techniques were
implemented prior to training. These techniques were essential
in addressing the scarcity of training data, aimed at increasing
data diversity and preventing overfitting. The data augmentation
primarily involved two types: geometric transformation and
contrast adjustment. Geometric transformation involved rota-
tion (90◦ or 180◦ counterclockwise), flipping (up, down, left,
or right), and scaling (random zoom of 0.8%–1.2%). Contrast
adjustment was achieved by applying gamma correction using
a specific formula ( (6)). These augmentation methods were
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randomly applied to the data.

I ′ = aIγ (6)

The gamma correction technique processes the input image I to
an output image I ′. a is a fine-tuning constant, and γ indicates
the contrast adjustment value, a random value between 0.4 and
2.5. The image values are initially normalized from 0 to 1, and
the γ value is then adjusted. If γ > 1, the image becomes darker,
whereas a value closer to 0 produces a brighter image. Some
gamma configurations were used for data augmentation in the
experiments.

C. Evaluation Metrics

Evaluation metrics are critical for accurately assessing seg-
mentation models’ performance. Precision measures the ratio
of correctly identified voxels to the total number of identified
voxels. Similarly, recall measures the percentage of correctly
identified voxels to the total number of actual voxels ((7), 8).
TP, FN, and FP indicate true positive, false negative, and false
positive results, respectively. The Dice similarity coefficient
(DSC, Dice score, or Dice) or F1-score is a widely used evalu-
ation metric in medical image segmentation that combines both
precision and recall ( (9)). Radiomics pipelines usually use the
Dice score as the primary evaluation metric.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

Dice =
2Precision×Recall

(Precision+Recall)

=
2× TP

(TP + FN) + (TP + FP )
(9)

D. Experimental Results and Analysis

To optimize model performance, various windowing intervals
and arrangements were evaluated for 2D and hybrid models.
The model is intended to be usable as the primary model in
both centralized and distributed architectures. Centralized and
distributed training methods were compared regarding liver and
tumor segmentation model accuracy.

1) Centralized Training Process: Implementation Details:
One experiment aimed to determine the optimal windowing
range for liver and tumor segmentation. Five windowing ranges
from previous studies were tested: (−200, 250) [37], (−20,
220) [17], (50, 250) [38], (−200, 400) [39], and (−79, 304) [40].
The (−200, 250) range, slightly wider than the clinical win-
dowing range, was chosen based on liver tumor segmentation
studies to preserve more information. The (−20, 220) range was
determined statistically using the standard deviation (SD) and
mean of HU values in LiTS, assuming that values within three
SDs of the mean are representative of some outliers. The (50,
250) range was selected as liver HU values mostly fall within
this range. The last two settings were borrowed from kidney
segmentation studies [39], [40] to explore the potential use of

TABLE I
AVERAGE DICE SCORE FOR 5-FOLD CROSS-VALIDATION OF LIVER AND

TUMOR SEGMENTATION WITH VARIOUS WINDOWING RANGES

parameters from other organ segmentation models. The LiTS
dataset was partitioned into a training set of 105 cases and a
test set of 26 cases. Models with different windowing settings
were assessed using K-Fold cross-validation on the training data.
The K-Fold cross-validation method splits the data into K equal
segments, with K being an adjustable parameter. For example,
setting K to 10 implies that the training dataset is divided into
ten equal parts. Consequently, the model is trained ten times,
with each iteration involving nine of these ten segments as the
training data, while the tenth segment serves as the validation
set, not used in training. In the upcoming experiments, K is
set to 5. The training process involved 500 epochs, each with
500 steps, and utilized the stochastic gradient descent (SGD)
optimizer with a learning rate of 0.001. This was conducted
on a machine equipped with an NVIDIA GeForce RTX 3090
GPU, boasting 24 GB of RAM. For liver tumor segmentation,
the ResUNet architecture was employed as the model. The study
concluded by assessing the influence of the windowing range on
the identification of liver and tumors.

Table I shows the average Dice scores of liver and tumor
segmentation models achieved through 5-fold cross-validation
using different window range settings. The liver segmentation
model achieved the highest average Dice score with a window-
ing range of (−200, 400). The Dice scores for various liver
windowing ranges indicate the possibility of transfer learning
configurations (see Section III-C and the Discussion for more
details). The tumor segmentation model performed best with a
windowing range of (−200, 250), as indicated in Table I. Fig. 7
presents tumor segmentation results for different windowing
ranges. It shows a minor false negative (FN) area in the prediction
with the (−200, 250) range compared to the (50, 250) range. The
Dice scores are for various tumor windowing ranges, with the
model achieving the highest average Dice score using the (−200,
250) range. This range was selected for data preprocessing.

Several experiments were conducted on modified models:
2D-ResUNet, 2D-DenseUNet, and Hybrid-ResUNet. The 2D-
ResUNet and 2D-DenseUNet models used 2D approaches for
liver tumor segmentation, while the Hybrid-ResUNet model
employed a hybrid approach. Initially, the liver was segmented
using 2D models, and liver slices were generated to train a tumor
detection model aimed at reducing error rates. The training and
validation process involved 5-fold cross-validation. The Hybrid-
ResUNet model achieved a higher average Dice score (0.9433)
than the 2D-ResUNet model (0.6661) and the 2D-DenseUNet
model (0.5736). This improvement was attributed to the hybrid
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Fig. 7. Tumor segmentation predictions by the 2D-ResUNet model. (a) Original CT image of case 76 (b) overlaid with the ground truth, and
overlaid with both the ground truth and the segmented result for the windowing ranges of (c) (−200, 250) and (d) (50, 250). (e) Original CT image
of case 129, (f) overlaid with the ground truth, and overlaid with both the ground truth and the segmented result for the windowing ranges of
(g) (−200, 250) and (h) (50, 250).

TABLE II
ABLATION STUDY OF MODEL SELECTION, LOSS FUNCTION, AND ARCHITECTURE EVALUATION

model’s retention of 3D image features and information. Details
can be found in Table II.

Furthermore, we employed the receiver operating character-
istic (ROC) curve and the area under the ROC curve (AUC) to
assess model performance in 26 testing cases. The ROC curve is
constructed by plotting the true positive rate (TPR) against the
false positive rate (FPR) ( (10) and 11) at different threshold
settings. The AUC is the area between the ROC curve and the

x-axis. Fig. 8 presents the ROC curves and AUCs. The Hybrid-
ResUNet model performs superior to the ResUNet model, but
their ROC curves and AUCs are similar. Hybrid-ResUNet’s
AUC is 0.9965, and ResUNet’s is 0.9944. Hence, the two
models perform similarly. Notably, background pixels (non-liver
regions) in images Fig. 9(a) comprise the vast majority of image
regions. After removing these background pixels, as with the
mask in Fig. 9(b), the model can better focus on the liver. This
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Fig. 8. 2D-ResUNet and Hybrid ResUNet ROC curves.

Fig. 9. (a) Abdomen image showing the liver, tumors, other organs,
and the background. (b) Image only containing the liver and tumors.

Fig. 10. ROC curves for 2D-ResUNet and Hybrid ResUNet with back-
ground removed.

mask is called a m. The (10) and 11 were slightly reformulated
to use TPRm ( (12)) and FPRm ( (13)), respectively, to eval-
uate the model performance on images without backgrounds.
Fig. 10 reveals that 2D-ResUNet’s background-removed AUC
drops sharply to 0.6273. By contrast, Hybrid-ResUNet’s AUC
is 0.996. Hybrid-ResUNet has the highest tumor segmentation
performance.

TPR =
TP

TP + FN
(10)

FPR =
FP

FP + TN
(11)

TPRm =
TPm

TPm + FNm
(12)

FPRm =
FPm

FPm + TNm
(13)

The performance of the 2D-ResUNet, 2D-DenseUNet, and
Hybrid-ResUNet methods with four different loss functions was
compared to optimize their performance. Initially, a significantly
greater foreground weight was assigned to prevent misclassi-
fication, but this weight decreased over time. Table II shows
that the F-score loss function achieved the highest Dice scores
and recall values for the 2D-ResUNet model. In contrast, the
Hybrid-ResUNet model with the Combo loss function obtained
the highest Dice scores. A high Dice score indicates impressive
precision and recall values that are nearly equal.

Encoder Comparison: In this research, ResNet, DenseNet,
and EfficientNet were employed as encoders for segmenting
liver and tumor areas. The design of the models, encompassing
the number of layers and the count of skip connections, was
meticulously evaluated. The efficacy of each encoder was first
examined for liver and tumor segmentation within the context
of a 2D model framework. A selection of encoders, specifically
EfficientNet-B0, EfficientNet-B5, ResNet-50, and DenseNet-
121, underwent evaluation to determine the most effective 2D-
UNet model, as detailed in Table III. These encoders produced
comparable Dice scores, with DenseNet-121 leading with the
highest score and demonstrating the least variance. Nonetheless,
DenseNet-121 demanded the most significant computation time
due to its layered structure. Conversely, the ResNet-50 model,
though slightly lower in Dice score, required less computa-
tion time, positioning it as a viable alternative to DenseNet-
121. The Hybrid-ResUNet model outperformed all 2D models
Fig. 11, registering a Dice score of 0.9433 in HCC detection,
as indicated in Table II. Further comparative analysis between
the Hybrid-ResUNet and 3D-UNet models revealed that the
Hybrid-ResUNet’s 2D component captured more features and
ensured stable prediction times without significantly increasing
the computation time. In summary, the Hybrid-ResUNet model
proved to be superior to the 3D-UNet model, as indicated in
Table III.

2) Federated Learning Framework: Implementation De-
tails: The study employed an FL framework to assess the model’s
effectiveness. It used 105 training cases divided among three
clients and 26 for testing. The training data sets were distributed
among clients in balanced (35 cases per client) and imbal-
anced (53, 31, and 21 cases) manners. The Hybrid-ResUNet
model performed better in previous experiments and was applied
with the Dice loss function. The models underwent five-fold
cross-validation using the LiTS Challenge data set. The training
involved 100 epochs with 100 steps per epoch and an SGD opti-
mizer with a learning rate of 0.001. Computation was performed
on a machine with NVIDIA GeForce RTX 3090 GPU, AMD
Ryzen 5 5600X 6-Core processor, and 32 GB of RAM. Fig.12
depicts the FL framework employed in the study.

FL with Balanced Data Set Distribution: Table IV summa-
rizes the results of local model training, model testing, FL,
and global verification for the balanced data set scenario. The
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TABLE III
PARAMETERS AND RESULTS OF 2D, 3D, AND HYBRID MODELS FOR LIVER TUMOR SEGMENTATION

Fig. 11. Results for three liver tumor segmentation models for cases 65, 71, 73, and 76. First column, original images; second column, annotated
photographs; the third, fourth, and fifth columns are the segmentation results for the 2D-ResUNet, 2D-DenseUNet, and Hybrid-ResUNet models,
respectively. The Hybrid-ResUNet model outperforms the other models in all cases.

TABLE IV
FL WITH A BALANCED DATA SET DISTRIBUTION

first three rows present the performance of each client’s model
on each local data set. The last row presents the results of the
global model iteratively updated by the FedAvg algorithm and
tested on all three clients’ data sets. The global model has a
mean Dice score of 0.7418. Each client performs well on its
data set, achieving a Dice score of approximately 0.78–0.87,
but performs poorly on other data sets. All clients had improved
performance after FL, which achieved an average Dice score of
0.7132. The FedAvg global model has the highest Dice score

of 0.7418 in the global testing set. Federated learning enables
cross-hospital institutions to improve liver tumor segmentation
models by increasing data volume without exchanging data.

Federated Learning with Imbalanced Data Set Distribution:
The proposed framework was investigated for resilience by using
experiments involving FL with an imbalanced data distribution
among local data sets. The results are presented in Table V. Each
client performs favorably on its local data set (DSCs of 0.84–
0.92). However, they perform poorly on other data sets because
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TABLE V
FL WITH AN IMBALANCED DATA SET DISTRIBUTION

Fig. 12. Proposed FL framework including the workflow, relevant pa-
rameters, and balanced and imbalanced data distributions.

of imbalanced data distribution. The global model, which was
iteratively updated by the FedAvg algorithm, had a Dice score
of 0.7155 for the local data sets. FL enhanced this performance,
achieving a Dice score of 0.7788 for the local data sets. It also
achieved the highest Dice score of 0.7155 on the global testing
data set. In summary, this federated learning method is effective
even if the data distribution among local data sets is imbalanced.

Comparison with Centralized and Distributed Training Re-
sults: Based on the designed Hybrid-ResUNet model, central-
ized training outperformed distributed training. Hospitals typ-
ically follow strict data exchange and sharing regulations to
protect patient privacy. Hence, centralized training cannot be
used for medical data. However, the FL framework is suitable
for distributed training for clients with small data sets. Training
quality also plays a crucial role in improving performance.
The results indicate that the proposed FL approach can be
applied to real-world medical scenarios, even to unbalanced
data. The comparable performance of the proposed approach
on both balanced and imbalanced data sets also demonstrates its
robustness.

V. DISCUSSION

In this study, an ablation analysis was conducted to evalu-
ate the effectiveness of windowing ranges, loss functions, and
training methods across various deep learning models. The
aim was to identify the parameters that yielded the highest
performance. Transfer learning was implemented by applying
pre-trained weights from the KiTS dataset, which facilitated
model convergence and enhanced accuracy, as noted in [41].
Windowing techniques were used specifically to improve liver

and tumor segmentation methods. Additionally, the study inves-
tigated the impact of different loss functions and encoders on the
overall performance of the model. The findings indicated that
both preprocessing and adjustments to the model architecture
had a significant effect on the accuracy of liver and tumor
segmentation. In this context, the Hybrid-ResUNet model with
a combo loss function employed in this study notably increased
segmentation accuracy by initially isolating the liver region,
thereby minimizing interference from surrounding organs. The
ultimate objective was to develop a high-performing Hybrid-
ResUNet model suitable for broad hospital use, aiming to ensure
a high-quality and standardized approach to segmentation.

Strict regulations in hospitals often hinder data exchange and
sharing, posing challenges in developing consistent and accurate
medical models. Federated learning presents a potential solution
to this dilemma. However, the varying quantity and quality of
data among different clients can affect the accuracy of the global
model in FL compared to centralized models. Therefore, the
choice of an effective and high-performing FL architectural
model is essential. The findings of this study demonstrate the
viability of implementing an FL architecture across multiple
medical institutions, leveraging cross-silo computation within
the secure and stable network environments of hospitals. The
Hybrid-ResUNet model, employed in this research, shows high
accuracy in tumor segmentation and the assessment of liver and
tumor volumes. To our knowledge, the integration of a liver
tumor semantic segmentation model with a federated learning
framework represents a novel application. This is specifically
applied to liver cancer detection scenarios where a systematic
evaluation of various parameters, such as encoder and decoder
selection, transfer learning, loss function evaluation, and adap-
tation of federated learning algorithms, is conducted. The inno-
vative combination of these methods and steps highlights the
novelty and progressiveness of this paper, where, within the
federated learning environment, each client can independently
compute using their dataset while collaboratively optimizing
through the Federator. Furthermore, utilizing this model, doctors
can precisely determine tumor size and location by calculat-
ing liver volume and overlaying liver tumor slices on a 3D
image, as well as identifying affected tissues. This accurate
information is crucial for developing optimal treatment plans,
monitoring treatment progression, and predicting the growth rate
and prognosis of liver tumors. Such accurate predictions enable
healthcare professionals to provide improved patient care and
more effective treatment planning.

The study has limitations, including the number of clients
in the federated learning framework. The FedAvg algorithm
has limitations, such as excessive model parameter increases
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when many clients participate in training, potentially lead-
ing to communication bandwidth constraints. Slow model
convergence requires increased communication frequency, re-
sulting in higher computational costs. Additionally, imbalanced
data distribution in distributed learning across multiple clients
can affect system performance. Further research is necessary
to develop mechanisms or algorithms for balancing user data
distribution across medical institutions.

VI. CONCLUSION

This study utilized deep learning and federated learning
techniques for liver cancer detection, specifically hepatocellular
carcinoma. The proposed Hybrid-ResUNet model combines 2D
and 3D methodologies to achieve precise detection and analysis
of liver tumors, reducing doctors’ workload. Transfer learning
and hybrid models were employed to minimize training time
and computational resources and enhance system performance.
Optimization of the models included evaluating various data
preprocessing strategies, windowing ranges, encoders, and loss
functions. This resulted in improved performance for liver tumor
detection (Dice score: 0.9433, AUC: 0.9965). Additionally, the
model enables liver and tumor volume calculation by overlaying
segmented voxels on image slices. This valuable information
helps doctors formulate appropriate treatment plans, including
surgery, radiation therapy, or chemotherapy. Moreover, it facil-
itates treatment progress monitoring, effectiveness assessment,
and treatment plan adjustment.

Furthermore, the study implemented the FedAvg algorithm
for federated learning. This algorithm allows collaborative
model optimization using distributed data sets from multiple
hospitals, making it highly suitable for cross-hospital learning
applications. Integrating the Hybrid-ResUNet model into a prac-
tical FL framework enables clinical assessment while preserving
data privacy and facilitating the collection of large training data
sets. The proposed model and FL framework offer potential
improvements in tumor detection accuracy, making them well-
suited for implementation in medical clinics and hospitals.

This paper presents a detailed platform or workflow designed
to deeply involve participants in problem-solving, data col-
lection, model development, and refinement activities. Future
research will aim to enhance active participation in these areas.
The emphasis will be placed on improving federated learning
algorithms, especially their incorporation into the continuous
implementation and deployment (CI/CD) processes within AI
system operations, while ensuring the dynamic involvement of
clients. The goal is to create strategies that provide incentives,
ensure fairness, and facilitate ongoing optimization across a
diverse array of applications. Such developments are expected
to foster equitable and efficient data collaboration across vari-
ous sectors in practical, real-world environments. This addition
serves as an essential guide for future research initiatives, par-
ticularly focusing on the advancement of the medical AI field.
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