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Abstract—Emotion recognition from electroencephalo-
gram (EEG) signals is a critical domain in biomedical
research with applications ranging from mental disorder
regulation to human-computer interaction. In this paper,
we address two fundamental aspects of EEG emotion
recognition: continuous regression of emotional states and
discrete classification of emotions. While classification
methods have garnered significant attention, regression
methods remain relatively under-explored. To bridge this
gap, we introduce MASA-TCN, a novel unified model that
leverages the spatial learning capabilities of Temporal Con-
volutional Networks (TCNs) for EEG emotion regression
and classification tasks. The key innovation lies in the
introduction of a space-aware temporal layer, which em-
powers TCN to capture spatial relationships among EEG
electrodes, enhancing its ability to discern nuanced emo-
tional states. Additionally, we design a multi-anchor block
with attentive fusion, enabling the model to adaptively learn
dynamic temporal dependencies within the EEG signals.
Experiments on two publicly available datasets show that
MASA-TCN achieves higher results than the state-of-the-art
methods for both EEG emotion regression and classifica-
tion tasks.

Index Terms—Temporal convolutional neural networks
(TCN), emotion recognition, electroencephalogram (EEG).

I. INTRODUCTION

EMOTION recognition, also known as emotional artificial
intelligence [1], [2], leverages machine learning to under-

stand human emotions, crucial for addressing emotion-related
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mental disorders like anxiety, depression, and autism spectrum
disorder (ASD). It employs both categorical and dimensional
models, with the valence-arousal-dominance (VAD) model [1]
being prominent for evaluating emotions across valence (neg-
ative to positive), arousal (passive to active), and dominance
(emotion strength) dimensions. Unlike affective signals from
physiological responses, speech, and facial expressions [3],
electroencephalogram (EEG) is notably effective in emotion
recognition. As a cost-efficient, non-invasive, and user-friendly
brain imaging tool, EEG uniquely captures the brain’s inherent
emotional neural activities, distinguishing it from other modal-
ities that subjects could easily conceal.

We differentiate between discrete emotional state classifica-
tion (DEC) and continuous emotion regression (CER), two key
tasks in EEG emotion recognition, covering aspects such as data
acquisition, annotation, representation learning, and evaluation.
Both tasks utilize a similar data acquisition approach, where sub-
jects watch film clips to capture facial expressions, EEG signals,
and other emotional cues [4], [5], [6]. The distinction between
DEC and CER lies in annotation, representation learning, and
evaluation. DEC assigns a single discrete label per trial [7],
while CER maps each trial with a series of values indicating
emotional fluctuations [8]. In representation learning, DEC
may underemphasize long-term dynamics, crucial for CER’s
sequence prediction. For evaluation, DEC relies on accuracy and
F1 score [7], whereas CER uses consistency metrics like root
mean square error (RMSE), Pearson’s correlation coefficient
(PCC), and concordance correlation coefficient (CCC) [8]. Both
tasks face challenges, especially in generalized settings where
classifiers are tested on unseen data [7].

Those challenges have caught the interest of many researchers
in recent years [1], especially for DEC tasks. In DEC tasks,
traditionally, different types of features are extracted from pre-
processed EEG signals [9], [10]. Then the shallow learning
methods were applied, such as support vector machine (SVM).
With the rapid development of deep learning in domains such
as computer vision [11], [12], natural language processing
(NLP) [13], [14], [15], [16], and graphs [17], [18], [19], more and
more researchers apply different types of neural networks to the
BCI domain [20], [21], [22], [23], [24], [25], [26]. Among deep
learning methods, there are two types of learning paradigms.
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The first one feeds hand-crafted features to neural networks,
extracting the spatial-temporal patterns of the features via dif-
ferent types of neural networks, namely, convolutional neural
networks (CNN) [27], graph convolutional neural networks
(GCN) [28], [29], [30], recurrent neural networks (RNN) [31],
LSTM [32], transformers [33], [34], [35], [36], and other hy-
per networks [37], [38], [39], [40], [41]. With the automatic
feature-learning ability of CNN, using EEG signals directly
becomes a new trend [7]. Compared to the well-studied DEC
task, the CER task is less explored, with fewer databases and
methods. Among existing studies, the majority use visual and
audio modalities [42], [43]. There are only a few works [8], [44]
that focus on the EEG-based CER problem. LSTM was utilized
to do the regression of continuous emotional labels using PSD
features [44]. TCN was further explored to learn from relative
PSD (rPSD) features of EEG, achieving the state-of-the-art
(SOTA) results for CER task using EEG [8]. However, those
two methods all utilized flattened feature vectors. Hence, the
spatial information of EEG signals were not capably learned
by the neural networks. Since the label is continuous in time,
learning temporal dynamic patterns are essential which can be
addressed well by using TCN.

A natural question is: How can we empower the TCN with
spatial learning abilities to further improve regression perfor-
mance? Furthermore, can we propose a unified model that can
handle both regression and classification well? To answer the
above-mentioned questions, we designed a novel multi-anchor
space-aware TCN (MASA-TCN) as a unified model for both
DEC and CER tasks. A space-aware temporal layer (SAT)
is designed to give TCN the ability to learn spatial-spectral
patterns from rPSD. The SAT layer has two types of kernels:
spectral context kernels as well as spatial fusion kernels. Spectral
context kernels extract different spectral patterns channel by
channel. The spatial fusion kernels serve as the spatial pat-
tern learners that extract the patterns among different chan-
nels. Besides, a multi-anchor attentive fusion block (MAAF)
is proposed to extract the dynamic temporal patterns. It paral-
lelly applies different-length causal temporal kernels. Then the
outputs are attentively fused. Two publicly available datasets,
MAHNOB-HCI [5] and DEAP [4], were utilized to evaluate the
proposed MASA-TCN for CER and DEC tasks. MASA-TCN
was compared with the SOTA methods for CER and DEC tasks.
Based on the experiment results, MASA-TCN achieved better
regression and classification results and set new SOTA results
for those two tasks. Extensive experiments and visualizations
were conducted to better understand the proposed method. The
results suggest that enabling TCN to extract spatial patterns
improves its performance, and the network width plays a more
important role for MAS-TCN than the depth does. The ex-
periments also suggest that attentive fusion and early spatial
fusion are important for performance improvements on CER
tasks.

We summarize the contributions of this work as:
� We developed MASA-TCN, a novel unified model for both

EEG emotion regression and classification tasks.
� The space-aware temporal layer was designed to enable

TCN to extract spatial-spectral patterns.

� Additionally, we proposed a multi-anchor attentive fusion
block to capture temporal dynamic patterns.

� Extensive analyses and ablation studies were conducted to
evaluate the importance of each module in MASA-TCN.

The subsequent sections of this article are structured as
follows: Section II introduces some preliminary concepts. In
Section III, we delve into the intricate details of MASA-TCN.
Section IV provides an overview of the datasets and experiment
settings. Section V presents the results and analysis. Lastly, we
offer a comprehensive discussion and conclusion in Sections VI
and VII, respectively.

II. PRELIMINARIES

A. Problem Formulation

There are two types of EEG emotion recognition tasks to be
addressed in this paper: CER and DEC. We provide a more for-
mal description on the data annotation of CER and DEC. Given
N trials of continuous EEG signal [X0, . . .,XN−1],X ∈ RC×T ,
where C presents EEG electrode numbers, T is the number of
temporal data points. Typically, the entire trial is divided into
shorter segments, denoted by X̄i, i ∈ [0, 1, . . ., n− 1], using
a sliding window with or without overlap to train the neural
networks. For CER, the labels are yCER = [y0, . . .,yn−1],y ∈
R1×T/fy

s , where fy
s is the sampling rate of the continues labels.

Because the label of each trial in CER is continuous in the
temporal dimension, the label is also cut into shorter segments
as is done for the EEG data. The target of CER is to learn
f(Θ) : Xi → yCER, which can:

argmin
Θ

i=0∑
n−1

Ψ(f(Xi),yCER,i), (1)

where Θ is the trainable parameters of f(·) and Ψ(·) is the
regression loss.

For DEC, the labels are yDEC = [y0, . . ., yn−1], y ∈ R. Be-
cause there is one label for each trial in DEC, all the segments
within one trial share the same label. The target of DEC is to
learn f(Θ) : Xi → yDEC , which can:

argmin
Θ

i=0∑
n−1

Υ(f(Xi), yDEC,i), (2)

whereΘ is the trainable parameters of f(·) andΥ(·) is the cross-
entropy loss.

B. Neural Networks for Temporal Pattern Recognition

This section introduces two neural networks for temporal
pattern recognition: RNN and TCN. RNNs, distinct from feed-
forward networks, leverage previous outputs as inputs, incorpo-
rating internal states to learn temporal dynamics. LSTM [45],
a variant of RNN, efficiently models sequential patterns using
a cell state for information retention and gates for regulating
data updates. Bidirectional LSTMs enhance pattern learning
by processing sequences in reverse order. Gated recurrent units
(GRU) [46], a simpler LSTM alternative, achieves comparable
performance with fewer gates. LSTM’s capability in temporal
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Fig. 1. Architecture of our MASA-TCN. There are four main parts of MASA-TCN: feature extraction block, MAAF block, TCN block, and
regression/classification block. A sequence of five four-EEG-channel sub-segments is utilized as an example. The k of SAT refers to the length
of the kernel in the temporal dimension. Best viewed in color.

pattern extraction from flattened PSD vectors for CER was
demonstrated in [44]. TCN, introduced for action segmenta-
tion [47], employs causal and dilated convolutions for sequen-
tial modeling, with residual connections enhancing its perfor-
mance [48]. Zhang et al. [8] applied TCN with rPSD features
for CER, surpassing LSTM’s results [44].

However, the spatial relations among electrodes remain un-
derexplored with both LSTM and TCN relying on flattened
spectral features. To address this, we introduce a space-aware
temporal convolutional layer for TCN to effectively learn spatial
patterns in CER tasks. Considering emotion’s temporal variabil-
ity [49], [50], a multi-anchor attentive fusion block is devised to
enhance temporal dynamics modeling in affective EEG data.
Unlike previous approaches using varying dilation rates, we
employ 1-D causal convolutional kernels of different lengths
to capture the dynamic temporal dependencies in emotional
processes. In addition to CER, which necessitates the model’s
ability to capture temporally continuous changes, this design can
also be applied to DEC. DEC demands one overall prediction
per input, which can be achieved by employing a mean fusion
strategy across predictions from all sub-segments within each
input segment.

III. METHOD

This section introduces the components of MASA-TCN. Un-
like previous approaches [8], [44] that ineffectively use flat-
tened rPSD features for TCN input, failing to capture spatial
patterns, we introduce a space-aware temporal (SAT) layer.
The SAT layer effectively extracts spatial-spectral patterns from
EEG data. Additionally, to capture the temporal dynamics of
emotional cognitive processes across varying time scales, we
designed a MAAF module. MAAF employs three parallel SATs
with varying lengths of 1-D causal convolution kernels, whose
outputs are attentively fused and fed into TCN layers. These
layers learn higher-level temporal patterns and produce a final
hidden embedding. For CER tasks, this embedding is mapped
to continuous labels using a linear regressor. For DEC tasks, a
sum fusion layer generates the final output for time-segmented
trials with a unified label, offering an alternative to single-output
linear layers. The structure of MASA-TCN is demonstrated in
Fig. 1.

A. Input Construction

The construction of the network input is illustrated first to
better understand the algorithm. As mentioned in Section II-A,
the EEG data of each trial is cut into shorter segments. Note
that the sampling rates of the EEG data and continuous label are
different, the former is much higher than the latter, e.g. 256 Hz
vs 4 Hz in MAHNOB-HCI. Then the segments are further
segmented into sub-segments along temporal dimension. Sliding
windows with overlaps are applied to make sure sub-segments
are synchronized to each value of the continuous label for
CER. For each sub-segment, it is still a 2-D matrix, which has
spatial and temporal dimensions. Because the sub-segments are
in time orders, they can be regarded as frames in a video. For
each sub-segment, averaged rPSDs in 6 frequency bands are
calculated as described in [8]. We flatten the rPSDs along the
EEG channel dimension, resulting in a feature vector:

v = [[pf0c0 , . . ., p
fF−1
c0

], . . ., [pf0cC−1
, . . ., pfF−1

cC−1
]], (3)

where p is the averaged rPSD, C equals to the EEG channel
number, F equals to the total number of the frequency bands,
and [·] denotes the concatenation. pf0c0 represents the averaged
rPSD of the channel c0 in frequency band f0. Hence, one input
to the neural networks would be:

x = [v0, . . .,vt−1], (4)

where t represents the total number of the rPSD vectors within
one segment. The input is illustrated in Fig. 2.

B. Space-Aware Temporal Convolutional Layer

In this section, we introduce a novel SAT layer that enables
the spatial learning ability of TCNs used in [8]. The SAT has two
types of convolutional kernels: context kernels that extract the
spectral patterns channel by channel and spatial fusion kernels
that learn spatial patterns across all the channels. The structure
of SAT is shown in Fig. 2.

Given the input x = [v0, . . .,vt−1],v ∈ RC∗f×1 introduced
in Section III-A, the first type of the CNN kernels in SAT is the
2-D causal convolutional kernel whose size, step, and dilation
are (f, k), (f, 1), and (1, 2), where f is the number of frequency
bands used to calculate rPSDs and k is the length of the CNN
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Fig. 2. Space-aware temporal convolutional layer. The SAT has two
types of convolutional kernels: context kernels that extract the spectral
patterns channel by channel and spatial fusion kernels that learn spatial
patterns across all the channels. A context kernel of size (4, 3) is utilized
for example. And a four-EEG-channel sample with four spectral features
in each EEG channel is used as the example. Zero padding is added
to make the context kernel a causal kernel along temporal dimension.
Only one kernel for each type of CNN kernels is shown in the diagram
for better view, the final output (on the top) consists of the outputs from
more kernels (4 is utilized as the number of kernels of each type for
demonstration purpose). Ch-n represents n-th EEG channel, and fn is
the n-th frequency band. Best viewed in color.

kernel in temporal dimension. Note that the default dilation step
is 1 instead of 0 in PyTorch [51] library, which means there
is no dilation in that dimension if the dilation step is set as 1.
Because the step in the feature dimension is the same as the
height of the kernel, it can learn spectral contextual patterns
across EEG channels. Hence, it is named the context kernel.
The context kernel can learn spectral patterns as well as temporal
dynamics at the same time due to its 2-D shape. Different from
WaveNet [52] that has dilation steps of 1, 2, 4, . . ., 2n−1, where
n is the number of layers, the first layer of MASA-TCN has a
dilation of 2 in the temporal dimension. There are two main
reasons for our design choice: 1) A higher dilation step en-
hances the extraction of discriminative information by avoiding
redundant aggregation among adjacent feature vectors, which
are highly correlated due to being calculated with overlapped
sliding windows. 2) Eliminating the TCN layer with a dilation
step of 1 reduces the model size without sacrificing the receptive
field. Due to the causal convolution, the temporal dimension of
the input and output are the same. Hence, we can get the output
Hcontext ∈ Rs,C,t, where s is the number of context kernels, C
is the number of EEG channels, and t is the total number of the
rPSD vectors within one segment. Hcontext can be calculated
by:

Hcontext = Conv2D(

input = x,

kernel_size = (f, k),

strides = (f, 1),

dilation = (1, 2)), (5)

where Conv2D represents the 2-D convolution applied to the
input x, with kernel_size, strides, and dilation as the param-
eters for the CNN operation. Note that these parameters are set
to their default values in the PyTorch library unless specified
otherwise. Given that f denotes the number of frequency bands
used for rPSD (refer to Section IV-B), fMAHNOB-HCI is 6 and
fDEAP is 5. We set k to values in the set [3, 5, 15], and an analysis
to evaluate the effects of k is conducted in Section V-D.

The output of the context kernels is spatially fused by spatial
fusion kernels to learn the spatial patterns of EEG channels. The
size, stride, and dilation of the spatial kernels are (C, 1), (1, 1),
and (1, 1), respectively. This is the same as the commonly used
spatial kernels of CNNs in BCI domains [20], [22]. Besides, it
can be treated as an attentive fusion of all the EEG channels, with
the weights of the 1-D CNN kernel being the attention scores.
After s spatial fusion kernels, the size of the hidden embedding
HSF becomes (s× 1× t). This process can be described as:

HSF = Conv2D(x, kernel_size = (C, 1)), (6)

where the default values of strides (1, 1) and dilation (1, 1) are
utilized.

C. Multi-Anchor Attentive Fusion Block

A MAAF block is designed to capture temporal dynamics that
might happen at different time scales [7]. There are two steps in
the MAAF: 1) employing parallel SATs with different temporal
kernel lengths, and 2) attentively fusing the outputs from these
SATs. The architecture of MAAF is illustrated in Fig. 1. Emotion
varies from time to time, especially over longer duration [50].
The duration of emotions varies from a few seconds to several
hours [49]. Three parallel SATs with different temporal kernel
sizes are utilized to capture those temporal dynamics in different
time scales. In this paper, the temporal lengths of the context
kernels are set to k = [3, 5, 15], respectively. The longer the
temporal length, the larger the temporal receptive field. Because
the weights of the context kernels are distributed along the time
dimension with the help of dilation steps, each weight is like
an anchor on the time axis. Hence, we name these parallel
SATs as multi-anchor SATs. Besides, from a causal dependence
perspective, different temporal kernel sizes may incorporate
various previous outcomes to determine the subsequent output.
We hypothesize that it can increase the robustness of the causal
dependence in the temporal dimension underlying the continu-
ous emotional cognitive process. The results in ablation studies
also support the effectiveness of the multi-anchor design. The
multi-anchor SATs can be described as:

Hi
MA = SAT(x, kernel = (f, ki)), i ∈ [0, 1, 2], (7)

where SAT contains the sequential operation of (5) and (6).
Different from TSception that directly concatenates the out-

put of different scale kernels, an attentive fusion operation
is adopted to combine the output from different SATs. First,
the three outputs are concatenated along the kernel dimension
(channel dimension of 2-D CNNs). Given Hi

MA ∈ Rs×1×t,
the concatenated output would be Hcat

MA ∈ R3∗s×1×t. Then, a
one-by-one convolutional layer with s CNN kernels serves as
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both an attentive fusion layer and a dimension reducer, returning
the concatenated dimensions (3 ∗ s) back to their original size.
Hence, the Hcat

MA ∈ R3∗s×1×t becomes HAF ∈ Rs×1×t. The
output of the attentive fusion layer can be described as:

HAF = Conv2D([H0
MA,H

1
MA,H

2
MA],

kernel_size = (1, 1)), (8)

where [·] is the concatenation along the kernel dimension.

D. Temporal Convolutional Layer

TCNs are further stacked to learn the temporal dependencies
on top of the space-aware temporal patterns learned from MAAF.
TCNs enhance temporal sequence learning by stacking causal
convolution layers, utilizing dilated 1-D CNN kernels. Bai
et al. [48] improved the sequence modeling capabilities of TCNs
by introducing weight normalization, residual connections, and
nonlinear activation functions. The enhanced TCN model can
be expressed as:

Hm = TCN(Hm−1) = Φ

(
Hm−1 +

k−1∑
i=0

f(i) ·Hm−1
strd−d·i

)
,

(9)
where m denotes the layer index, f(·) represents the filter, k
is the kernel size, strd is the stride, and d is the dilation factor.
strd − d · i indicates the direction of the past. Φ(·) is the PReLU
activation function.

By stacking layers of TCNs, the temporal receptive field can
be increased. The receptive field size can be calculated by:

F (m) = F (m− 1) + 2× (k − 1)× dm, (10)

where m is the number of the convolutional block with residual
connection, k is the kernel size, dm is the dilation of the m-
th convolutional block with the residual connection. When the
dilation factor increases exponentially by 2 as the number of
TCN layers increases, the receptive field can be calculated as:

F (m) = 1 + 2 · (k − 1) ·
m−1∑
i=0

2i = 1 + 2 · (k − 1) · (2m − 1).

(11)
Given that the first layer of MASA-TCN, the SAT, has a

dilation rate of 2, the receptive field of MASA-TCN can be
calculated as follows:

F̄ (m) = F (m+ 1)− k + 1 = 1 + (k − 1)(2m+2 − 3).
(12)

E. Output Layer for Regression and Classification Tasks

Given the learned temporal representation, Hm, a linear layer
is utilized to project it to the desired output for regression
and classification, respectively. Hm is a sequence of learned
embeddings of the sub-segments. Since regression tasks involve
n-to-n mapping, a linear layer projects the embedding of each
sub-segment into a scalar, which represents the predicted emo-
tional value of that sub-segment. Hence, the regression output,
yCER, can be calculated as follows:

yCER = [LP(Hm
0 ), . . .,LP(Hm

t−1)], (13)

where LP(·) represents the linear projection layer, and t is the
number of sub-segments in a sample.

For classification tasks, the entire sequence of sub-segments
corresponds to a single label. A mean fusion is applied to
aggregate the predictions from all the sub-segments. Hence, the
classification output, yDEC , can be calculated as follows:

yDEC =
1

t

∑
([LP(Hm

0 ), . . .,LP(Hm
t−1)]). (14)

IV. EXPERIMENTS

A. Datasets

Two publicly available datasets are utilized in this paper:
MAHNOB-HCI [5] for CER and DEAP [4] for DEC.

MAHNOB-HCI1 is a multimodal dataset to study human
emotional responses and the implicit tagging of emotions.
30 subjects participated in the data collection experiments.
Each subject watched 20 film clips, during which the syn-
chronized recording of multi-angle facial videos, audio signals,
EOG, EEG, respiration amplitude, and skin temperature were
recorded. A subset [44] of the MAHNOB-HCI database that
contains 24 participants’ 239 trials and the continuous labels
in valence from several experts was utilized for the CER task.
The final labels were determined by taking the averages of the
experts’ annotations. The EEG signals have 32 electrodes and the
sampling rate is 256 Hz. The annotations are of 4 Hz resolution.

DEAP2 is a multimodal dataset studying human affective
states. 32 subjects participated in the experiments. Each of them
watched 40 1-min-long music videos while their EEG, facial
expressions, and galvanic skin response (GSR) were recorded
simultaneously. Self-assessments on arousal, valence, domi-
nance, and liking from the subjects were utilized as the labels.
A continuous 9-point scale was adopted to measure the levels of
those dimensions, which was projected into low and high classes
using a threshold of 5. The valence dimension was utilized in
DEC task to be consistent with CER task. The EEG signals have
32 channels and the sampling rate is 512 Hz.

B. Preprocessing

We follow the pre-processing steps [8] for MAHNOB-HCI.
For each EEG trial, the first and last 30 seconds of non-stimuli
durations are removed, after which an average reference is
conducted. The entire trial is split into shorter segments using a
2 s’ sliding window with 0.25 s’ overlap. Then the average rPSD
of (0.3–4 Hz), (4–8 Hz), (8–12 Hz), (12–18 Hz), (18–30 Hz), and
(30–45 Hz) is calculated using Welch’s method. By doing so, the
32×6 = 192-D rPSD features which have a frequency of 4 Hz
can be synchronized with the continuous labels. When training
the neural networks, another sliding window whose length and
step are 96 and 32 is applied to get the temporal sequence of the
calculated rPSD vectors as described in [8]. Hence, the size of
the input to the neural networks is (batch, 192, 96).

For DEAP, we follow [7] to do the same pre-processing steps.
For each trial of EEG, the first 3 s’ baseline is removed. The

1https://mahnob-db.eu/hci-tagging/
2http://www.eecs.qmul.ac.uk /mmv/datasets/deap/index.html
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data is downsampled to 128 Hz. EOG artifacts were removed
following the method described in [4]. A band-pass filter from
4 Hz to 45 Hz is applied to remove low and high-frequency noise.
Average reference is then conducted. Because MASA-TCN
is designed for regression, it needs to learn from a temporal
sequence of rPSD vectors. Each EEG trial is split into segments
of 8 seconds, with a 4-second overlap, to create a temporal
sequence for applying MASA-TCN to the DEC task and for
comparison with SOTA DEC methods that utilize shorter EEG
segments as input. Then the longer segments are further split into
2 s’ shorter segments with 0.25 s’ overlap to get the rPSDs in
(4–8 Hz), (8–12 Hz), (12–18 Hz), (18–30 Hz), and (30–45 Hz)
five frequency bands. Note that the segment length in [7] is
4 seconds; for a fair comparison, we rerun all the compared
methods using 8 s’ segments with 4 s’ overlap.

C. Evaluation Metrics

The evaluation metrics for CER are the same as those in [8]:
root mean square error (RMSE), Pearson’s correlation coeffi-
cient (PCC), and concordance correlation coefficient (CCC).
Given the prediction ŷ, and the continuous labely, RMSE, PCC,
and CCC can be calculated as:

RMSE =

∥∥∥∥ ŷ − y

N

∥∥∥∥
2

=

√∑i=0
N−1(ŷi − yi)2

N
, (15)

PCC =
σŷy

σŷσy
=

∑i=0
N−1(ŷi − μŷ)(yi − μy)√∑i=0

N−1(ŷi − μŷ)2
√∑i=0

N−1(yi − μy)2
,

(16)

CCC =
2σŷy

σ2
ŷ + σ2

y + (μŷ − μy)
, (17)

whereN is the number of elements in the prediction/label vector,
σŷy is the covariance, σŷ and σy are the variances, and μŷ and
μy are the means.

The evaluation metrics for DEC are the same as described
in [7]: accuracy (ACC) and F1 score.

D. Experiment Settings

For CER tasks, a leave one subject out (LOSO) strategy is
utilized as described in [8]. In the LOSO strategy, one subject’s
data is selected as test data, while the remaining subjects’
data serve as training data. Within the training data, 80% is
randomly selected as training data, and the rest 20% is utilized
as validation data. We repeat this process until each subject
has been the test subject once. The purposes of including an
additional validation set are: 1) to provide criteria (best CCC on
the validation/development set) for model and hyper-parameter
selection; 2) to evaluate the model’s generalization ability by
testing it on unseen subject data, which is assessed only once.
The mean RMES, PCC, and CCC are reported as the final results.

We adhere to the settings described in [7] for DEC tasks, em-
ploying a trial-wise 10-fold cross-validation for subject-specific
experiments. DEC, under a generalized setting, remains chal-
lenging even in the context of subject-specific experiments [7].

Emotion is a component of a continuous cognitive process,
wherein adjacent segments within each trial demonstrate high
correlations. Randomly shuffling these segments across different
trials before the training-test split can lead to test data leakage, as
the highly correlated adjacent segments within each trial might
be present in both the training and test sets. To address such
data leakage issues and adopt a more generalized evaluation
methodology, we utilize trial-wise randomization to divide each
subject’s trials into ten folds, following the procedure outlined
in [7]. In each iteration of the 10-fold cross-validation process,
one fold is allocated as the test dataset, while the remaining nine
folds are divided into training and validation datasets at an 80%
and 20% ratio, respectively. The final results are presented as
the mean accuracy (ACC) and F1 score across all subjects.

E. Implementation Details

For the CER task, we follow the same training strategy as
described in [8]. CCC loss is utilized to guide the training.

LCCC(ŷ,y) = 1− CCC(ŷ,y). (18)

The network is trained using the Adam optimizer, with an
initial learning rate of 1e-4 and a weight decay of 1e-4. A
ReduceLROnPlateau learning rate scheduler, with a patience
of 5 and a reduction factor of 0.5, is also used. The maximum
training epoch is set to 15 and the early stopping patient is set
to 10. The batch size is set to 2. The kernel size of MASA-TCN
is set to [3, 5, 15]. We tune the depth and width of MASA-TCN
based on the overall performance on validation data. When the
depth is 2 and the width is 64, MASA-TCN gives the best results
on validation data. The dropout rate is set as 0.15 for TCNs and
0.4 for RNNs (RNN, LSTM and GRU) as suggested in [44].
For baseline methods, we use the same training strategy and
parameters as the ones of MASA-TCN for fair comparison. We
also compare our results with the ones reported in the existing
literatures for the same task.

For the DEC task, based on the training strategy described
in [7], we further reduce the maximum training epochs from 500
to 100 and add early stopping with the patient being 10 to avoid
over-fitting. Besides, a two-stage training strategy is adopted. It
contains two stages. In stage I, we train the model using training
data and evaluate it on the validation data. The model with the
best validation ACC is saved. In stage II, we combine the training
and validation data as new training data and re-train the saved
model on the combined dataset for at maximum 50 epochs and
stop training when the training loss reaches the stopping criteria.
During the training stage, the training loss of the epoch with best
validation ACC is saved as the stopping criteria in the second
stage. The learning rate is 1e-3 and the batch size is 32. The
dropout of TCN is still 0.15 because there is a dropout operation
in every TCN layer. However, this is too small for the baseline
methods. Hence, the dropout rate of baseline methods is still
0.5 which is suggested in [7]. Label smoothing with a factor of
0.1 is added to further overcome the overfitting problems. The
depth and width of MASA-TCN are set to 3, and 16 based on the
performance on validation data. All the baselines are re-trained
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TABLE I
CER RESULTS OF LOSO ON MAHNOB-HCI

TABLE II
COMPARISON WITH THE RESULTS REPORTED IN THE EXISTING

LITERATURES [8] AND [30] USING THE SAME EXPERIMENT SETTING FOR
CER ON MAHNOB-HCI

using the same training strategy and the same segment length of
data as MASA-TCN for a fair comparison.

V. RESULTS AND ANALYSIS

In this section, we first report the CER results of MASA-
TCN against several baselines, as well as the SOTA results
reported in recently published papers [8], [30]. Then the ablation
study results are presented to analyze the contribution of each
functional component of MASA-TCN. After that, five types of
analysis experiments are conducted to analyze the effects of 1)
the starting dilation, 2) the kernel size, 3) the model depth and
width, 4) different fusion strategies in MAAF, and 5) early and
late spatial learning. Lastly, the results for DEC tasks and the
effect of mean fusion in last fully-connected layer are reported.

A. CER Results on MAHNOB-HCI

We first compare the proposed MASA-TCN with several
temporal learning neural networks; then, we compare the CER
results of MASA-TCN with the SOTA results reported in the ex-
isting literature [8], [30] that use the same experimental settings.
Table I shows the CER results of RNN, LSTM, GRU, TCN,
Chen et al. [40], and MASA-TCN under the LOSO experimental
setting. Table II lists the reported SOTA results alongside those
of MASA-TCN.

Table I shows that MASA-TCN outperforms all compared
methods in RMSE, PCC, and CCC on both validation and test
sets. Specifically, MASA-TCN exhibits a 14.29% lower RMSE
(an absolute drop of 0.01), a 0.043 higher PCC, and a 0.046
higher CCC than TCN. Against the RNN family, it achieves a
10.45% lower RMSE (an absolute drop of 0.007), a 0.015 higher
PCC, and a 0.031 higher CCC than the best-performing LSTM.

TABLE III
ABLATION STUDY RESULTS OF MASA-TCN ON MAHNOB-HCI

Comparatively, MASA-TCN also outperforms SOTA results
in [8] with a 9.09% lower RMSE (an absolute drop of 0.006),
a 0.033 higher PCC, and a 0.04 higher CCC. Furthermore, it
significantly surpasses Soleymani’s methods detailed in [8], with
a 25.93% lower RMSE (an absolute drop of 0.021), a 0.08 higher
PCC, and a 0.111 higher CCC. Although MASA-TCN has a
slightly higher RMSE than the one in [30], it improves PCC and
CCC by a large margin (0.037 for PCC and 0.021 for CCC).

B. Ablation Studies

Several ablation studies are conducted to understand how each
component of MASA-TCN contributes to the improvements of
CER results. Starting from the baseline TCN, SAT and MAAF
are gradually added to see the effects of them. The results are
shown in Table III.

According to Table III, adding SAT and MAAF can incre-
mentally improve all the three metrics. By adding SAT alone,
the performances of TCN can be improved by 0.008 on RMSE,
0.022 on PCC, and 0.023 on CCC. The results are further
improved from 0.062 to 0.060 on RMSE, from 0.486 to 0.507 on
PCC, and from 0.394 to 0.417 when MAAF is also added. The
results indicate the effectiveness of all those functional blocks
in MASA-TCN.

C. Effect of the Starting Dilation

In this section, the effects of the starting dilation in the SAT
are discussed. As mentioned in Section III-B, the dilation of SAT
starts from 2 instead of 1 which is used in TCN. There are two
reasons. First, the EEG sub-segments are overlapped to synchro-
nize them with the continuous labels, leading to some redundant
information in the adjacent sub-segments. Using higher dilation
at the SAT can learn the discriminative patterns effectively.
Second, higher starting dilation in SAT can increase the receptive
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TABLE IV
EFFECT OF FIRST-LAYER DILATION OF MASA-TCN ON MAHNOB-HCI

TABLE V
EFFECT OF MAXIMUM KERNEL SIZE OF MASA-TCN ON MAHNOB-HCI

field which can reduce the number of TCN layers to get the same
temporal receptive field, resulting in a more compact model
size. To evaluate those effects, the starting dilation of SAT in
MASA-TCN is set to 1, 2, and 4. The results are shown in
Table IV.

The results show that increasing the dilation to a certain degree
can improve the performance, and further increase of dilation can
not provide gains on the CER results. When the dilation of SAT
is 2, MASA-TCN has the best performance on both validation
and test set. When the value is increased further to 4, the results
slightly drop on both validation and test set. The possible reasons
are a dilation of 2 and a TCN layer of 2 can give enough temporal
receptive field and increase more can lose certain information
among the adjacent sub-segments.

D. Effect of the Kernel Size

This section explores the impact of varying the maximum
kernel size within the MAAF, adjusting it from 3 to 15 in
increments of 2. The findings, presented in Table V, reveal
minimal differences in overall performance as measured by
RMSE. However, larger kernel sizes are associated with im-
provements in both PCC and CCC, indicating that they may
enhance performance in these specific metrics.

E. Effect of the Model Depth and Width

Experiments about the effects of model depth and width are
conducted to better understand MASA-TCN. For model depth
studies, the SAT is regarded as 2 layers due to the sequential
operation of two types of CNN kernels. And there are 2 causal
convolutional layers in one TCN layer. Hence the depths are set
as 2, 4, 6, 8, and 10. For the width, it is the number of kernels
in each CNN layer. The widths are set as 8, 16, 32, and 64. The
results are shown in Fig. 3.

According to the results, depth is not sensitive when it is
higher than 4, and the width more sensitively affects the model
performance compared with the depth. From Fig. 3(a), only
having SAT and MAAF can not provide good performance. This

Fig. 3. Effect of the depth and width of MASA-TCN.

TABLE VI
EFFECT OF FUSION STRATEGY IN MAAF ON MAHNOB-HCI

is because the temporal receptive field is not enough. When the
depth is 4, MASA-TCN achieves the best performance on both
validation and test sets. However, when the depth increases to
higher than 4, the performances drop a little bit and become
stable. This is due to that enough temporal receptive field is
achieved and a deeper model is relatively harder to train than the
shallow one [11]. From Fig. 3(b), the performances are positively
related to the width. And when the width is 64, MASA-TCN
achieves the best results on both validation and test sets. Note
that we also conducted an experiment that use 128 as the width,
but the model gave very low performances, which indicates the
wider model is also harder to train.

F. Effect of Different Fusion Strategies in MAAF

The effects of different fusion strategies in MAAF are ana-
lyzed and discussed in this section. Because three SATs with
different kernel lengths are parallelly utilized in MAAF, the
output needs to be fused for the subsequent TCNs. Three types
of fusion mechanisms are studied: concatenation, mean, and
attentive fusion.

Based on the results in Table VI, all three types of fusion
methods achieve relatively acceptable performances, and with
attentive fusion, MASA-TCN has the best performances on
both validation and test sets. This indicates the effectiveness
of attention fusion in MAAF.

G. Effect of Early and Late Spatial Learning

The order of spatial learning is studied in this part. As illus-
trated in Section II-B, there are spatial, spectral, and temporal
patterns that need to be recognized for EEG data. Typically the
spatial patterns can be learned by a 1-D CNN kernel whose size is
(c, 1), where c is the number of EEG channels. In MASA-TCN,
the spatial learning is done in SAT, which is regarded as early
spatial learning. The spatial patterns can also be learned after the
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TABLE VII
EFFECT OF EARLY AND LATE SPATIAL LEARNING OF MASA-TCN ON

MAHNOB-HCI

TABLE VIII
RESULTS OF DEC TASK FOR VALENCE DIMENSION USING DEAP

last several TCN layers, which is termed late spatial learning.
We compare both early and late spatial learning. The results are
shown in Table VII.

Early spatial learning is more effective than late spatial learn-
ing according to the results. It is noticeable that late spatial
learning cannot even has comparable performance with the one
using early spatial learning. More analyses should be done in
the future to better understand the reason.

H. DEC Results on DEAP

1) Comparison With Baselines for DEC: MASA-TCN
achieves SOTA performances on CER tasks, we further explore
the possibility of extending it to DEC tasks and compare it with
the SOTA methods of DEC tasks, SVM (2012) [4], DeepCon-
vNet (2017) [20], EEGNet (2018) [22], TSception (2022) [7],
and MEET (2023) [33] in this section. Because MASA-TCN is
mainly designed for CER tasks, a regressor is utilized to generate
a 1-D output that has the same length as the continuous labels.
One way to adapt MASA-TCN to DEC is to change the output
size of the regressor from 1-D to binary output and the regressor
becomes a normal classifier in most deep learning methods for
classification. However, we can also extend MASA-TCN to
DEC by using a mean fusion on the output of the regressor as
a kind of classifier ensemble which can increase the robustness.
Hence, in MASA-TCN, we choose the latter to extend it from
the CER tasks to the DEC tasks. Note that for a fair comparison,
all the methods use the same data preprocessing steps, the same
segment length (8 seconds) with a overlapping of 50%, and the
same training strategies as the ones of MASA-TCN. The results
are shown in Table VIII and IX.

As demonstrated in Table VIII and Table IX, the MASA-TCN
model delivers superior or comparable performance in emotion
classification tasks. Specifically, MASA-TCN exhibits the high-
est accuracy and F1 score in the valence dimension. While the
differences in accuracy among various deep learning approaches
are not markedly significant, MASA-TCN and MEET, the latter

TABLE IX
RESULTS OF DEC TASK FOR AROUSAL DIMENSION USING DEAP

TABLE X
EFFECT OF MEAN FUSION IN THE FC OF MASA-TCN FOR DEC ON DEAP

securing the second place, outshine their counterparts in terms of
F1 scores. In the context of the arousal dimension, MASA-TCN
attains the highest accuracy, whereas TSception leads with the
best F1 score.

2) Effect of Mean Fusion in the Fully Connected Layer for
DEC: This section examines the impact of mean fusion in
the final fully connected (FC) layer through two experiments:
1) removing mean fusion from MASA-TCN and 2) implement-
ing mean fusion in the last FC layer of MASA-TCN. Results in
Table X reveal that incorporating mean fusion into MASA-TCN
enhances the ACC and F1 score by 1.63% and 2.7%, respec-
tively, highlighting the benefit of mean fusion in MASA-TCN.

VI. DISCUSSION

The CER tasks are relatively more comprehensive to study
human emotions. CER tasks require the model to predict the
temporally continuous labels of emotions using EEG signals,
which are rarely explored in the existing literatures [8]. Emotion
is a continuous neural cognitive process of the brain [49]. In gen-
eral EEG collection experiments in the studies for emotions [4],
[5], the subjects are required to watch and listen to the affective
stimuli for a certain duration. And the emotional states are not
consistent during the entire trial [50]. By refining the label
of shorter segments using the continuous label instead of the
single label of one trial in DEC, improvements in classification
are observed [53]. Despite the importance of exploring novel
methods for EEG CER tasks, only a few works [8], [44] have
proposed some algorithms. And all of them use flattened feature
vectors as input while not effectively learning the spatial patterns
across EEG channels.

MASA-TCN is proposed in this paper to enable TCN to learn
spatial, spectral, and temporal patterns simultaneously for the
CER tasks. The main functional block for spatial learning is the
SAT layer that consists of context kernel and spatial fusion kernel
two types of CNN kernels. With the help of zero padding and
dilation along the temporal dimension, SAT can also learn the
temporal causal dependencies. Because EEG contains abundant
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Fig. 4. Four representative samples of well and poorly regressed trials
of MASA-TCN for CER. The y-axis is the valence score, and the x-axis
is the index of the samples along temporal dimension.

temporal information that is related to the brain’s emotional
activities changes from time to time, and the temporal depen-
dencies might happen in different time scales [7], [49], a MAAF
block is further designed to capture those temporal dynamics
with the help of multiple temporal kernel lengths as well as an
attentive fusion layer. Extensive experiments on a publicly avail-
able dataset have been done to evaluate the proposed method.
The results demonstrate the effectiveness of MASA-TCN for
CER tasks and we set new SOTA results against the recently
published results in [8]. We further extend MASA-TCN from
regression tasks to classification tasks by adding a mean fusion in
the final fully-connected layer (regressor). It also achieves higher
classification results over several SOTA methods in DEC tasks.
To the best of our knowledge, this is the first work to propose a
unified model for both CER and DEC tasks. The experiment also
indicates that calculating the mean of the output of a regressor
as the classification output can yield a certain improvement in
F1 scores.

Besides the analysis experiments we conducted and discussed
in Section V, some discussions on the output of MASA-TCN
for CER are given here. Four representative samples for well,
moderately, and poorly regressed trials are selected to show
the differences between the prediction and ground truth. They
are shown in Fig. 4. The discussions are two-fold: the perfor-
mance of MASA-TCN for CER and the differences among the
three evaluation metrics.

We first discuss the performance of MASA-TCN. According
to Fig. 4(a) and (b), MASA-TCN can well regress the relatively
smaller absolute value (> 0.15) while the predictions of larger-
value labels, especially the ones with sudden changes, are not
well addressed. In the future, some regularization terms can be
added to the output of MASA-TCN to reduce the amplitude
after sudden changes. It is also noticeable that MASA-TCN
handles the positive labels better than the negative ones by
comparing Fig. 4(a), (b), and (c). Based on Fig. 4(d), it can be
seen that MASA-TCN can not well regress the details of sudden
short-term fluctuations. RMSE can punish the distance between

prediction and label point-wise, hence, it is worth trying to guide
the training using a weighted combination of RMSE and CCC
for better regression of the details instead of using CCC loss
only. Next, we give some discussions on the evaluation metrics.

CCC is a better evaluation metric for CER compared with
RMSE and PCC. RMSE focuses on point-to-point precision,
while the correlation between the predictions and labels is not
effectively measured. As shown in Fig. 4, when the trial is well
regressed (Fig. 4(a)), RMSE is still larger than the ones of the
poorly regressed ones (Fig. 4(c) and Fig. 4(d)). That’s because
the labels are in relatively lower amplitudes in Fig. 4(c) and (d)
than the ones in Fig. 4(a). Even though the trends are not well
regressed, the point-to-point distances are still small. However,
CCCs of those two poorly regressed outputs are much lower
than the well-regressed ones because CCC also measures the
correlation between the two vectors. Although PCC can measure
the correlations, it ignores the absolute distances among points
of the outputs and labels. Hence, we can see the PCC is still
high in Fig. 4(b) even though there are long drifts between the
outputs and labels. CCC can reflect those drifts as well, hence,
the CCC of Fig. 4(a) is much higher than the one of Fig. 4(b).

There are also some limitations in this work that need to
be discussed. The first one is the lack of datasets for CER
tasks. This is a common problem for EEG CER tasks. Because
preparing a dataset for the EEG CER tasks needs well-designed
experiment protocols as well as the efforts of a number of experts
to continuously annotate the corresponding trials. In the future,
more datasets need to be created to further boost this research
area. Besides, more interpretability methods should be applied
to better understand why early spatial learning is much better
than late spatial learning. At last, in this paper, we follow [8]
that only uses CCC in the loss function to guide the training
process. In the future, using a weighted combination of RMSE,
PCC, and CCC in the loss function is expected to provide certain
improvements.

VII. CONCLUSION

In this paper, MASA-TCN is proposed to improve the SOTA
results of the CER and DEC tasks using EEG. Compared with
the SOTA methods [8], [44] that don’t effectively learn the
spatial patterns among EEG channels, a novel SAT layer is
designed to enable TCN to capture spatial, spectral, and temporal
patterns simultaneously. A MAAF block is further proposed to
capture the temporal dynamics that might happen in different
time scales underlying emotional cognitive processes. By adding
a mean fusion in the output of the regressor of MASA-TCN,
we further extend MASA-TCN from CER to DEC, making it
a unified model for both the CER and DEC tasks using EEG.
Extensive experiments on two public emotion datasets show the
effectiveness of the proposed methods for both CER and DEC.
New SOTA results are achieved by MASA-TCN for those tasks.
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