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CiGNN: A Causality-Informed and Graph Neural
Network Based Framework for Cuffless
Continuous Blood Pressure Estimation
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Yifan Chen , Senior Member, IEEE, and Xiaorong Ding , Member, IEEE

Abstract—Causalityholds profound potentials to dissi-
pate confusion and improve accuracy in cuffless contin-
uous blood pressure (BP) estimation, an area often ne-
glected in current research. In this study, we propose a
two-stage framework, CiGNN, that seamlessly integrates
causality and graph neural network (GNN) for cuffless con-
tinuous BP estimation. The first stage concentrates on the
generation of a causal graph between BP and wearable
features from the the perspective of causal inference, so
as to identify features that are causally related to BP vari-
ations. This stage is pivotal for the identification of novel
causal features from the causal graph beyond pulse transit
time (PTT). We found these causal features empower better
tracking in BP changes compared to PTT. For the second
stage, a spatio-temporal GNN (STGNN) is utilized to learn
from the causal graph obtained from the first stage. The
STGNN can exploit both the spatial information within the
causal graph and temporal information from beat-by-beat
cardiac signals for refined cuffless continuous BP estima-
tion. We evaluated the proposed method with three datasets
that include 305 subjects (102 hypertensive patients) with
age ranging from 20–90 and BP at different levels, with
the continuous Finapres BP as references. The mean abso-
lute difference (MAD) for estimated systolic blood pressure
(SBP) and diastolic blood pressure (DBP) were 3.77 mmHg
and 2.52 mmHg, respectively, which outperformed compar-
ison methods. In all cases including subjects with different
age groups, while doing various maneuvers that induces
BP changes at different levels and with or without hyperten-
sion, the proposed CiGNN method demonstrates superior
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performance for cuffless continuous BP estimation. These
findings suggest that the proposed CiGNN is a promising
approach in elucidating the causal mechanisms of cuffless
BP estimation and can substantially enhance the precision
of BP measurement.

Index Terms—Amplitude alteration, Causality, cuffless
continuous blood pressure, pulse transit time, spatio-
temporal graph neural network.

I. INTRODUCTION

ACCORDING to the World Health Organization (WHO),
approximately 1.13 billion individuals worldwide suffer

from hypertension, with this an expected increase to 1.5 billion
by 2025 [1]. Hypertension, or high blood pressure, is a prominent
risk factor for cardiovascular diseases, including heart disease
and stroke, which are leading causes of death globally [2]. The
prevalence of hypertension would further increase the existing
burdens of dementia and disability worldwide [3]. Therefore,
effective prevention and management of hypertension are crucial
for improving global health outcomes.

Continuous BP measurement has the potential to provide rich
information for the diagnosis and prevention of hypertension [4].
By monitoring BP continuously, we can obtain a more compre-
hensive understanding of a patient’s BP over time, as the patterns
and trends in BP can indicate the need for treatment or adjust-
ments in current treatment plans. In addition, continuous BP
monitoring has an advantage over conventional intermittent BP
measurement, because BP may be influenced by factors such as
stress, physical activity, and medication adherence. For example,
continuous BP measurement can overcome the clinical “white
coat effect” - the phenomenon of elevated BP readings in a clini-
cal setting - and provides more accurate and reliable readings [5].

Cuffless continuous BP measurement enabled by wearable
physiological sensing has emerged as a promising approach for
its advantage of being noninvasive, its ease of use, and con-
tinuous nature [6]. With BP changes-related features extracted
from wearable cardiac signals, such as electrocardiogram (ECG)
and photoplethysmogram (PPG), models can be developed to
map the features to BP so as to achieve an indirect estimation.
Cuffless BP estimation models can be broadly classified into two
categories: knowledge-driven model and data-driven model.

The knowledge-driven models rely on expert knowledge of
the cardiovascular system. For instance, Chen et al. developed a
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physiological model for cuffless BP estimation based on pulse
transit time (PTT) and the Moens-Korteweg (M-K) equation [7].
Ding et al. built a more comprehensive physiological model that
considers M-K equation and Windkess model with the combina-
tion of PTT and PPG Intensity Ratio (PIR) [8]. However, these
mechanism models usually work with underlying assumptions
that may not be true. Taking the M-K equation for example,
it assumes that the artery wall is isotropic and experiences
isovolumetric change with pulse pressure, which is not the case
in human beings. These impractical assumptions can lead to
inaccuracies in BP estimation [9].

Data-driven models, on the other hand, involve learning the
mapping function from BP-related information to BP from
data [10]. For example, Miao et al. [11] employed deep learning
module, such as ResNet and long short-term memory (LSTM)
models, to estimate cuffless BP from PPG signal. Tanveer et al.
proposed an artificial neural network integrated with the LSTM
model to estimate cuffless BP from both ECG and PPG sig-
nals [12]. Though advances in machine learning (ML) tech-
niques provide new inspirations for cuffless BP estimation, the
limitations of ML, such as the generalization issue, also hinder
the development of data-driven methods for further clinical im-
plementation. Data-driven methods depend on large amounts of
high-quality data, which could be difficult and costly to acquire.
Their performance can also be affected by confounding factors
such as motion artifacts and environmental noise. Moreover, the
black-box nature of ML can make it challenging to interpret
the underlying physiological mechanisms and identify potential
sources of inaccuracy [13].

The key to accurate continuous cuffless BP estimation in-
cludes the wearable features/information that have causal as-
sociation with BP changes and the model that can relate the
appropriate features/information with BP. However, most of
the current studies that focus on either knowledge-driven or
data-driven methods overlook the causal relationships between
wearable features and BP changes, and the underlying causes
or effects of BP changes have rarely been identified. Causality
has the potential to improve the interpretability, robustness, and
generalizability of cuffless BP estimation methods [14]. Further,
it can help identify the underlying mechanisms for cuffless BP
measurement, allowing for more accurate predictions [15].

Pearl has put forward the theory of Bayesian networks and
causal inference using causal graphs to describe the causal rela-
tionships between multi-variables [16]. Intuitively in the causal
graph, each node represents a random variable and the directed
edges between nodes reveal the data generation process or the
relationship of cause and effect between nodes. The problem
of inferring causal relationships from purely observed data has
drawn significant attention in recent years [17]. Common meth-
ods developed for causal inference includes constraint-based al-
gorithms, score-based algorithms and Functional Causal Models
(FCM) based algorithms [18].

Constraint-based algorithm infers the causal graph by impos-
ing conditional independence constraints among the variables,
and the algorithm is computationally efficient and able to handle
large datasets [19]. However, it supposes that the data satisfy
the faithfulness assumption, which may not always be true in
practice. Score-based algorithm searches for the causal graph

that maximizes a score based on the likelihood of the observed
data. It does not rely on the faithfulness assumption but can
be computationally expensive [20]. FCM-based algorithm, as-
suming independent non-Gaussian noise across nodes in the
causal graph, utilizes independent components analysis (ICA)
to recover the causal relation [21].

In our previous work, we identified the causal graph between
wearable physiological features and BP with constraint-based
algorithm [14]. However, due to the inherent limitations of the al-
gorithm, the direction of some edges in the identified graph could
not explicitly be oriented, which results in the only inference of
a Markov equivalence class. In addition, the study employed the
knowledge of causal graphs to build a cuffless BP estimation
model based on time-lagged causal links [22]. Nevertheless,
the time-lagged causal links only represent guiding information
about the topological structure of the causal graph.

Graph neural network (GNN) is promising to address tasks
on graph-structured data, such as protein interaction prediction
and traffic flow forecasting [23]. GNN consists of a series of
neural network layers that are applied to the nodes and edges of
a graph, allowing for capturing the topological structure of the
graph and incorporating it into the learning process. GNNs can
learn how to propagate information across the graph, allowing
each node to take into account the features and connections of
its neighbouring nodes. As a result, it enables the prediction
of labels or values for the entire graph. We propose a new
framework for cuffless continuous BP estimation based on GNN
with the identified causal graph as prior knowledge. With the
topology of the causal graph indicating the causal association
between wearable features and BP, we expect the GNN can
derive a causal representation for BP estimation.

This proposed causality-informed and graph neural network
based (CiGNN) framework for cuffless continuous BP estima-
tion consists of two stages. In stage I, we infer the causal graph
between extracted wearable features and BP with an improved
causal inference algorithm to address the issue of Markov equiv-
alence class. In stage II, a spatio-temporal graph neural network
(STGNN) model is developed to learn representations from the
causal graph. The STGNN model can capture both the spatial
and temporal information for cuffless continuous BP estimation.
The main contributions of this paper include:

� Development of an FCM-based algorithm that enables the
orientation and modification of the initial causal graph,
which can achieve better causal inference performance
than the constraint-based algorithm.

� A STGNN model is introduced to extract the spatial infor-
mation within the causal graph and temporal information
from the proceeding cardiac beats for cuffless continuous
BP estimation.

� The proposed two-stage CiGNN framework successfully
draws novel causal insights from wearable features that
can estimate cuffless continuous BP with satisfactory per-
formance.

II. METHODS

As illustrated in Fig. 1, CiGNN composes two main modules:
causal inference module and a BP estimation module. The
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Fig. 1. Overview of the proposed causality-informed and graph neural network based (CiGNN) framework for cuffless continuous BP estimation.
The wearable features are extracted initially from electrocardiogram (ECG) and photoplethysmogram (PPG). Subsequently, within the first stage, the
causality between BP and wearable features is inferred by fast causal inference (FCI) and causal generative network (CGNN) algorithms. Finally,
the second stage proposes the spatio-temporal graph neural network (STGNN) model, taking the causal graph sequence as its input for cuffless
continuous BP estimation.

function of the first module is to infer the causal graph that
relates BP with features extracted from wearable ECG and PPG
signals, following the majority strategy of causal inference. An
initial causal graph is identified with the fast causal inference
(FCI) algorithm [24], where the direction of some edges is not
oriented. Subsequently, the causal generative neural networks
(CGNN) algorithm is utilized to orient and modify the direction
for the initial causal graph [25]. In stage II, the directed causal
graph serves as prior knowledge. An STGNN model, taking the
causal graph sequence as its input, is proposed to capture both
the spatial and temporal information for cuffless continuous BP
estimation.

A. Datasets and Wearable Features Extraction

1) Datasets: In this study, we used one internal dataset
for the causal inference and two extra datasets to evaluate
the performance of the proposed CiGNN framework for BP
estimation. The internal dataset utilized in this study originates
from our preceding study [26], which involves 62 participants
(36 males). In the dataset, the average age is 26.7 ± 4.5 years
(ranging from 21 to 42 years). We collected wearable ECG and
PPG signals via the Biopac system in the experiment, and the
continuous BP measurement was synchronously recorded as a
reference using the Finpres device. All tests were conducted
with participants maintaining a seating position, where signals
were acquired for 10 minutes at a sampling rate of 1000 Hz.
The collective mean SBP is 114.0 ± 13.4 mmHg, accompanied
with the corresponding mean DBP of 67.0 ± 10.6 mmHg. We
used dataset collected from previous study [26], which has been
approved by relevant Institutional Ethics Committee.

In order to validate the robustness of our proposed method,
we evaluate its performance on two extra datasets: i) VitalDB
dataset [27] has been used as the first extra dataset to collect
PPG, ECG and the simultaneous invasive arterial BP (ABP).
Data of 205 patients belonging to different age and BP groups
have been collected and preprocessed. Tables VI and VII present
brief statistical information of the selected patients. ii) And for
validating the CiGNN’s ability of tracking BP changes due to ex-
ternal interventions, we employed the second extra dataset [28]
with a total of 38 subjects. This dataset consists of the ECG, PPG

Fig. 2. Fiducial points of ECG, PPG, the first derivative of PPG (dPPG)
and the second derivative of PPG (sdPPG) for feature extraction, along
with the indication of several major features [7].

and continuous BP with subjects under four various maneuvers
that can induce BP changes at different levels. The maneuvers
include sit (SIT), deep breathing (DB), supine (SUP) and active
standing (AS).

2) Wearable Features Extraction: To unravel the causal re-
lationship between wearable features and BP variations within
the cardiovascular system, we extract a comprehensive set of
features from ECG and PPG signals, building upon our previous
endeavors [29]. In total of two hundred and twenty-two wear-
able features across 7 categories are extracted to facilitate the
subsequent causal inference. The detailed elucidation of the 222
wearable features’ definitions and categorization are presented
in Table I.

Fig. 2 illustrates the identified reference points on ECG, PPG,
the first derivative of PPG (dPPG), and the second derivative of
PPG (sdPPG) signals. The corresponding wearable features are
then calculated according to the following definition:

Reference Points on PPG (RP, 1∼10) = {PPGvalley ,
sdPPGa, dPPGpeak, sdPPGb, PPGpeak, sdPPGc, sdPPGd,
dPPGvalley , sdPPGe, sdPPGf , PPGvalley_next}

Pulse Transit Time (PTT) = RPm - R_peak, m = 1∼10
Time Duration (TD) = RRI, RPn - RPm, 1 ≤ m < n ≤ 10
Amplitude alteration (AA) = PPG(RPn) - PPG(RPm), 1 ≤

m < n ≤ 10
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TABLE I
CATEGORIZATION AND DEFINITION OF WEARABLE FEATURES

TABLE II
INDEPENDENCE AND CONDITIONAL INDEPENDENCE RELATIONSHIP OF

UNSHIELDED TRIPLE

Absolute Intensity of PPG (AIPPG) = PPG(RPm), m =
1∼10

Absolute Intensity of dPPG (AIdPPG) = dPPG(RPm), m =
1∼10

Absolute Intensity of sdPPG (AIsdPPG) = sdPPG(RPm),
m = 2, 4, 7∼10

Area under PPG curve (AR) =
∫ RPn

RPm
PPG-

AIPPG(PPGvalley)dt, 1 ≤ m < n ≤ 10
Pulse Width (PW) = t2 - t1, PPG(t1) = PPG(t2) = {AIPPG,

[AIPPG(RP5)-AIPPG(RP1)]*{50%, 60%, 70%}} and t1 < t2
Physiological Ratio Index (RI): Several physiological mean-

ingful ratio indices [29].

B. Algorithm and Strategy of Causal Inference

1) FCI Algorithm: Assuming the causal Markov and faithful-
ness, constraint-based algorithms employ the conditional inde-
pendence tests to infer the causal relationship from observed
data [19]. The identification of unshielded triples forms the
foundational basis of constraint-based algorithms, which de-
pends on the distinctions of the independence and the conditional
independence among them. However, constrain-based methods
could not distinguish between chain and fork further, as demon-
strated in Table II. That’s why the constrain-based methods get a
Markov equivalence class, in which the direction of some edges
is not oriented.

The identification of unshielded triples could help eliminate
the false causality arising from indirect causes and common
causes. For instance, the lack of independence between variables
X and Y does not necessarily imply a genuine causal relationship
between them. When a variable Z exists such that X and Y are
independent given Z, it signifies the existence of a chain or fork
structure among them.

This study employs the FCI algorithm to infer an initial causal
graph, and we describe the step-by-step process of the FCI
algorithm as follows:

1) Initial skeleton identification: The initial skeleton is iden-
tified by iteratively performing a conditional indepen-
dence test. The edge between variables X and Y will be
deleted if X⊥Y | Z, where Z is the conditional variable
set.

2) Colliders recognition: If X⊥Y and X �⊥⊥ Y | Z, it is
recognized as a collider within the initial skeleton, repre-
sented as X −→ Z ←− Y .

3) Possible d separation (PDS) recognition: Within the
graph G, node Xk ∈ PDS(G, Xi), if and only if there
exists a path betweenXk andXi where any subpath (Xm,
Xl, Xh) is a collider or they form a triangle.

4) Final skeleton identification: Delete the edge between X
and Y, if X⊥Y | PDS(G, X). Then conduct the test for
each edge within the initial skeleton to derive the final
skeleton.

5) Orienting: Orienting the colliders within the final skele-
ton, and then calibrating the direction through rules [30].

2) CGNN Algorithm: The result inferred by constraint-based
algorithms is a Markov equivalence class, in which some edges
are not oriented. Inspired by distributional asymmetries of vari-
ate [31], the CGNN algorithm leverages generative neural net-
works to modify and orient the edges of the Markov equivalence
class.

With the outstanding representational capability of generative
neural networks, the CGNN algorithm could learn the causal
relation of FCM with arbitrary accuracy. FCM takes a tripletC =
(G, f, ε) to describe the causal relation upon a random variable
vectorX = (X1, X2, . . .), where C represents a set of equations:

Xi ← fi(XPa(i;G), Ei), Ei ∼ ε, i = 1, . . ., d (1)

In formula (1), Xi denotes a node in a causal graph G, fi de-
scribes the causal mechanism between parental nodes Pa(i;G)
andXi, and the noise variablesE follow the non-Gaussian distri-
bution and are independent of each other. Given the assumptions
of distributional asymmetries in noise variables, conventional
FCM-based methods, such as the Linear Non-Gaussian Acyclic
Model (LiNGAM), employ ICA to recover the causal rela-
tion [21].

CGNN algorithm learns the function fi on FCM through the
generative neural network, and it is trained using backpropaga-
tion to minimize the discrepancy between the observational and
generated data, measured by the Maximum Mean Discrepancy
(MMD) [32]. Further, it identifies the direction of cause and
effect by selecting the corresponding 2-variable CGNN with a
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Fig. 3. Structure of the proposed spatiotemporal graph neural network (STGNN) model for causality inspired cuffless continuous BP estimation.
The STGNN architecture integrates several key components, including a fully connected (FC) layer for initial feature extraction, a PairNorm layer
to address over-smoothing concerns, and two layers of spatiotemporal graph convolutional network (STGCN) modules. These STGCN modules
are composed of a graph convolutional network (GCN) for capturing spatial information and a Gated Recurrent Unit (GRU) for capturing temporal
information.

smaller MMD, and employs a greedy procedure to orient and
modify G:

� Orient each Xi−Xj in G as Xi → Xj or Xj ← Xi by
taking the smaller MMD of the corresponding 2-variable
CGNN.

� Traverse paths begin with random nodes until all nodes
are visited. Reverse edges directed toward visited nodes
once they have revealed cycles.

� Iteratively reversing the edge with a lower MMD, in the
meanwhile avoiding cycles.

3) Majority Strategy for Causal Inference: Individual physi-
ological variations could lead to different causal graphs when
applying the causal inference algorithm independently for each
participant. This study proposes the majority strategy of causal
inference for obtaining a universal causal graph applicable to
the majority of participants. From the universal causal graph,
we wish to draw some general novel insights from the universal
causal graph for cuffless continuous BP estimation further.

When employing the FCI algorithm, the majority principle is
applied in the context of conducting conditional independence
tests. If the test X ? Y | Z needs to be conducted during the
iteration of the FCI algorithm, it is performed respectively on
each participant in the dataset. Then, by applying the majority
strategy, a general conclusion of the test X ? Y | Z is derived
based on the agreement of more than half of the participants.

When utilizing the CGNN algorithm, the majority princi-
ple is reapplied to the adjacent matrix of the causal graph
identified by CGNN. Once obtaining the initial causal graph
by FCI algorithm, CGNN algorithm operates individually for
each participant, drawing the respective adjacent matrix. Finally,
the universal causal graph’s adjacency matrix is then derived
by applying the majority strategy, where each element in the
adjacency matrix of the final causal graph is determined by
the majority agreement of the corresponding elements across
all the participants’ adjacency matrices.

C. Bridging the Gap: Integrating Causal Graph and BP
Estimation

1) Spatio-Temporal Graph Neural Network (STGNN): Note
that the nodes exhibit complex spatial dependency within the
causal graph, while the cardiovascular system demonstrates
strong dynamic temporal dependency. On the one hand, the
underlying physiological mechanism that governs the causal
graph remains elusive, and the spatial dependency between
nodes has not yet been distinctly revealed. On the other hand,
the BP value in the current cardiac cycle could be influenced
by the states of the preceding cardiac cycles. For instance, deep
breathing or vigorous exercise could result in improved BP in
following cardiac cycles. The pronounced temporal dynamics
of cardiovascular system present huge challenges in accurately
estimating BP solely based on the information from the current
cycle.

Given these challenges, we develop a STGNN model for cuf-
fless continuous BP estimation with the identified causal graph
as prior knowledge. As illustrated in Fig. 3, the STGNN model
initially employs a shared fully connected (FC) layer for prelim-
inary feature extraction. Further, it incorporates two layers of the
spatio-temporal graph convolutional network (STGCN) module
to extract complex spatio-temporal features for accurate cuffless
continuous BP estimation. The STGCN module can effectively
capture the spatial topological properties within the causal graph
by utilizing graph convolutional network (GCN), while obtain-
ing the temporal pattern with gated recurrent unit (GRU) [33]. To
mitigate the over-smoothing problem, a PairNorm regularization
layer [34] is introduced between the STGCN layers.

2) Benchmark Methods: To validate the efficacy of our
method, we compare the proposed CiGNN with four state-of-
the-art benchmark methods (including knowledge-based, data-
driven, and knowledge-data fusion method), as well as three
ablation methods. The comparison methods are elaborated as
below:



LIU et al.: CiGNN: A CAUSALITY-INFORMED AND GNN BASED FRAMEWORK FOR CUFFLESS CONTINUOUS BLOOD PRESSURE ESTIMATION 2679

� Knowledge-based#1: We compared the CiGNN with two
most commonly studied knowledge-based methods. The
first knowledge-based method [7] estimates SBP and DBP
in terms of relative PTT change by the following equations,
where SBP0, DBP0 and PTT0 represents the corre-
sponding initial calibrated value, and γ is a correction
factor.

SBP = SBP0 − 2

γPTT0
(PTT − PTT0) (2)

DBP = DBP0 − 2

γPTT0
(PTT − PTT0) (3)

� Knowledge-based#2: The second knowledge-based
method [35] estimates SBP and DBP relying on the
following equations, where PP0, MBP0 and PTT0

represents the initial calibrated value of pulse pressure
(PP), mean blood pressure (MBP) and PTT, and γ is a
correction factor.

SBP = DBP + PP0

(
PTT0

PTT

)2

(4)

DBP = MBP0 +
2

γ
ln

PTT0

PTT
− 1

3
PP0

(
PTT0

PTT

)2

(5)

� Data-driven method: Tanveer et al. [12] proposed a
waveform-based data-driven model for BP estimation. It
utilizes a neural network to extract features from ECG and
PPG waveforms directly, then taking LSTM layers for SBP
and DBP estimation.

� Fusion-based method: Hajj et al. [36] proposed a BP
estimation method integrating knowledge and data-driven.
Initially, they extracted several experiential features from
PPG signal, and subsequently constructed a bi-directional
neural network for BP estimation.

� Granger Causality based (GC-based) method: Drawing
inspiration from Granger causality [37], our previous
work [14] reported a time-lagged causal links based model
for cuffless continuous BP estimation, where the time-
lagged causal links were extracted from the causal graph.
Since this baseline model only extracts the rough spatio-
temporal information, it could be used to validate the
efficacy of the proposed CiGNN model.

� GCN-based method: To verify CiGNN’s efficacy of min-
ing temporal features, this study builds a GCN-based
ablation model. According to the idea of control variates,
the GCN-based model initially takes a FC layer for pre-
liminary feature extraction. Subsequently, it incorporates
two layers of GCN to extract spatial features within the
causal graph for cuffless continuous BP estimation, and a
PairNorm regularization layer is also introduced between
the GCN layers.

� GRU-based method: We also construct a GRU-based
model for evaluating the ability of mining spatial in-
formation of CiGNN. The GRU-based model takes the
concatenation of wearable features within the causal graph
as its input, as the GRU architecture is unable to process

graph-structured data. Likewise, the GRU-based model
incorporates a FC layer for initial feature extraction. Fur-
thermore, it integrates two layers of the GRU module
to capture temporal features from proceeding continuous
cardiac cycles.

3) Model Implementation: We set the sequence length as ten
cardiac cycles for STGNN and GRU-based models, and the
batch size is configured to 32. Adam optimizer and Cosine
Annealing are employed for model training, and the initial
learning rate and training epoch are specified as 0.01 and 300.
The leave-one-subject-out cross-validation (LOOCV) strategy is
employed to evaluate the performance of the proposed methods
and baselines, according to the clinical practice.

D. Data Analysis and Model Evaluation

The causal graph is a statistic result derived from statistical
tests and scoring rules essentially. In order to verify its accuracy
and efficacy, this study employs the analysis of the power
spectrum density (PSD) for BP and its causal features, which
are the wearable features linking with BP directly within the
causal graph. Accounting for the unevenly sampling character
of BP and its causal indicators, the Lomb-Scargle algorithm [38]
is employed for computing the PSD spanning from 0 to 0.6 Hz.

This study evaluates the proposed cuffless continuous BP
estimation model by two international standards, including the
Association for the Advancement of Medical Instrumentation
(AAMI) [39] and the IEEE Standard for Wearable Cuffless
Blood Pressure Measuring Devices (IEEE 1708) [40]. The
AAMI and IEEE 1708 standards employ mean error (ME),
standard deviation of error (SDE) and mean absolute difference
(MAD) to quantitatively assess the model performance. The
agreement between the estimated and reference BP values is
assessed through the utilization of a Bland-Altman plot, with the
agreement limits defined as mean ± 1.96 × SD. Furthermore,
the statistical significance is evaluated utilizing Student’s t-test,
employing a significance threshold of p <0.05.

III. RESULTS

A. Causal Graphs

The causal graphs identified with the FCI algorithm and
CGNN algorithm are illustrated in Figs. 4 and 5, respectively.
For the identified causal graphs, we only present the connected
components that contain SBP and DBP. In the causal graph,
except for SBP and DBP, each node denotes a specific wearable
feature, and the directed arrows between nodes represent the
relationship of cause and effect.

The FCI algorithm could not determine the direction of certain
edges, so that the circle ‘o’ are employed to represent the
uncertainty in Fig. 4. The circle ’o’ signifies that it could be the
arrowhead or tail for this edge. The red markers with in Fig. 4
visually highlight the distinction between Figs. 4 and 5. The
CGNN algorithm orients all the undirected edges in Fig. 4 and
changes the direction of certain edges. Moreover, it eliminates
three edges that have been inferred by FCI algorithm.
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Fig. 4. Connected branches containing (a) SBP and (b) DBP within the initial causal graph obtained by the FCI algorithm, with a distinction
between Figs. 4 and 5 visually highlighted by the red markers.

Fig. 5. Connected branches containing (a) SBP and (b) DBP within the causal graph obtained by the CGNN algorithm, with BP depicted in blue
and its causal indicators depicted in purple.

The causal graph presents novel indicators that offer valuable
insights and inspirations for cuffless continuous BP estimation.
Within the causal graph, PTT(R-dPPGpeak) emerges nearer
causal connection with SBP and DBP than PTT(R-PPGpeak).
Furthermore, the causal graph offers an innovative approach
concerning the Amplitude Alteration (AA), in which AA refers
to the amplitude alteration of PPG signals between two fidu-
cial points, as illustrated in Fig. 2. Within the causal graph,
AA(PPGvalley-sdPPGd) is the effect of SBP, and AA(PPGvalley-
sdPPGb) and PTT(R-dPPGpeak) are the effects of DBP.

B. Causal Feature Analysis

Within the causal graph, we detected the AA(PPGvalley-
sdPPGd), AA(PPGvalley-sdPPGd) and PTT(R-dPPGpeak) that
exhibit a direct causal link with BP. As a result, these three
wearable features were considered as causal indicators of BP.
To demonstrate the capability of these features in tracking BP
changes, we conducted power spectrum analysis for these causal
features and BP.

Fig. 6 illustrates the temporal variations of SBP, DBP and
their corresponding causal indicators. Fig. 7 depicts the paired
normalized power spectrum density correspondingly. Evidently,

SBP exhibits both slow and fast variations, whereas DBP pri-
marily demonstrates slow variation. SBP demonstrates vari-
ability in the low-frequency (LF) domain from 0 to 0.1 Hz,
with high-frequency (HF) variation revealed between 0.3 and
0.4 Hz, while DBP predominantly concentrates on LF of
0–0.1 Hz. And this aligns with previous studies on BP
variations [8].

The PSD of PTT(R-dPPGpeak) predominantly concentrates
on the HF component, which closely resembles the fast variation
pattern observed in SBP, while diverging from the PSD of
DBP. However, AA(PPGvalley-sdPPGd), the causal indicator
of SBP, provides a better representation of both the HF and
LF components of SBP. Likewise, the PSD of DBP exhibits
a significant similarity with its corresponding causal indicator,
AA(PPGvalley-sdPPGb), in LF domain.

The spectral analysis results are in accordance with the causal
graph, providing qualitative evidence to support the validity of
the identified causal relation. This study further quantitatively
analyzes the PSD of SBP, DBP and its corresponding causal
indicators. The following three ratios are calculated: the ratio of
the area under the power spectrum in the LF band to the area
under the power spectrum in the HF band ( area(LF )

area(HF ) ), the ratio
of the area under the power spectrum in the LF band to the total
area under the power spectrum ( area(LF )

area(LF+HF ) ), and the ratio of
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Fig. 6. (a) Continuous BP signal, (b) variations of SBP and DBP, with (c)–(e) variations of three causal indicators of BP.

Fig. 7. Paired normalized power spectrum density (PSD) of SBP, DBP
and their corresponding causal indicators (a)–(c).

TABLE III
QUANTITATIVE ANALYSIS OF SBP, DBP AND ITS CORRESPONDING CAUSAL

INDICATORS’ PSD

the area under the power spectrum in the HF band to the total
area under the power spectrum ( area(HF )

area(LF+HF ) ).
The three ratios are computed individually for each participant

in the dataset and then averaged, as depicted in Table III. Note
that the three ratios of SBP and AA(PPGvalley-sdPPGd), as well
as DBP and AA(PPGvalley-sdPPGb), exhibit high similarity,
which further indicates the validity of the causal graph.

C. Evaluation of BP Estimation Methods

In this subsection, we firstly compare the overall performance
between CiGNN and 7 benchmark methods on the internal

Fig. 8. Correlation, Bland-Altman plots of SBP (a), (c) and DBP (b),
(d) of the proposed CiGNN method.

dataset [26] and the extra VitalDB dataset [27]. Then, on the
VitalDB dataset, we assess the performance of these methods
for 4 different age groups separately, and comparisons are also
analyzed for normotensive and hypertensive subjects, respec-
tively. Finally, we present these methods’ capability of tracking
BP changes elicited by various maneuvers, i.e., sit (SIT), deep
breathing (DB), supine (SUP) and active standing (AS) on the
second extra dataset [28].

1) Evaluating on the Internal Dataset: On the internal
dataset, Fig. 8 depicts the scatter and Bland-Altman plot for SBP
and DBP estimation, in which the proposed CiGNN method’s
estimation results were compared to the reference BP measured
by Finapres. The Pearson correlation coefficients between the
overall estimated BP values and the reference are 0.92 and 0.97
for SBP and DBP, respectively. In the Bland-Altman plot, the
red solid line indicates the bias, while the limits of agreement are
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TABLE IV
METHOD PERFORMANCE EVALUATED BY AAMI STANDARD AND IEEE 1708 STANDARD ON THE INTERNAL DATASET

Fig. 9. Estimated beat-to-beat SBP (a) and DBP (b) of the proposed
CiGNN method with corresponding reference Finapres BP.

depicted by the black dash-dot lines (bias±1.96× SD). We can
observe that the majority of data points fall within the limits of
agreement, demonstrating a close consistency between the BP
estimated by the proposed CiGNN method and the Finapres’
measurements. The bias values for SBP and DBP estimation are
−0.85 mmHg and 0.40 mmHg, respectively.

Furthermore, Fig. 9 depicts a representative example of the
beat-to-beat comparison between the reference BP of Finapres
and the estimation BP by the proposed CiGNN method. The
average values of SBP and DBP measured by the Finapres are
103.51±7.04 mmHg and 54.03±6.60 mmHg, respectively. And
the proposed CiGNN model estimated the average values of
SBP and DBP are 103.16±7.06 mmHg and 53.61±6.52 mmHg,
respectively. It is evident that the estimation demonstrates a
remarkable ability to accurately track the intensely oscillating
reference BP.

The evaluation results of AAMI and IEEE 1708 standards
for the proposed method and baselines are shown in Table IV.
Note that the CiGNN method demonstrates commendable per-
formance across multiple evaluation indicators, with ME± SDE
values being −0.85 ± 3.94 mmHg and 0.40 ± 2.41 mmHg, as
well as MAD values being 3.20 mmHg and 1.85 mmHg for
SBP and DBP, respectively. The performance of the CiGNN
model surpasses that of benchmark methods with statistical
significance (p<0.05), providing strong evidence for its efficacy

in capturing spatio-temporal information for cuffless continuous
BP estimation.

2) Evaluation on the Extra VitaDB Dataset: On the VitalDB,
the overall performance of CiGNN as well as comparison meth-
ods are evaluated on 205 subjects (103 normotensive and 102
hypertensive) with age ranging from 20 to 90. Table V presents
the evaluation results of AAMI and IEEE 1708 standards for
CiGNN and comparison methods. The CiGNN model demon-
strates commendable performance across multiple evaluation
metrics, with ME± SDE values being−0.37± 4.30 mmHg and
−0.84± 3.15 mmHg, as well as MAD values being 4.15 mmHg
and 2.79 mmHg for SBP and DBP, respectively. Note that the
proposed CiGNN achieves smaller ME, SDE, as well as MAD
for BP estimation, and the difference is significant.

To validata the robustness of the proposed method, we analyze
its performance from the perspectives of patient age and whether
they have hypertension. And the brief statistic information is
illustrated in Tables VI and VII. The VitalDB dataset was divided
into four age groups. As shown in Fig. 10, the performance of
these methods with subjects at different age groups are analyzed.
We evaluate those methods’ performance through MAD of the
estimated BP. In general, BP of the patients aged 60–80 is the
most difficult to estimation, as the MAD of each method is
high at this age stage. And for patients aged from 20 to 40,
the estimation of BP is relatively easy. Note that the perfor-
mance of those methods varied at different age groups. It is
noteworthy that the CiGNN method performs stably and excel-
lently across different age stages, surpassing other comparison
methods.

As presented in Fig. 11, these methods’ performance are eval-
uated for the normotensive group and the hypertensive group,
respectively. Due to the complexity of BP changes in people
with hypertension, it is difficult to track and estimate their blood
pressure compared with normotensive group. The mean SBP
and DBP of 103 nomotensive subjects are 112.81 ± 15.65 and
56.99± 7.96, while the mean SBP and DBP for 102 hypertensive
subjects are 139.30 ± 19.67 and 74.00 ± 8.71, respectively.

Fig. 11 depicts the performance of CiGNN and comparison
methods by ME ± SDE. We could see that the SDE of hyper-
tensive group are higher than that of normotensive group for
all the methods, indicating that the BP estimation for hyper-
tensive subjects might be more challenging. The discrepancies
are especially obvious in SBP estimation. The proposed CiGNN
performs better than other methods not only for the normotensive
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TABLE V
METHOD PERFORMANCE EVALUATED BY AAMI STANDARD AND IEEE 1708 STANDARD ON THE VITALDB DATASET

Fig. 10. Performance of BP estimation with the proposed and comparison methods under four different age groups for (a) SBP and (b) DBP.

TABLE VI
SUBJECTS’ CHARACTERISTICS OF THE VITALDB DATASET

TABLE VII
NORMOTENSIVE VS. HYPERTENSIVE GROUP INFORMATION OF THE VITALDB

DATASET

group but also for the hypertensive group, and the difference is
significant. For normotensive group, the ME±SDE of estimated
SBP and DBP with the CiGNN method are−0.59± 3.35 mmHg
and 0.69 ± 2.45 mmHg, respectively. And for hypertensive
group, the corresponding ME± SDE of estimated SBP and DBP
are 1.66 ± 4.61 mmHg and 0.91 ± 3.32 mmHg, respectively.

TABLE VIII
COEFFICIENT OF VARIATION (CV) OF FOUR MANEUVERS FOR SBP AND

DBP ON THE EXTRA DATASET [28]

3) Comparison of Different Maneuvers: It is crucial for cuff-
less continuous BP estimation algorithm to accurately track the
BP changes due to external interventions. So we employ the
second extra dataset [28] with BP changes induced by different
maneuvers to validate CiGNN’s ability of tracking BP changes.

This work utilizes coefficient of variation (CV) to assess
the magnitude of BP changes under different maneuvers. The
definition of CV is depicted in following formula (6), where μ
is the mean value of BP and δ is the standard deviation of BP.

CV =
δ

μ
(6)
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Fig. 11. Performance evaluation of BP estimation with the proposed and comparison methods in normotensive group and hypertensive group for
(a) SBP and (b) DBP.

Fig. 12. Performance of BP estimation with the proposed and comparison methods under four various maneuvers with coefficient of variation
(CV) of the BP indicated for each maneuver. (a) SBP and (b) DBP.

Table VIII presents the CV of four maneuvers for SBP and DBP,
where the ranking of the magnitude of BP changes is: SIT <DB
<SUP <AS.

Fig. 12 evaluates the performance of proposed CiGNN and
other comparison methods under four various maneuvers by
means of the estimated BP’s MAD. Note that the higher CV,
the more difficult it is to estimate the BP, and the performance
of thoes methods differed across various maneuvers. The pro-
posed CiGNN method achieves the best performance under four
maneuvers compared with other methods, and the difference is
significant.

IV. DISCUSSION

This study investigated the feasibility of integrating the causal
knowledge with GNN for cuffless continuous BP estimation. We
developed a two-stage causality inspired and GNN based frame-
work that can extract causal features and learn both spatial and

temporal patterns from the causal graph sequence for better cuf-
fless continuous BP estimation. By employing FCI and CGNN
algorithms, the causal relationship between wearable features
and BP was depicted via a causal graph. Remarkably, the causal
features linked with BP within the causal graph demonstrated
excellent capability of tracking BP changes. The introduced
STGNN model, with the causal graph sequence as its input,
exhibited commendable performance for cuffless continuous BP
estimation.

A. Causal Inference

Inferring causal relationships from observed data has
drawn substantial attention, predominantly encompassing three
method types: constraint-based algorithm, score-based algo-
rithm, and FCM-based algorithm. The score-based algorithm is
among the most promising methods. It relies on the assumption
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that there is external score-functions capable of detecting var-
ious causal relations. Nevertheless, searching for the optimal
scoring causal graph across the entire graph space could be
computationally expensive, particularly when dealing with a
large number of extracted wearable features in this study. There-
fore, this study employs the FCI algorithm that is computation-
ally more effective (than the score-based algorithm) to obtain
an initial causal graph, i.e., a Markov equivalence class. Then,
the CGNN algorithm is utilized to modify and orient the edges
of the initial causal graph. In summary, this study balances
computational cost and causal inference accuracy by applying
two types of causal inference algorithms.

As shown in Fig. 5, this study infers separate causal
graphs between SBP, DBP and wearable features, respec-
tively, so that there is no causal graph incorporating both
SBP and DBP simultaneously. The notably high interdepen-
dence between SBP and DBP limits the inclusion of any
other wearable features in their connected branch of the
causal graph, if SBP and DBP are not individually taken
into account for causal inference. Given the conditional inde-
pendence relationships: SBP⊥wearablefeature | DBP and
DBP⊥wearablefeature | SBP , the edges connecting SBP
or DBP with any wearable features will be removed, as the FCI
algorithm iterates.

For two definitions of PTT [41], BP has a closer causal
relation with PTT(R-dPPGpeak) in the causal graph, rather than
PTT(R-PPGpeak). This aligns with the prior studies that PTT(R-
dPPGpeak) are favored over PTT(R-PPGpeak) for the cuffless
continuous BP estimation [42]. In addition, the causal graph
suggests new causal indicators, the AA(PPGvalley-sdPPGd) and
AA(PPGvalley-sdPPGb), for cuffless continuous BP estimation.
The power spectrum analysis demonstrates the robust track-
ing capability of AA(PPGvalley-sdPPGd) and AA(PPGvalley-
sdPPGb) in capturing BP variations across both LF and HF
ranges. In psychology, the LF variation of BP are attributed to
respiratory sinus arrhythmia (RSA) [43], indicating respiratory
activity [44], while the HF variation are linked to vasomotion
waves resulting from oscillations in sympathetic vasomotor
tone [45]. Hence, the newly identified causal indicators effec-
tively reveal the psychological modulation of respiration and
sympathetic tone on BP.

B. Cuffless Continuous BP Estimation

This study explores the role of utilizing causality for cuffless
continuous BP estimation. We creatively propose the STGNN
model for bridging the gap between causal graph, representing
the causal relation of wearable features and BP, and cuffless
continuous BP estimation. This study is a pioneering attempt
to incorporate GNN to capture the intricate causal dependent
relationship between wearable features and BP within the car-
diovascular system, specifically in the context of cuffless contin-
uous BP estimation. Instead, modules like GRU and LSTM have
been extensively employed for several years to capture temporal
features from continuous cardiac beats [12], [36].

The STGNN model effectively leverages the causal prior
knowledge embedded in the causal graph, and results in excellent

performance across multiple evaluation metrics. As described
in Section III-C, the performance of the STGNN model ex-
hibits statistically significant superiority (p <0.05) over the
GRU-based model, which demonstrates the superior ability of
STGNN model for mining spatial information embedded within
the causal graph. Similarly, compared with the GCN-based
model, STGNN also demonstrates a better ability (p <0.05) in
extracting temporal information from continuous cardiac beats.
And the proposed STGNN model also presents a greater capacity
(p <0.05) for mining spatio-temporal information compared to
the time-lagged causal links based model.

Moreover, the evaluation results highlight the superiority of
temporal information over spatial information for BP estimation,
as evidenced by the better performance of the GRU-based model
compared to the GCN-based model. This finding is consistent
with prior studies that the cardiovascular system exhibits high
auto-correlation, whereby the BP value in the current cardiac
beat is easily influenced by the states of preceding cardiac beats.

When compared to knowledge-based methods, data-driven
method as well as the fusion of knowledge and data-driven
method, the proposed CiGNN method demonstrates the best
performance on both internal and extra dataset, due to its in-
tegration of causal information and superior structural design.
For different age groups, various maneuvers and hypertensive
group, our CiGNN could achieve excellent estimation of cuffless
continuous BP. This proves that the CiGNN method is robust for
different condition of BP changes.

C. Limitation

There are several limitations of this study. First, this study
only presented the excellent tracking capability of the detected
causal indicators for BP variations within the frequency domain.
The underlying physiological mechanism between identified
causal indicators and BP has not been investigated yet. The other
limitation is that the proposed framework consists of two stages,
which have not been developed into an end-to-end model. Last,
multiple factors, such as age, maneuvers and whether the patient
has hypertension, will affect the accuracy of BP estimation.
The proposed method has not considered the causal relationship
between those factors and BP, and have not utilized it to improve
the accuracy of BP estimation.

V. CONCLUSION & FUTURE WORK

In this study, we proposed a two-stage CiGNN framework that
integrates causal inference with GNN for cuffless continuous
BP estimation. Initially, with two types of causal inference
algorithms alongside the majority strategy, we inferred a causal
graph depicting the causal relationship between BP and wear-
able features. The causal graph identified new causal indicators
other than PTT that were able to track BP changes effectively.
Further, we proposed a STGNN model that bridges the gap
between causal graph and BP estimation creatively. With the
learned spatio-temporal information by STGNN, we achieved
substantial improvement for cuffless continuous BP estimation.

Future study should integrate physiological knowledge to un-
cover the underlying relationship between causal indicators and
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BP, to establish an end-to-end causal-based cuffless continuous
BP estimation model, as well as to conduct causal inference
analysis on hypertensive subjects. There is also scope for work
to better understand how this can be best applied to support the
prevention and treatment of hypertension for people, patients
and clinicians.
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“An attempt to define the pulse transit time,” in Proc. Int. Conf. Biomed.
Health Inform., 2015, pp. 219–221.

[42] X. Ding and Y. Zhang, “Pulse transit time technique for cuffless unob-
trusive blood pressure measurement: From theory to algorithm,” Biomed.
Eng. Lett., vol. 9, pp. 37–52, 2019.

[43] A. Dornhorst, P. Howard, and G. Leathart, “Respiratory variations in blood
pressure,” Circulation, vol. 6, no. 4, pp. 553–558, 1952.

[44] J. A. Taylor and D. L. Eckberg, “Fundamental relations between short-
term RR interval and arterial pressure oscillations in humans,” Circulation,
vol. 93, no. 8, pp. 1527–1532, 1996.

[45] A. Malliani, M. Pagani, F. Lombardi, and S. Cerutti, “Cardiovascular
neural regulation explored in the frequency domain,” Circulation, vol. 84,
no. 2, pp. 482–492, 1991.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


