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CLADSI: Deep Continual Learning for
Alzheimer’s Disease Stage Identification

Using Accelerometer Data
Santos Bringas , Rafael Duque , Carmen Lage , and José Luis Montaña

Abstract—Alzheimer’s disease (AD) is a neurodegener-
ative disorder that can cause a significant impairment in
physical and cognitive functions. Gait disturbances are
also reported as a symptom of AD. Previous works have
used Convolutional Neural Networks (CNNs) to analyze data
provided by motion sensors that monitor Alzheimer’s pa-
tients. However, these works have not explored continual
learning algorithms that allow the CNN to configure itself
as it receives new data from these sensors. This work pro-
poses a method aimed at enabling CNNs to learn from a
continuous stream of data from motion sensors without
having full access to previous data. The CNN identifies the
stage of AD from the analysis of data provided by motion
sensors. The work includes an experimentation with data
captured by accelerometers that monitored the activity of
35 Alzheimer’s patients for a week in a daycare center. The
CNN achieves an accuracy of 86,94%, 86,48% and 84,37%
for 2, 3 and 4 experiences respectively. The proposal pro-
vides advantages to working with a continuous stream of
data so that the CNN are constantly self-configuring with-
out the intervention of a human. The work can be con-
sidered as promising and helpful in finding deep learning
solutions in medical cases in which patients are constantly
monitored.
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I. INTRODUCTION

A LZHEIMER’S disease (AD) is a neurodegenerative dis-
order characterized by loss of memory and progressive

cognitive impairment. This disease is a public health problem
affecting 55 million people worldwide [1]. AD can lead to a
significant impairment in these people’s physical functions and
a loss of independence in basic activities of daily living (use of
the bathroom, dressing, etc.) [2]. Gait disturbances of different
characteristics are also reported as a symptom of AD [3]. Thus,
Varma et al. [4] point out that variability in step velocity and
cadence can predict individuals with early and mild AD.

Wearable motion sensors (accelerometers, gyroscopes, etc.)
have been used to measure gait variables when AD patients per-
form controlled activities such as walking 40 meters [5]. These
measurements can be carried out in human motion laboratories
using multiple sensors that provide complete and accurate gait
information [6].

Smartphone sensors can permanently capture motion data in
the places where the patient carries out their daily activities
without using motion analysis laboratories. The amount and
frequency of collected data by these smartphone sensors led
us to explore the feasibility of a method that learns from this
stream of data and identifies the stage of AD. Thus, a continuous
data stream refers to a constant flow or sequence of data points
or information that occurs over time without interruption. A
continual learning algorithm or model [7] aims to learn from
this continuous stream of data, given in several parts, and
without having access to previously seen data, or only to a
small amount of said data. In the context of machine learning
and artificial intelligence, a task denotes a specific objective
or goal that a system aims to accomplish. It typically involves
processing input data to produce desired outputs or predictions.
Tasks can vary widely in complexity and nature, ranging from
simple classification or regression problems to more intricate
tasks such as natural language processing, image recognition, or
reinforcement learning. Each task typically requires its own set
of algorithms, techniques, and evaluation metrics tailored to its
particular requirements and objectives. The specific task of this
work involves identifying the state of AD using accelerometer
data. Thus, this paper proposes applying the continual learning
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paradigm so that a deep learning model can identify the stage of
AD from the analysis of a patient’s gait. The validation of the
study is conducted utilizing a dataset containing information
from 35 patients with AD who were monitored for a week at a
daycare center via mobile phone accelerometers. The results are
then compared with those produced by a Convolutional Neural
Network (CNN) trained using non-continual learning.

This article includes seven sections. Section II studies back-
ground in the field of continual learning and reviews works that
have analyzed the gait of AD patients. Section III studies the
feasibility of the continual learning paradigm to identify AD
stage from patients’ gait data. Section IV shows a case study
that applies this new method. Section V discusses the results
of applying this proposal. Section VI studies the threads to the
validity of the results. Section VII analyses the conclusions of
this work.

II. BACKGROUND

This section presents theoretical content and previous work
on which this research proposal is based. First, the continual
learning paradigm is analyzed. Secondly, the section includes
an analysis of the evidence and works that relate AD and gait
analysis.

A. Continual Learning

One significant challenge in artificial neural networks is catas-
trophic forgetting [8]. This issue refers to a phenomenon ob-
served in connectionist networks, where new learning disrupts or
erases previously acquired knowledge. This occurs particularly
in networks trained sequentially, as new learning alters the con-
nection weights involved in representing old learning. The term
catastrophic emphasizes the significant and often detrimental
impact this forgetting has on the network’s overall performance,
particularly in specific network configurations.

While neural network training is designed to be concurrent,
with data learned through repetition until an optimal state is
reached, human learning is sequential. In human learning, sev-
eral pieces of data are presented iteratively, and once an optimal
state is achieved, the next piece is learned, serving as a bias
for subsequent iterations, thereby facilitating faster learning
compared to learning them separately.

Therefore, if we aim to use neural networks to solve tasks that
require human-like understanding, they should ideally learn in
a sequential manner similar to humans. However, catastrophic
forgetting arises, hindering our ability to address this problem.
Goodfellow et al. [9] conducted empirical studies demonstrating
that, in several experiments, every tested network forgot the first
task while learning a new one. These authors also attempted
to address this issue using older techniques such as Dropout or
activation functions but did not achieve significant results, as
they are neither specifically oriented nor optimal for addressing
this matter.

This issue may seem evident, as neural networks’ optimiza-
tion algorithms attempt to fit the training data to minimize
prediction error by adjusting weights. However, their primary
objective is to learn relevant information from a fraction of
the data (training partition) to generalize and predict the entire
dataset (validation and test partitions) and future inputs. They

employ different processes to reduce overfitting on the training
data. Nevertheless, if the training set changes, the information
previously learned from the previous sets will be forgotten due
to the inherent nature of the learning system described above.

This complexity in retaining memory as a neural network
learns tasks iteratively highlights the limitations of neural net-
works in learning over time, necessitating a thorough solution
to this problem. Continual learning algorithms present promis-
ing solutions, aiming to enable the network to retain learned
information and mitigate these effects, allowing for continuous
learning over time and adaptation to potential changes in the
initial problem set. Generally, continual learning algorithms are
broadly categorized into the following three classes or method
groups [10]:

� Replay methods involve repeating representative past data
stored in a small memory or generating synthetic data
from learned features. When learning new tasks, stored
examples or synthetic ones from previous tasks are fed to
the network to prevent forgetting. Some of these methods
utilize stored data to guide the optimization process of the
new task by analyzing the data.

� Regularization methods attempt to adapt the network
weights to balance new information and learned fea-
tures. These algorithms adjust the loss function to balance
learned information from previous tasks with information
to be learned from the current one.

� Parameter isolation methods involve modifying the net-
work architecture or restricting certain parts for specific
tasks when necessary. Some methods expand the network
to allocate a new part to the new task, while others freeze
certain weights containing important information from
one task to prevent forgetting or overwriting.

Some of the latest proposed methods have shown promis-
ing results in state-of-the-art datasets [11], [12]. Therefore,
exploring these alternatives is advisable, as they allow for the
introduction of data in small increments, facilitating gradual
learning and progressive improvement of results, and even en-
abling the introduction of new classes or tasks to the network.
These methods enable lifelong learning but there still challenges
such as catastrophic forgetting and increased complexity to be
faced. Moreover, the ethical debate concerning the integration
of continual learning algorithms in medicine can revolve around
their capacity to autonomously adapt with minimal human in-
tervention. Striking a balance between harnessing the potential
advantages of these algorithms and ensuring appropriate human
oversight remains crucial.

B. Deep Learning and Alzheimer’s Disease

Beauchet et al. [13] perform a meta-analysis of twelve studies
that concludes that poor gait performance predicts non-AD and
AD dementia. According to Ardle et al. [14], there is early
evidence of discrete pathological signatures of gait in very mild
AD because of the disease-specific role of cognition in gait. Even
recent studies suggest that measured gait performances can be
potential digital biomarkers of cognitive frailty [15]. This has
motivated the use of methods based on artificial intelligence
to perform gait analysis and identify cognitive impairment.
Alharthi et al. [16] review research works that apply artificial
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TABLE I
ANALYSIS OF DATA FROM MOTION SENSORS IN PATIENTS WITH ALZHEIMER’S

intelligence techniques for human gait analysis and conclude
that deep learning CNNs usually outperform shallow learning
models. Seifallahi et al. [17] carried out a study in which 70 el-
derly subjects with mild cognitive impairment participate along
with 80 elderly control control subjects with good health. This
study collects data from a Kinect device and uses an adaptive
Neuro-Fuzzy Inference System to identify mild cognitive im-
pairment with values of more than 90% for accuracy, sensitivity,
and F-score.

Statistical analysis is employed by some researchers [14],
[20] without resorting to machine learning for model genera-
tion. Conversely, other studies [18], [19], [21] utilize machine
learning techniques, although they do not adopt the continual
learning paradigm. The objectives of these studies are summa-
rized in Table I. For instance, Mc Ardle et al. [14] carry out a
study into how gait analysis can differentiate dementia disease
subtypes. Additionally, accelerometer data is used by another set
of studies [18], [19], [20] to diagnose mild cognitive impairment
related to AD. Lastly, Pedrero-Sánchez et al. [21] develop a
CNN to process gyroscope and accelerometer data, classifying
populations into healthy, Alzheimer’s, and Parkinson’s groups.
However, these studies do not address the identification of the
stage of AD, which is the focus of this work.

It should be noted that usually all the works monitor tasks
in which the patient walks a few meters and do not monitor
daily activities over several hours. In addition, this monitoring
is usually carried out by body computers attached to the patient’s
body [14], [20], [21] or devices that are not usually as accessible
as a mobile phone [18], [19].

To conclude, it can be affirmed that there is clear evidence
of the relationship between gait problems and AD. Numerous
works have applied deep learning models to study this relation-
ship by capturing data from sensors. However, a line of work
is emerging that has not yet been explored in depth, and whose
objective is that the deep learning models self-configure without
the intervention of an expert in artificial intelligence as more data
is collected from the sensors.

III. METHOD

This section presents a method of exploring the feasibility of
applying the continual learning paradigm to identify the stage

of AD using data captured by the patient’s accelerometer. The
CLADSI system was developed to execute a continual learning
process for stage identification of AD. Firstly, this section out-
lines the continual learning process carried out by CLADSI. Sec-
ondly, it illustrates the process initiation with a CNN, which will
be introduced later. Finally, the section describes the procedure
for implementing the remaining steps of the process, including
the retraining of the CNN and the evaluation of results.

A. CLADSI

A-GEM (Attribution-based Gradient Episodic Memory) [22]
is a continual learning algorithm designed to address the problem
of catastrophic forgetting in neural networks. It belongs to the
group of replay methods (see Section II-A) and aims to retain
the information learned from previous tasks while adapting to
new ones. A-GEM achieves this by storing a limited number
of examples from previously seen data and constraining the
optimization for a new task based on these stored examples.
During training, a random sample of the stored examples is
selected, and the optimization process ensures that the current
task’s data does not increase loss in these selected examples.
This approach directs the neural network towards solutions that
optimize both the current task and the previously learned ones.
However, a potential drawback of A-GEM is that as more tasks
are observed, it becomes increasingly challenging to learn new
ones, potentially leading to optimization difficulties if there is
no gradient vector to reduce loss in all selected samples.

CLADSI performs a process based on A-GEM algorithm
since it allows for the input of a continuous accelerometer
data stream of Alzheimer’s patients. This method follows the
following phases:

1) Initialization: The parameters of the neural network
model are initialized.

2) Example Storage: A limited number of previously seen
data examples are stored to retain the information learned
from them.

3) Initial training: The model is trained with the initial
available data. During training, gradients are generated
to update the model parameters.
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4) Data collection: New input data is received for further
learning. This data can come from the same task or new
ones.

5) Constrained optimization: A random sample of stored
examples from previously seen data is selected. Opti-
mization is performed on the new input data, ensuring
that loss in the selected examples does not increase during
this process. This is achieved by calculating and applying
gradients in the opposite direction to the gradients from
the stored examples.

6) Parameter update: The model parameters are updated
using the gradients calculated in the previous step.

7) Performance evaluation: The model’s performance is
evaluated on new data or a specific metric to determine
its performance in the current task.

8) Repeat steps 4-7: Steps 4 to 7 are repeated for each new
task or batch of data received.

B. CNN Initialization

The first step of the continual learning method (see Section II-
I-A) is to initialize a CNN. A previous work [23] was carried
out for this purpose. This previous work designed a study in
which 35 Alzheimer’s patients were monitored by smartphones
with accelerometers over a week in a daycare center. The ac-
celerometer used in this study records the acceleration forces
experienced by the patient through a smartphone. These forces
are measured in meter/second2(m/s2) and are captured along
the three spatial axes. The recorded acceleration forces include
the effects of both gravity and the patient’s movements, such
as walking. This study generated a dataset storing all the data
generated by these accelerometers. The patients did not have to
perform any specific task during this period of time. They had
absolute freedom to carry out their daily activities in the daycare
center. A specialist in neuropsychology at the daycare center
placed the phones in the patients’ pockets, regardless of where
they were. The smartphone’s accelerometer sensor produces a
data sequence for each patient, capturing changes in acceleration
across the X, Y, and Z axes over time. The proposed methodology
utilizes these three-dimensional data features along the temporal
dimension to forecast the stage of AD. Data were collected from
a cohort of 35 patients representing varying stages of AD: 7 in the
early stage, 18 in the moderate stage, and 10 in the severe stage.
These patients moved without any prior instructions, ensuring
the absence of initial biases. Modifications in the positioning of
the smartphone should not pose an issue, as they arise from the
patient’s activities and movements, necessitating the system’s
ability to adapt by learning from these changes. The study
prioritizes a broader range of data variance, enabling the system
to glean more insights without constraining device mobility. This
approach also serves to underscore the effectiveness of CLADSI
in operating within uncontrolled environments.

Regarding the daily activities, it is important to note that no
specific instructions were given to the patients, and their activ-
ities were not annotated. The intention was to mimic real-life
scenarios, allowing for experimentation in an environment that
replicates natural behavior. It’s important to note that the periods

TABLE II
DISTRIBUTION OF DATA OBTAINED FROM MONITORED PATIENTS

when patients wore the accelerometer did not coincide with their
sleep periods.

The dataset also includes information on the stage of the
disease for each patient. Thus, each patient was assigned one
of the following labels in the dataset to describe the state of
the pathology: (i) early, (ii) middle, (iii) late. These labels are
based on a previous diagnosis of a neurology using the Global
Deterioration Scale (GDS) [24] that uses the following 7 point
scale to quantify the pathology stage:

1) No cognitive decline.
2) Very mild cognitive decline.
3) Mild cognitive decline.
4) Moderate cognitive decline.
5) Moderately severe cognitive decline.
6) Severe cognitive decline.
7) Very severe cognitive decline.

The correspondence between the dataset labels and the GDS
values is as follows: early stage (7 patients) includes 2 and 3
levels on the GDS; middle stage (18 patients) includes 3, 4 and
5 levels on GDS; late stage (10 patients) includes 6 and 7 levels
on GDS. Patients with a GDS of 1 were excluded from the study
as they were considered healthy. However, the study includes
patients with other GDS levels, based on studies that examined
patients’ gait (see Section II-B). These studies revealed minor
variations in gait that may correspond to AD and mild cognitive
impairment (levels 2 and 3 of the GDS) and do not significantly
impact daily life. Therefore, patients with any GDS level from
2 onwards were included in the study.

After a week, 187 samples were obtained from the different
patients. The dataset was unbalanced, with more data from the
middle stage than from the other two stages. A summary of the
data obtained is shown in Table II.

Commercial smartphones with their accelerometers were
used to conduct experiments replicating real-life scenarios, em-
ploying devices commonly accessible to individuals with AD.
However, it is important to acknowledge that these accelerom-
eters may encounter issues and irregularities, as they are not as
advanced as the devices used in specialized movement study
laboratories that are directly attached to the body. Thus, the data
obtained were of different lengths and had some irregularities, as
the frequency of data collection was not stable. As a result, there
were some time jumps between consecutive measurements. To
address these potential irregularities, a sufficiently wide time
window was adopted to ensure a representative sample of the
data. This means that even if the commercial mobile phones
showed fluctuations in the number of values provided by their
accelerometers, enough information was gathered within each
window to facilitate proper analysis. It is noteworthy that due
to potential variations in the number of samples obtained from
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Fig. 1. CNN architecture.

TABLE III
ARCHITECTURE OF THE NETWORK USED TO PROCESS THE DATA SEQUENCES, SHOWING THE DIFFERENT LAYERS, THE HYPERPARAMETERS AND THE

WEIGHTS TO BE TRAINED

different patients, a wide window was chosen to compensate
for these disparities and ensure the robustness of the obtained
results.

To homogenise the data, a two-stage preprocessing step was
conducted. First, the data were grouped every 0.1 seconds,
obtaining the mean of each one of them to represent them, thus
removing irregularities and avoiding outliers and errors in the
measurements. After that, taking into account that the sequences
were approximately 1 h long, it was decided to divide each of
them into 5 parts, thus making data augmentation with it and
obtaining 935 sequences as a result. It is important to note that
data from the same patient should not fall into both train and test
splits, since the process of training would otherwise be flawed.

Finally, as the CNN needs all inputs to have the same shape,
it was decided to take the longest data (10,804) and for this to
be set as the input length. Shortest data were 0-extended to that
length. Future new data longer than that will be cut down to
that length. Alternatively, it could be split into several parts of
similar length and then filled with 0’s.

The architecture of the resulting CNN contains several se-
quential layers (see Fig. 1), including three blocks with 1D-
Convolutions, ReLU activations and pooling layers; and finally,
two fully connected layers to give a final prediction. This pre-
diction is a vector of length 3, each one of them representing the
probability of the disease being at an early, middle or late stage,
all of them adding up to 1.

The different layers, their output shapes and the weights of
each of them are described in Table III. The network has a
total of 2,524,253 trainable parameters and 700 non-trainable
ones, the latter coming from the Batch normalization layers.
This network with the described configuration was the one
that obtained the best results. The primary objective was to
compare CLADSI (continual learning paradigm) with a CNN
that achieved the best success rate with the dataset using a
non-continual learning paradigm. While other architectures have
shown promising results in accelerometer data analysis, they
were trained on different datasets [25], [26], [27]. This approach
allowed us to assess the efficacy of continual learning techniques
in the context of our specific problem domain. The motivation
behind the selection of network hyperparameters, such as the
number of epochs, batch size, learning rate, and the number of
random training instances selected, was to take as a reference the
CNN that had the highest success rate, providing a benchmark
for comparison with CLADSI.

C. Model Evaluation and Training

In order to simulate a continual learning environment and
perform steps 2 to 8 of the method (see Section III-A), the
acquired dataset has been divided into several parts or which are
passed to the system in different experiences. The term experi-
ence is used to denote a dataset presented to the learning system
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for training or evaluation. For this case, three environments
have been simulated, each with 2, 3, and 4 data experiences,
respectively. After dividing into train and test splits (80% and
20% each), training is divided in the given parts.

For the training process to be carried out, the selected loss
function is multi-class cross-entropy, a commonly used function
for solving classification problems. It is defined as:

L(y, ŷ) = −
N∑

k=1

yk ∗ log(ŷk) (1)

where y is the one-hot encoding vector of the true class, ŷ is the
vector of predictions, and N is the number of classes.

In order to evaluate the model, several metrics have been
selected, four of them already used in previous work and one
of them used to evaluate the efficiency of the continual learning
method. The two main metrics used are accuracy and F1-score.
Accuracy is defined as:

Acc =
#Correct predictions

#All examples
(2)

The F1-score and the two secondary metrics from which it is
calculated, precision and accuracy, are defined as:

Prec =
TP

TP + FP
Rec =

TP

TP + FN

F1− score = 2 ∗ Prec ∗Rec

Prec+Rec
or

F1− score =
2 ∗ TP

2 ∗ TP + FN + FP
(3)

where TP, FN and FP stand for True Positives, False Negatives
and False Positives respectively.

Since it is a multi-class problem, TP, FP and FN cannot
be calculated normally. To doing this, a calculation should be
made individually for each class, one against the others, and
then calculating a single one. In this case, preference is given
to the weighted average for combining the metrics, taking into
consideration the number of examples in each class.

To evaluate the performance of the selected continual learn-
ing method, the forgetting measure [28] has been used. This
calculates how much information from previous tasks or expe-
riences is forgotten in the process of training new tasks. The
lower the forgetting, the better the continual learning method in
maintaining memory. It is important to note that if the accuracy
(or F1-score) is low, there is not much information to forget,
so other metrics should be considered when using this one. The
amount of forgetting in task i is calculated as follows:

Fi =
1

i− 1

i−1∑

j=1

fi,j

where fk,j = max
l∈{1,...,k−1}

accl,j − acck,j , ∀j < k (4)

where j and l are iteration variables and k is the total number
of tasks. This metric is calculated at the end of the continual
learning setting, obtaining a value that represents how much
information from the first tasks the network has forgotten.

TABLE IV
RESULTS OBTAINED WITH THE DIFFERENT SPLITS OF THE

PROPOSED METHOD

In order to obtain a better and more homogeneous evaluation
of the proposed system, k-fold validation has been used, dividing
the dataset into 10 parts and performing 10 different training
processes. To do this, and so as to maintain the 80%–20% ratio
in training-testing, two of the splits are taken for testing and
the rest for training. Taking that into account, there were 748
examples for training and 187 for testing. For each one of the
continual learning experiences, there were 374 examples of each
experience for the 2-experience setting, 249 examples for the
3-experience setting; and 187 examples for the 4-experience
setting.

The system was trained in all cases for 100 epochs per expe-
rience, with a batch of 32 and a learning rate of 5 ∗ 10−5. The
memory available to the algorithm was 64 examples in total, and
the number of random examples selected to conduct the training
of new tasks was 32.

IV. RESULTS

After implementing CLADSI as described in Section III, three
trials were carried out, the continual learning environment set by
splitting up the training dataset, in each case, into 2, 3 and 4 parts
respectively. After executing 10 folds for each trial using the
k-fold strategy, the metrics (accuracy, F1-score and forgetting)
were obtained and, the metrics aggregated with their average
and their standard deviation, as shown in Table IV.

From Table IV it can be extracted that the continual learning
setting obtains promising results, but there is a large impact
due to the size of the dataset entered in each case, with this
becoming more noticeable the more experiences it contains.
Moreover, the forgetting metric, calculated over the training sets
of previous tasks (all except the last one) shows that there is a
slight forgetfulness of information already learnt.

Fig. 2(a)–(c) show the best fold for each of the trials. It can
be seen from these graphs that, when switching tasks, there is a
slight forgetting of previous tasks, although the test set improves
as new tasks are visited, as it is fed with a variety of information
from all sets.

On the other hand, it is worth noting that, although Table IV
shows the forgetting rate is grater the more experiences there
are in the training set, it can be seen in the graph that this is due
to the fact that in these cases higher accuracies are achieved in
each training task. This is attributed to the limited amount of
data available. Given the use of a deep learning model, it tends
to overfit on this small dataset. Hence, it can be inferred that
the continual learning system also aids in reducing overfitting
by stabilizing knowledge as new data is entered. As has been
observed, the system achieves the goal of continuously improv-
ing as it receives data, although it is recommended to wait for a
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Fig. 2. Plots of the accuracy of the different trials on training over the different tasks, in colored lines, and test, in black dashed line. Tasks change
every 100 epochs

TABLE V
COMPARISON OF THE RESULTS OBTAINED IN THE DIFFERENT TESTS CARRIED OUT WITH THE DATASET DESCRIBED

certain volume of data to be available before training the system
again.

Table V shows a comparison with previously tested mod-
els [29]. In the evaluation of other models used in the exper-
iment (such as Adaptive Boosting, Decision Tree, K-Nearest-
Neighbor, Logistic Regression, MultiLayer Perceptron, Random

Forest, Support Vector Machine), configurations yielding the
highest success rates were selected. This ensures a more ap-
propriate comparison between CLADSI and these techniques.
It can be clearly seen that CLADSI obtains excellent results,
considering that the data is very divided, that in each test very
little data is given to train in each experience (374, 249 and
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187) added to the difficulty of maintaining memory of previous
given examples. The continual learning paradigm offers several
distinct advantages over traditional methods.

Despite processing significantly less data compared to the
traditional CNN [23], CLADSI achieves a comparable success
rate (see Table V). This underscores the efficiency of CLADSI in
delivering similar results while utilizing a smaller dataset. These
findings highlight the effectiveness of CLADSI in managing data
streams effectively for AD classification tasks.

One of the key advantages of the proposed method is its
ability to continuously learn and adapt to new data over time,
thus enhancing adaptability. Traditional approaches often rely
on fixed models that may become outdated as new data be-
comes available. Moreover, by leveraging continual learning,
the method can efficiently incorporate new information, leading
to significant time and resource savings compared to traditional
approaches. This efficiency is particularly valuable as it avoids
the need for periodic updates or retraining of the model.

Additionally, the continual learning paradigm enables this
method to provide real-time predictions or insights, making it
particularly well-suited for applications where timely decision-
making is critical. In contrast, traditional methods may struggle
to keep pace with rapidly changing data streams or may require
batch processing, which can mean there are delays in decision-
making.

However, it is important to acknowledge that the proposed
method also has some limitations. While continual learning
allows the method to adapt to new data, it typically requires an
initial training phase to establish a baseline model. This initial
training phase may require a sufficient amount of labeled data
and computational resources, which could be a limitation in
scenarios where labeled data is scarce or expensive to obtain.
Moreover, the results of the continual learning paradigm show
slightly lower accuracy rates in some cases. Lastly, in clinical
settings—especially when the software serves as a medical
device and is certified by regulatory bodies like the FDA or
EMA for use in patient therapy—continuing to train, tune, or
adjust the network weights is not feasible.

V. DISCUSSION

The continual learning process generates a model that
achieves an accuracy of 86.94%, 86.48% and 84.37% for 2, 3
and 4 experiences respectively. Previous experimentation with
this dataset applying a non-continual learning process achieved
an accuracy of 90.91% [23]. Although this previous experi-
mentation reports higher accuracy rates compared to CLADSI,
it is important to consider the underlying differences in their
methodologies. The previous experimentation utilized a tradi-
tional approach with a CNN model, while CLADSI introduces
the novel concept of continual learning algorithms and focuses
on analyzing data from a continuous stream of motion sensors,
allowing the CNN to self-configure as it receives new data.

While CLADSI achieves slightly lower accuracy rates, it
offers distinct advantages that contribute to its overall value.
In contrast to traditional methods that often require retraining
or manual adjustments, CLADSI employs an A-GEM based

approach that preserves previously learned information from
past tasks. This method continuously self-adjusts based on
new data, allowing it to adapt dynamically to changes in a
patient’s condition or surroundings. This capability has profound
implications in medical scenarios, particularly where AD is
concerned. Firstly, it enables early detection and monitoring of
gait disturbances, which can signal the onset of AD. By con-
tinually analyzing gait patterns in real-time, CLADSI can offer
timely insights into disease progression and potentially assist
in early intervention efforts. Furthermore, the ability to update
the model autonomously without human intervention boosts
the efficiency and scalability of medical monitoring systems.
Healthcare professionals can rely on automated algorithms to
continuously monitor patients, freeing up time and resources
for other critical tasks. Additionally, the self-adjusting nature
of the A-GEM method allows for personalized and dynamic
modifications to the analysis process, enhancing the accuracy
and relevance of diagnostic information.

The proposed method in CLADSI exhibits promising po-
tential in the field of deep learning solutions for healthcare,
offering an efficient and self-configuring approach to analyzing
data from motion sensors. However, as can be seen in Table I,
recent works in the literature have not considered a methodology
that automatically adapts the deep learning model to this con-
tinuous streaming of data. Limitations of these works include
static model configurations, lack of adaptability to changes
in patient behavior, and the need for manual intervention for
updates. In contrast, CLADSI addresses these limitations by
introducing a continual learning framework allowing the CNN
to automatically adapt to new data, thereby enhancing its ability
to efficiently identify AD stages without manual intervention.

VI. THREATS TO VALIDITY

While this study presents promising findings regarding the
feasibility of applying the continual learning paradigm to iden-
tify the state of AD using accelerometer data, it is important
to recognize and address the following potential threats to the
validity of the experimentation:

� Sample size: One potential threat to the validity of this
study is the relatively small sample size, consisting of only
35 Alzheimer’s patients. While a larger sample size would
enhance generalizability, this does not diminish the valid-
ity of the findings. The purpose of this study was to explore
the feasibility of using continual learning algorithms with
motion sensor data in Alzheimer’s patients, and the results
provide valuable insights and promising outcomes. Future
research can certainly consider expanding the sample size
to further validate and extend the findings. One approach
could be to replicate the experiment in another daycare
center with a different cohort of Alzheimer’s patients.
This would help assess the generalizability of the findings
across different populations.

� Lower success rate in continual learning paradigm: The
lower success rate in the continual learning paradigm,
attributed to the lesser availability of information in each
auto-configuration of the model, is an implicit limitation.
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However, this does not invalidate the proposed method. It
highlights a challenge that could be addressed through fur-
ther research and optimization. By exploring techniques
such as hyperparameter tuning, regularization, or architec-
tural modifications, it is possible to improve the success
rate and achieve better performance in continual learning
scenarios.

� Cross-dataset scenario: The question of whether the pro-
posed methods can be applied in a cross-dataset scenario is
worth considering. While this study focused on a specific
dataset of Alzheimer’s patients monitored in a daycare
center, the potential applicability of the proposed method
in cross-dataset scenarios has not been ruled out. The
discussion of generalization across datasets highlights the
need for further investigation and validation using external
datasets. Applying techniques such as transfer learning or
domain adaptation could facilitate the adaptation of the
trained model to new datasets, increasing its versatility
and robustness.

� Medical relevance and practical use: It is acknowledged
that predicting or diagnosing AD based solely on mo-
tion sensor data is not medically relevant, as physicians
typically rely on multimodal data for personalized and
accurate decision-making. However, this limitation does
not undermine the proposed method but rather positions
it as a complementary tool in the medical domain. The
proposed approach can aid in the continuous monitoring
and early detection of the disease, potentially enhancing
existing diagnostic practices. Further research should ex-
plore the integration of the proposed method with other
clinical data modalities to improve diagnostic accuracy
and clinical relevance.

In conclusion, while several threats to validity are present in
this study, they do not invalidate the proposed method. Instead,
they highlight areas for further research and improvement. The
findings of this study provide valuable insights into the ap-
plication of continual learning algorithms with motion sensor
data for AD identification. In future research, these threats can
be mitigated through several approaches. Firstly, increasing the
sample size would enhance statistical power and allow for more
robust conclusions. Additionally, conducting longitudinal stud-
ies with larger and more diverse cohorts could provide a better
understanding of the model’s performance across different pop-
ulations. Moreover, implementing cross-validation techniques
and testing the model on independent datasets can help validate
its generalizability. Furthermore, refining the continual learning
paradigm by exploring alternative algorithms or incorporating
mechanisms for model reinitialization or regularization could
potentially improve success rates.

VII. CONCLUSION

In this work, a novel approach has been presented for identify-
ing the stage of AD using continual learning algorithms applied
to motion sensor data. The method leverages the power of deep
learning and the availability of wearable sensors, specifically
smartphone accelerometers, to enable continuous monitoring
and accurate classification of AD stages.

By employing a continual learning paradigm, the approach
addresses the challenge of auto-configuring deep learning mod-
els in the context of a continuous stream of sensor data. The
results obtained demonstrate the feasibility and effectiveness of
the method, achieving high accuracy rates of 86.94%, 86.48%,
and 84.37% for 2, 3 and 4 experiences, respectively.

One of the key advantages of this approach is its ability
to identify the stage of AD, providing valuable insights into
disease progression and facilitating personalized treatment and
intervention strategies. This has significant implications for both
patients and healthcare providers, enabling more targeted and
timely interventions to improve patient outcomes.

Furthermore, the approach offers several additional benefits.
By using continual learning algorithms, the models can adapt
and self-configure in real-time as new data streams in, reducing
the need for manual intervention and saving time and computa-
tional resources. This efficiency and responsiveness means the
method is particularly suitable for healthcare systems that rely
on continuous monitoring of patients using wearable sensors.
To begin with, a CNN is trained from a random point with
all the data initially available. In a medical environment, it is
usually difficult to obtain data, so presumably a small volume
will be available at start. Then, using the A-GEM algorithm, the
system will learn from any new given data, taking advantage
of its continual learning capabilities. This makes it possible to
take advantage of the intelligent system from the start, deploy it
quickly and improve it over time.

Moreover, the approach leverages widely accessible sensors
such as smartphone accelerometers, meaning it can be easily
integrated into existing healthcare systems. This opens up oppor-
tunities for long-term, remote monitoring of patients, providing a
more comprehensive understanding of their daily activities and
disease progression. The continuous nature of the monitoring
approach offers a more naturalistic assessment of patients’ rou-
tines and allows for early detection of changes or deterioration
in their condition.

In future research, the aim is to further refine the proposed
approach for continuous monitoring and early detection of AD,
recognizing the critical importance of closely tracking disease
progression, especially between clinical visits for early-stage
patients. Remote monitoring can be seen as a promising av-
enue for continuous assessment, empowering clinicians to make
informed decisions based on real-time data insights. To better
support this strategy,the plan is to enhance the method to ap-
proximate the GDS at a finer level. This refinement will offer
clinicians a more comprehensive understanding of their patients’
disease status, complemented by two additional approaches.
Firstly, we will develop explainability mechanisms to provide
descriptive information on variations in patients’ mobility pat-
terns associated with AD progression. Secondly, experiments
will be conducted using data on patients’ mobility in home
environments, allowing us to study less controlled activities
compared to those in day centers. By combining these efforts,
the objective is to provide clinicians with detailed insights into
patients’ conditions, enabling more informed decisions regard-
ing medication and therapies, and ultimately enhancing patient
care outcomes.
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gait function and characteristics of gait disturbance in individuals with
Alzheimer’s disease,” Gait Posture, vol. 39, no. 4, pp. 1022–1027, 2014.

[4] V. R. Varma et al., “Continuous gait monitoring discriminates community-
dwelling mild Alzheimer’s disease from cognitively normal controls,”
Alzheimer’s Dement.: Transl. Res. Clin. Interv., vol. 7, no. 1, 2021, Art. no.
e12131.

[5] Y.-L. Hsu et al., “Gait and balance analysis for patients with Alzheimer’s
disease using an inertial-sensor-based wearable instrument,” IEEE J.
Biomed. Health Inform., vol. 18, no. 6, pp. 1822–1830, Nov. 2014.

[6] R. Baker, “Gait analysis methods in rehabilitation,” J. Neuroengineering
Rehabil., vol. 3, no. 1, pp. 1–10, 2006.

[7] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Con-
tinual lifelong learning with neural networks: A review,” Neural Netw.,
vol. 113, pp. 54–71, 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0893608019300231

[8] M. McCloskey and N. J. Cohen, “Catastrophic interference in connection-
ist networks: The sequential learning problem,” Psychol. Learn. Motiva-
tion, vol. 24, pp. 109–165, 1989.

[9] I. J. Goodfellow, M. Mirza, D. Xiao, A. C. Courville, and Y. Bengio, “An
empirical investigation of catastrophic forgetting in gradient-based neural
networks,” in Proc. 2nd Int. Conf. Learn. Representations, Y. Bengio and
Y. LeCun, Eds., Apr. 14-16, 2014. [Online]. Available: http://arxiv.org/
abs/1312.6211

[10] M. D. Lange et al., “A continual learning survey: Defying forgetting in
classification tasks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 7,
pp. 3366–3385, Jul. 2022.

[11] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “iCaRL:
Incremental classifier and representation learning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 5533–5542.

[12] R. Aljundi et al., “Online continual learning with maximally interfered
retrieval,” in Proc. 33rd Int. Conf. Neural Inf. Process. Syst., Red Hook,
NY, USA: Curran Associates Inc., 2019, Art. no. 1063.

[13] O. Beauchet et al., “Poor gait performance and prediction of dementia:
Results from a meta-analysis,” J. Amer. Med. Directors Assoc., vol. 17,
no. 6, pp. 482–490, 2016.

[14] R. M. Ardle, B. Galna, P. Donaghy, A. Thomas, and L. Rochester, “Do
Alzheimer’s and lewy body disease have discrete pathological signatures
of gait?,” Alzheimer’s Dement., vol. 15, no. 10, pp. 1367–1377, 2019.

[15] H. Zhou et al., “Digital biomarkers of cognitive frailty: The value of
detailed gait assessment beyond gait speed,” Gerontology, vol. 68, no. 2,
pp. 224–233, 2022.

[16] A. S. Alharthi, S. U. Yunas, and K. B. Ozanyan, “Deep learning for
monitoring of human gait: A review,” IEEE Sensors J., vol. 19, no. 21,
pp. 9575–9591, Nov. 2019.

[17] M. Seifallahi et al., “Detection of mild cognitive impairment from gait
using adaptive neuro-fuzzy inference system,” Biomed. Signal Process.
Control, vol. 71, 2022, Art. no. 103195. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1746809421007928

[18] B. Ghoraani, L. N. Boettcher, M. D. Hssayeni, A. Rosenfeld, M. I. Tolea,
and J. E. Galvin, “Detection of mild cognitive impairment and Alzheimer’s
disease using dual-task gait assessments and machine learning,” Biomed.
Signal Process. Control, vol. 64, 2021, Art. no. 102249.

[19] Z. You, Z. You, Y. Li, S. Zhao, H. Ren, and X. Hu, “Alzheimer’s disease
distinction based on gait feature analysis,” in Proc. IEEE Int. Conf. E-
Health Netw., Appl. Serv., 2021, pp. 1–6.

[20] S. Gillain et al., “Gait speed or gait variability, which one to use as a marker
of risk to develop alzheimer disease? A pilot study,” Aging Clin. Exp. Res.,
vol. 28, no. 2, pp. 249–255, 2016.

[21] J. F. Pedrero-Sánchez, J.-M. Belda-Lois, P. Serra-Añó, M. Inglés, and
J. López-Pascual, “Classification of healthy, alzheimer and parkinson
populations with a multi-branch neural network,” Biomed. Signal Process.
Control, vol. 75, 2022, Art. no. 103617.

[22] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient life-
long learning with a-gem,” 2019, [Online]. Available: https://openreview.
net/forum?id=Hkf2%5C_sC5FX

[23] S. Bringas, S. Salomón, R. Duque, C. Lage, and J. L. Montaña,
“Alzheimer’s disease stage identification using deep learning models,”
J. Biomed. Inform., vol. 109, 2020, Art. no. 103514.

[24] C. M. Belden, C. Burciu, and M. Sabbagh, “Global Deterioration Scale
(Individuals),” in Encyclopedia of Quality of Life and Well-Being Re-
search, A. C. Michalos, Ed., Dordrecht, The Netherlands: Springer, 2014,
pp. 2562–2564, doi: 10.1007/978-94-007-0753-5_1173.

[25] A. Papadopoulos, K. Kyritsis, L. Klingelhoefer, S. Bostanjopoulou, K. R.
Chaudhuri, and A. Delopoulos, “Detecting parkinsonian tremor from IMU
data collected in-the-wild using deep multiple-instance learning,” IEEE J.
Biomed. Health Inform., vol. 24, no. 9, pp. 2559–2569, Sep. 2020.

[26] A. Kirmizis, K. Kyritsis, and A. Delopoulos, “A bottom-up method
towards the automatic and objective monitoring of smoking behavior
in-the-wild using wrist-mounted inertial sensors,” in Proc. 43rd Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc., 2021, pp. 6867–6870.

[27] K. Kyritsis, C. Diou, and A. Delopoulos, “A data driven end-to-end
approach for in-the-wild monitoring of eating behavior using smart-
watches,” IEEE J. Biomed. Health Inform., vol. 25, no. 1, pp. 22–34,
Jan. 2021.

[28] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, “Riemannian walk
for incremental learning: Understanding forgetting and intransigence,” in
Proc. Eur. Conf. Comput. Vis., 2018, pp. 532–547.

[29] A. Nieto-Reyes, R. Duque, J. L. Montaña, and C. Lage, “Classification
of Alzheimer’s patients through ubiquitous computing,” Sensors, vol. 17,
no. 7, 2017, Art. no. 1679.

https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://www.sciencedirect.com/science/article/pii/S0893608019300231
http://arxiv.org/abs/1312.6211
http://arxiv.org/abs/1312.6211
https://www.sciencedirect.com/science/article/pii/S1746809421007928
https://www.sciencedirect.com/science/article/pii/S1746809421007928
https://openreview.net/forum{?}id$=$Hkf2%5C_sC5FX
https://openreview.net/forum{?}id$=$Hkf2%5C_sC5FX
https://dx.doi.org/10.1007/978-94-007-0753-5_1173


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


