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Learning Difference Equations With Structured
Grammatical Evolution for Postprandial

Glycaemia Prediction
Daniel Parra , David Joedicke , J. Manuel Velasco , Gabriel Kronberger , and J. Ignacio Hidalgo

Abstract—People with diabetes must carefully monitor
their blood glucose levels, especially after eating. Blood
glucose management requires a proper combination of
food intake and insulin boluses. Glucose prediction is vital
to avoid dangerous post-meal complications in treating in-
dividuals with diabetes. Although traditional methods, and
also artificial neural networks, have shown high accuracy
rates, sometimes they are not suitable for developing per-
sonalised treatments by physicians due to their lack of
interpretability. This study proposes a novel glucose pre-
diction method emphasising interpretability: Interpretable
Sparse Identification by Grammatical Evolution. Combined
with a previous clustering stage, our approach provides
finite difference equations to predict postprandial glucose
levels up to two hours after meals. We divide the dataset
into four-hour segments and perform clustering based on
blood glucose values for the two-hour window before the
meal. Prediction models are trained for each cluster for
the two-hour windows after meals, allowing predictions in
15-minute steps, yielding up to eight predictions at differ-
ent time horizons. Prediction safety was evaluated based
on Parkes Error Grid regions. Our technique produces
safe predictions through explainable expressions, avoid-
ing zones D (0.2% average) and E (0%) and reducing pre-
dictions on zone C (6.2%). In addition, our proposal has
slightly better accuracy than other techniques, including
sparse identification of non-linear dynamics and artificial
neural networks. The results demonstrate that our proposal
provides interpretable solutions without sacrificing predic-
tion accuracy, offering a promising approach to glucose
prediction in diabetes management that balances accuracy,
interpretability, and computational efficiency.
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I. INTRODUCTION

MORE than 450 million people have diabetes. There are
two main types of diabetes: type I is an autoimmune

disease that causes the destruction of insulin-producing cells
(beta cells) of the pancreas, while type II appears when there is
resistance to insulin action. Insulin-dependent diabetes patients
need to estimate, or even better, to predict their blood glucose
levels in the near term to manage their condition and prevent
complications. Predicting glucose levels can help individuals
make informed decisions about their diet, exercise, and espe-
cially the insulin and medication they use to maintain their blood
glucose within a healthy range. The last decade has seen the
rapid spread of new and reliable continuous glucose monitoring
systems (CGM) that provide real-time glucose readings and
trend data to help individuals adjust their treatment accordingly.

The availability of data from CGMs has led the research
in the field. Great efforts have been made in the search for
accurate glucose prediction models. Some of them are black-box
models [1], others are based on analytical models [2], and most
of them provide predictions for a time horizon from 15 to
120 minutes [3]. Among them, symbolic regression (SR) [4]
techniques and artificial neural networks (ANNs) obtained very
good performance [5]. One of the key challenges in using
ANNs for glucose prediction is the lack of interpretability of
the solutions they provide, limiting their usefulness in clinical
practice. This problem of interpretability has led researchers to
explore alternative explainable AI techniques to provide both
accurate forecasts and insight for clinicians.

This work aims to explore techniques for deriving finite
difference equations that accurately represent the dynamics of
blood glucose levels, with the benefit of obtaining interpretable
models that can aid the work not only of people with diabetes,
but also of diabetes clinicians. To achieve this interpretability,
we have developed a variant of grammatical evolution (GE) that
produces sparse solutions: Interpretable Sparse Identification by
Grammatical Evolution (ISIGE). This technique seeks to inte-
grate the good results in the last years of Grammatical Evolution
for blood glucose prediction, [6], [7] and the advantages of a
recently proposed method: sparse identification of non-linear
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dynamics (SINDy). Sparse identification of non-linear dynamics
solely from data can also be helpful for finding models for
complex biological and physiological phenomena and, addition-
ally, many more scientific domains, for example, in physics and
engineering.

SINDy is an optimization-based method that constructs a
sparse model of the dynamics of a system as a linear model with
a set of non-linear base functions. To achieve sparsity, SINDy
adds a sparsity-promoting regularization term which penalizes
models with too many non-zero coefficients, forcing the algo-
rithm to select a smaller subset of variables and interactions
most relevant to the dynamics of the system. This helps to avoid
overfitting, improve the interpretability of the model, and reduce
computational complexity [8]. Conceptually, the approach is
similar to fast function extraction (FFX) [9] but focuses on
system dynamics.

In addition, to refine the models and predictions, we employ
a clustering approach to group the glucose time series before
meals which give us several scenarios for prediction. Due to
the complexity of this situation and the need for a technique
with good performance characteristics, we have implemented
ISIGE using Dynamic Structured GE (DSGE). To reduce the
risk of premature convergence and to improve the diversity of
the generated solutions, we have applied the ε-lexicase selection
technique [10] in particular its dynamic version.

In this paper, we describe our technique and analyze the
experimental results against SINDy and ANNs, in terms of
precision, suitability for diabetes care and interpretability.

The results of this study are significant in several ways:
� The results demonstrate that the proposed ISIGE ap-

proach, together with SINDy, outperforms well tested
ANNs in terms of prediction accuracy.

� ISIGE is the technique that provides the most accurate
predictions. This is particularly important for glucose
prediction in diabetes treatment, where accurate and safe
predictions are crucial for clinical decision-making.

� The fact that ISIGE and SINDy show similar interpretabil-
ity suggests that ISIGE can provide interpretable solutions
without sacrificing prediction performance and safety.

These results offer a promising new approach to glucose
prediction in diabetes management that balances accuracy, in-
terpretability and computational efficiency.

The rest of the paper is organized as follows. Section II
presents an overview of the existing literature. In Section III-B,
our approach is explained, including the grammar of DSGE, and
the iterative numerical evaluation algorithm. Section IV outlines
the workflow employed in this research. The experimental setup,
data utilized, and the results are detailed in Section V. Finally,
Section VI provides the concluding remarks of this study.

II. RELATED WORK

Dynamic models for glucose prediction are mathematical
models that can simulate and predict the behavior of blood
glucose levels over time. They have been used in a variety of
applications, such as personalized glucose control algorithms,
prediction of hypoglycemia events, and optimization of insulin

therapy. There are three types of dynamic models for glucose
prediction:

� Physiological models [2], [11]: These models use a set
of differential equations to simulate glucose and insulin
dynamics in the body. Physiological models are based
on our current understanding of the complex interactions
between glucose and insulin in the body.

� Data-driven models [7], [12], [13], [14], [15], [16]:
These are mathematical models that are constructed based
on data obtained from individuals with diabetes. These
models use statistical and machine-learning techniques to
analyze the data and identify patterns that can be used
to predict future glucose levels. Different models have
been developed in conjunction with CGM systems to make
short-term or long-term predictions.

� Hybrid models [17], [18]: These models combine physi-
ological and data-driven models to take advantage of the
strengths of both types of models to improve the accuracy
of glucose predictions.

An important line of research has focused on using adaptive
and recursive techniques [19] for continuous glucose control.
In [20], the authors explore the use of adaptive model predictive
control algorithms for improving artificial pancreas systems.
Their algorithms, which continuously update the glucose pre-
diction model, have been improved by adding explicit consid-
eration of prior knowledge related to the effects of meals and
physical activity on blood glucose levels in the paper [21].
This approach has been tested using simulated subjects in a
multivariable glucose-insulin-physiological variables simulator.
The inclusion of physiological variables such as heart rate in
this model has been studied in the work of Hobbs et al. [22]. In
this paper, the authors conclude that heart rate is a beneficial
input for glucose control in the context of intense physical
exercise.

The primary reference for GE applied to glucose forecasting
is the book chapter from Hidalgo et al. [6], where a new approach
for identifying mathematical models that can predict blood
glucose levels in people with diabetes using GE is proposed.
The approach was evaluated using data from the OhioT1DM
dataset [23] containing glucose and physiological data from
people with diabetes. The results showed that the proposed
system outperformed several baseline approaches regarding ac-
curacy and interpretability, including linear regression, ARIMA
models, and ANNs.

Blood glucose prediction is a very active field of research, and
although significant progress has been made, several challenges
remain to be overcome, including:

� Individual differences: the metabolism of each person is
unique, and blood glucose dynamics can vary significantly
from individual to individual and from the situation of each
person (e.g., changes during pregnancy, illness requiring
medication administration, etc.).

� Delayed response: There is always a variable delayed
response between insulin administration or carbohydrate
intake and blood glucose value.

� Sensor limitations: The accuracy and reliability of glucose
sensors can vary over their lifetime, so that the resulting
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TABLE I
INPUT VARIABLES IN THIS STUDY

noise can affect the data quality used for training and
model prediction.

� Complex dynamics: Blood glucose dynamics are influ-
enced by many factors that can interact in complex ways,
such as food intake, physical activity, medication, sleep,
and stress.

This paper addresses these challenges using two techniques
that we consider particularly suitable for glucose prediction:
structured grammatical evolution (SGE) and SINDy. These two
approaches can handle large and complex datasets with noisy
and incomplete data, automatically extract the most relevant
inputs, and identify the main mathematical functions to describe
glucose dynamics. Additionally, they generate interpretable
models that provide the opportunity to be analyzed, allowing
researchers better to understand the underlying dynamics of
blood glucose managment.

III. METHODS AND TECHNIQUES

A finite difference equation (FDE) is a mathematical expres-
sion that describes the difference between a variable y at two
discrete time points [24]. An FDE takes the form of (1), where
�x represents a set of input variables involved in the equation,
y represents the target variable, and θ are optional calibration
parameters.

Δy(t) = y(t+Δt)− y(t) = f(�x(t), y(t), θ) (1)

FDEs are classified based on their properties, such as linearity,
nonlinearity, and order, which is the highest difference in time
steps that explicitly appear in the equation. For example, (1) is
a first-order equation, while (2) is a second-order equation as it
involves the difference between y(t+ 2) and y(t).

y(t+ 2Δt)− y(t) = f(�x(t)) (2)

Due to their simplicity, finite difference equations are handy
for modeling dynamic processes which are measured with con-
stant frequency (equidistant time steps), such as blood glucose
levels measured by CGM. Equation (3), express the dynamics
of glucose values as a finite difference equation problem. The
description of the input variables is given in Table I.

ΔG(t) = G(t+Δt)−G(t)

= f(G(t), BI(t), IB(t), Fch(t), HR(t), C(t), S(t))
(3)

As is often the case in physical systems, we assume that in the
glucose system, only a few terms are relevant in defining its
dynamics. Therefore, we can consider the governing equations

Algorithm 1: SINDy Algorithm for Finite Difference
Equations.

1: procedure SINDY(X,Δ(t), λ)
2: X, Ẋ← History States Variables
3: Θ(X)← candidate nonlinear functions library

matrix
4: Θ(xT )← vector of symbolic functions
5: xP2 ← quadratic non-linearities in the state x
6: Θλ← add regularization term to Θ (LASSO)
7: Ξ← ξ1, ξ2, ξ3, . . . sparse vectors of coefficients
8: ξk ← Ẋ = Θ(X)Ξ, solve sparse regression
9: Return ẋk = fk(x) = Θ(xP2)ξk

are scattered in a high-dimensional non-linear function space.
In this way, we aim to create a simplified model that accurately
captures the essential dynamics of the system while minimising
complexity. The SINDy algorithm is particularly suitable for this
purpose. In Section III-A, we briefly explain how SINDy works.
Then, in Section III-B, we present our proposal, ISIGE, which
seeks to incorporate the benefits of SINDy within the paradigm
of GE.

A. Sparse Identification of Nonlinear Dynamics (SINDy)

SINDy is a data-driven method for discovering the governing
equations of a dynamical system from time series data [8], [25].
In Algorithm 1, we have summarized the main steps for SINDy.

� Data gathering (line 2): The first step is to collect data from
the system that we want to model. The data are time-series
measurements of the state variables of the system (Table I).

� Construct a library of candidate functions (line 3): The
next step is to construct a library of candidate functions that
could potentially be part of the governing equations. In the
general SINDy algorithm, these functions could include
polynomials, trigonometric functions, exponentials, etc,
depending on the system being modeled. In this work
and based in our prior knowledge of the system, we have
chosen up to XP2 , quadratic nonlinearities of X (4).

Θ(X) =

⎡
⎢⎢⎢⎣

...
...

...
...

1 X
... XP2

...
...

...
...

⎤
⎥⎥⎥⎦ (4)

� The development of all the linear combinations (line 5),
are grouped in (5) shown at the bottom of the next page,
where t0 represents the first time step, t1 the subsequent
time step, and so on.

� Add regularization (line 6): SINDy uses sequential thresh-
old ridge regression as a regularization. The objective
function ||Θξ − Ẋt||22 + λ||ξ||22 is minimized by itera-
tively performing least squares and masking out elements
of the weight array ξ that are below a given threshold λ.
In this paper we used λ = 0.5 which tests have shown to
produce the best results.
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� Solving the optimization problem (lines 7-8): through a
sparse regression algorithm, we identify the combination
of terms that best describes the observed dynamics of the
system.

� Once the sparse coefficients have been found (line 9), we
have the governing equations of the system.

B. Interpretable Sparse Identification by
Grammatical Evolution

This study introduces a novel approach, ISIGE, to model
blood glucose dynamics using FDEs. Specifically, we utilize
DSGE, a variant of GE, to obtain Ĝ(t+Δ(t)) as expressed
in (3).

1) Evolutionary Algorithm: Algorithm 2 outlines the process
of obtaining difference equations using ISIGE. The core is an
evolutionary algorithm (EA) defined by its parameters: popula-
tion size (l), maximum number of generations (N ), crossover
probability (pc), and mutation probability (pm). The EA is
DSGE and follows several steps. First, the initial population
(P ) is generated. Then, the solutions are decoded through the
grammar (G), obtaining the equation (phenotype). After that,
ε-Lexicase selection is applied to the population (Algorithm 3)
evaluating the individuals on the training dataset DT . After
selection, crossover and mutation are performed to obtain the
new population of solutions. This process is repeated N times
(generations). We will select the individual whose mean fitness
among all training cases is lower to obtain a solution among the
final population. ISIGE has three important features that make it
different and interesting from other approaches: DSGE, lexicase
selection, and Iterative Numerical Evaluation (INE). We explain
all these aspects below.

One of the benefits of using DSGE is the ability to obtain
explainable expressions, which enables us to analyze the impact
and significance of different components in the system. DSGE
addresses two limitations of GE. First, it overcomes the low
locality problem by ensuring that a slight change in the genotype
results in a corresponding small change in the phenotype, thus
ensuring high locality. Second, it eliminates redundancy, which
occurs when different genotypes produce the same phenotype,
by creating a one-to-one mapping between the genotype and the
non-terminal. DSGE employs variable-size lists instead of the
fixed-size lists used in GE to achieve this.

2) ε-Lexicase Selection: We have grouped the data into clus-
ters comprising multiple 4-hour glucose time series segments.
The behavior of these segments is highly varied (Fig. 5). If
the selection mechanism of the evolutionary algorithm fails
to consider this, individuals that do not achieve high fitness
values in all the test cases, would be discarded. Because of this,
we selected lexicase (and, more specifically, ε-Lexicase) as a
selection mechanism.

Algorithm 2: ISIGE.
1: Procedure ISIGE( grammar, datasets, GE-properties)
2: l← Population size
3: N←Max number of generations
4: pc ← Probability of crossover
5: pm ← Probability of mutation
6: w←Max number of wraps
7: DT ← Training Dataset
8: P← Generate population(l)
9: for i = 0 to (N - 1) do

10: P← ε-Lexicase selection (DT,P,G, l)
11: P← Crossover (P, pc)
12: P←Mutation (P, pmc)
13: Best← p ∈ (P)/min( 1

|T |
∑

t∈T INE(p, t))
14: return Best

Lexicase selection is a powerful search strategy used in evo-
lutionary computation to overcome the problem of premature
convergence. It works by selecting individuals that perform well
in a randomly chosen subset of the test cases and repeating the
process with the remaining test cases until only one individual
is left. However, this method may become too selective, leading
to limited search space exploration and the loss of diversity.
To address this issue, ε-Lexicase [10] selection was proposed,
introducing a tolerance parameter, ε. This parameter selects
individuals that perform well within a certain threshold of the
best-performing individuals in each subset. This approach al-
lows for a more comprehensive search space exploration while
preserving good individuals.

Algorithm 3 shows how Dynamic ε-Lexicase selection works.
The objective is to obtain a set of l parents for the following
generation. The function GetParent is repeated l times. It starts
by dividing the training dataset (DT ) into a set of t training cases
dTi

. We work with a copy (D′T ) of the training cases and a copy
of the population (P ′). The process is as follows:

� Choose a dataset dT randomly from D′T .
� Evaluate P ′ by applying INE (see explanation below).
� Assign to elite the value of the best fitness.
� Calculate εt as the median absolute deviation function of
F .

� Remove from P ′ all the individuals whose fitness value is
higher than (elite + εt)

� Remove dT from D′T .
� while there is at least one training set in D′T and more than

one individual in P ′, repeat the process.
Once the process is finished, an individual is randomly re-

turned from the set P ′, if there are more than one solution in it.
3) Grammar: Creating a grammar to define the search space

is essential in DSGE. This involves establishing how to generate

XP2 =

⎡
⎢⎢⎢⎣

G(t0) ·BI(t0) G(t0) · IB(t0) G(t0) · FCH(t0) · · · FCH
2(t0)

G(t1) ·BI(t1) G(t1) · IB(t1) G(t1) · FCH(t1) · · · FCH
2(t1)

...
...

...
...

...
G(tn) ·BI(tn) G(tn) · IB(tn) G(tn) · FCH(tn) · · · FCH

2(tn)

⎤
⎥⎥⎥⎦ (5)
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Fig. 1. Common steps between SINDy and ISIGE, our proposal.

Algorithm 3: Dynamic ε-Lexicase Selection. λ is the Me-
dian Absolute Deviation Function.

1: function ε-LEXICASE SELECTION(DT,P,G, l)
2: Paux ← ∅
3: for i = 1 to l do
4: pauxi

← GETPARENT(P,DT)
5: Paux ← Paux ∪ pauxi

6: P← Paux

7: return P
8: function GETPARENT(P,DT)
9: DT

′ ← DT

10: P′ ← P
11: s← l
12: while |D′T| �= ∅ and |P′| > 1 do
13: dT ← random choice from DT

′

14: F← ∅
15: for i = 1 to s do
16: gi ← decode(grammar, p′i)
17: fi ← INE(gi,dT)
18: F← F ∪ fi
19: elite← min(F)
20: εt ← λ(F )
21: for i = 1 to s do
22: if fi > elite+ εt then
23: P′ ← P′ \ {p′i}
24: s = s− 1
25: D′T ← D′T \ {dt}
26: return random choice from P ′

constants, which operations to use, which structures to generate
expressions and which variables to incorporate. In Fig. 1, we can
see that the set of base functions used in the SINDy algorithm
(Section III-A) is equivalent to the ISIGE grammar, but there
is an important consideration here. Due to the method used
to evaluate the numerical expressions, it is only possible to
calculate the values of the variables for one time step at each
iteration. In Fig. 2, we present the grammar used in this work
in Backus Naur Form (BNF), which is crucial for obtaining the
desired FDEs. One of the essential elements of this grammar is
the initial definition of the<func> expression, which establishes
that all expressions must follow the form G + <expr>, ensuring
that the resulting expressions are in the FDE form. Another
critical element is the <var> field, which includes individ-
ual variables (excluding G, which has already been included),

Fig. 2. Grammar used for ISIGE in BNF.

Fig. 3. Workflow diagram of our methodology. The stages represented
are: data acquisition, data preprocessing, data partitioning, clustering,
modelling.

first-order nonlinearities, and second-order nonlinearities. This
approach allows us to mimic the set of base functions used in
the SINDy algorithm. Using this grammar, we can effectively
generate diverse FDEs that describe the system behaviour and
make accurate predictions.

Evolutionary algorithms (EA) do not obtain a single solution
because they work with a set of solutions that reach the end of
the search or optimization process. Moreover, a pseudo-random
process needs several runs to obtain a robust solution. The ability
of the EA to obtain a unique solution depends on its ability to
obtain the global optimum, which is only sometimes possible.
The mechanism of EA to avoid local optima is the mutation
operator.

IV. WORKFLOW

Fig. 3 summarizes the workflow of the methodology applied
in this work. It consists on several steps, further described in this
section: data acquisition, data preprocessing, data partitioning,
clustering, modelling, testing and results comparison.

A. Data Acquisition

For this study, we used data from 24 participants of the
Hospital Universitario Príncipe de Asturias, Madrid, Spain. Two
different devices were used to obtain the raw data: A continuous
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Fig. 4. Representation of Berger and Bateman function.

glucose monitor (CGM) system (Free Style Libre sensor) and an
activity monitoring wristband (Fitbit Ionic). The CGM measures
interstitial glucose levels every 15 minutes, while the wristband
records data on calories, steps and heart rate at different time
frequencies.

In addition, information about insulin and carbohydrate in-
takes was recorded by two different methods depending on
the insulin administration mode. Participants wearing an au-
tomatic insulin continuous infusion system (insulin pumps)
obtain this information directly from the device (Medtronic
or Roche systems). Participants under multiple doses of in-
sulin (MDI) therapy recorded the information about basal in-
sulin, insulin boluses, and carbohydrate intakes using a mobile
application.

The data was recorded in free-living conditions. After a train-
ing session with the clinician staff, the participants estimated
the carbohydrate count of meals. We proceeded in this way
to replicate the real free-living conditions. The error in the
estimation is a limitation of this work. The Fitbit device was used
for passive collection of physiological during the daily living of
the subjects. Participants were trained to wear the Fitbit device
during the exercise, and inconsistencies in the data were curated
in the preprocessing step. Heart Rate is collected every minute
using the activity smartwatch. Heart Rate data is the average of
the 15 minutes. Hence we can capture the HR variations due to
exercise as an increment in this variable. Calories and steps were
also recorded every minute. We reconciled them with CGM data
by adding the values every 15 minutes. The participants provided
their written informed consent to participate in this study. The
study was aproved by the ethical comitee of Alcalá de Henares
Hospital, Madrid, Spain (Hospital Universitario Príncipe de
Asturias de Madrid), Protocol Number: EC/11/2018, Date of
approval: December 12th 2018.

B. Data Preprocessing

Several preprocessing steps had to be performed to use the
recorded data to model the blood glucose level. This includes
both cleaning as well as feature engineering.

1) Features for the Absorption of Carbohydrates and Insulin:
Since the dissolution of substances in the body occurs gradually,
we preprocessed both the reported insulin bolus and carbohy-
drate values using two functions to spread the uptake over mul-
tiple observations: the Berger function ((7) and Fig. 4(a)) [26]
and the Bateman function ((8) and Fig. 4(b)) [27].

The Berger function is

dA

dt
=

s · ts · (a ·D · b)s ·D
t · ((a ·D · b)s + ts)2

−A (6)

where A is the plasma insulin, D the dose, t the time after the
consumption, s the mean absorption rate and a and b are param-
eters to characterize dependency on D. We use the parameter
values s = 1.6, a = 5.2 and b = 41 [26].

The Bateman function is

c(t) = f · D
V
· ka
ka − ke

· (e−ka·t − e−ke·t) (7)

where ka is the absorption rate, ke the elimination rate, D the
dose, t the time since consumption, V the volume of distribution
and f the bioavailabilty. We used the parameter values ka = 0.1,
ke = 0.2, V = 0.5 and f = 0.5 [27].

Both functions convert an instant input such as the insulin
bolus as well as reported meals that the uptake of the substance
into the body does not take place abruptly but is distributed over
a longer period of time. It is difficult to estimate the errors caused
by the use of these equations. Several factors affect the variability
in the absorption and effect of insulin, representing also a source
of glucose variability and a challenge in insulin therapy. There
is “within-subject variability”, since differences exist from one
injection to another in the same person. This variability is the
sum of a pharmacokinetic component, determined by parame-
ters of equations 8 and 9 and a pharmacodynamic component,
determined by insulin’s metabolic effects. Moreover, the phar-
macokinetic component is also affected by the injection site,
and the exercise [28]. We selected the parameters of Humalog
Insulin that is still in the market and is the insulin used by most
of the participants of our cohort.

2) Time-Shifts: We added time-shifted features for the car-
bohydrates and the bolus values. The observations have a time
shift of thirty minutes to the past, and the data points are recorded
at fifteen-minute intervals.

3) Mean Values: Since the heart rate and steps measure-
ments every 15 minutes can change quickly, we smoothed them
using a moving average with a window size of 30 minutes (two
observations).

4) Creation of Segments: We define a segment as the period
of 2 hours before and after a reported meal (i.e. carbohydrate
input). Although prediction horizons of 4 and 8 hours are indeed
challenging, we are working on a postprandial scenario in this
paper. Predictions can be less accurate as the time horizon
advances. For postprandial prediction, 2 hours is the usual time
to evaluate whether the person needs a correction bolus or
not. Regarding the inputs of the models, in this work, we are
obtaining What if models that are useful for bolus calculations
and recommendations. If the future values of carbohydrates
and insulin dosing are not known, we would be in an agnostic
model which is more useful for night and no-prandial situations.
Segments may overlap if two meals are taken within a time
span of two hours. For each of those segments we check for the
following constraints:

1) Each of the parameter values for each time-step has to be
greater than 0.
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Fig. 5. Representation of glucose over time for clusters 4 and 10.

2) We only allow interpolated data up to one hour.
3) A change between time steps must not be more than 25%

of the previous value.
The amount of used segments per patient after the preprocess-

ing differs from 2 to 726, with a total of 1444 segments. Each
segment contains 17 data points for the data measured from 2
hours before to 2 hours after each meal.

C. Clustering

We used k-means clustering to cluster segments based on
the 2-hour window of glucose measurements before the meal.
We tried k ∈ 3, 5, 7, 9, 11, 13, 15, 17, 19 and selected k = 15
clusters where the intra-distance leveled off, and improved only
slightly for higher values of k. 100 random restarts where exe-
cuted and the cluster assignment with the best intra-distance was
used. To give an example of the clusters obtained, Fig. 5 shows
the blood glucose concentration for the segments in Clusters 4
and 10. Each graph shows the glucose value over time. We can
see how the behavior of the segments is similar for the first two
hours between the segments of the respective clusters, and it is
not until food intake, the red vertical line, that they begin to vary
to a greater extent.

D. Training, Validation and Test Split

For each one of the k clusters, a first division is made into two
groups, test with one-third of the cases and, on the other hand,
validation-training with the remaining two-thirds. This division
will be performed only once, and the same for all the techniques
in this article. The validation-training set is then divided into
validation, with one-third of the cases in the subgroup and the
rest for training. There are sufficient data to have a separate rep-
resentative test set and we therefore did not use cross-validation.

In Table II, we show the total number of cases for each cluster
and the division for training and testing.

E. Modeling

The process for obtaining the results is similar to the other
two techniques. In Fig. 6, cluster N is divided into subsets to
obtain the results for ISIGE. The process consists of three stages:
training, validation, and testing. During the training phase, 30
runs are performed, and the best model for each run is selected
based on the mean RMSE (MRMSE) for different segments. In
the validation stage, a single model is chosen, and in the testing
phase, we obtain the results of the technique. for cluster N. This

TABLE II
DATA PARTITIONING OF SEGMENTS PER CLUSTER

process is repeated for all clusters to obtain a model for each
cluster.

In addition to our proposal (ISIGE) and SINDy, we have
experimented ANNs. As we have already stated, blood glucose
prediction is an important and complex task, and ANNs have
been proven valuable tools in the last years. ANNs are among
the state of the art solutions for prediction of BG, however ANN
have not been approved by regulatory agencies yet for use in
automated insulin delivery (AID) systems. In a recent literature
review on glucose and hypoglycemia prediction methods using
data from real patients [3], the authors found that ANNs, par-
ticularly recurrent neural networks (RNN) and hybrid models,
performed well in predicting glucose levels. Moreover, many
software tools in different languages are available on the market,
and their use is increasingly ubiquitous in all kinds of problems,
making them a recommendable option for the problem of blood
glucose level prediction. In another study [5], the performances
of several neural network models were compared for predicting
blood glucose in patients with diabetes. Following the findings
of the previous study, we have chosen, for this work, three ANNS
models: Meijner [29], Mirshekarian [30], and Sun [31]. Based
on our experimental findings and comparative analysis, it was
determined that the ANN version developed by Mirshekarian
exhibited superior performance. Therefore, to clearly represent
ANNs, only the outcomes for the model of Mirshekarian will be
showcased for comparison with SINDy and ISIGE.

V. EXPERIMENTAL RESULTS

The methods studied in this work are ANNs, SINDy, and
ISIGE, and their performance is compared with a simple baseline
that is calculated by taking the mean of the glucose values at
each time step over the segments of the training set. In terms of
training times, SINDy is the fastest of the three. However, due to
the numerous tests with different parameters, its time increases
enormously. Regarding evaluation times, both SINDy and ISIGE
generate mathematical expressions with which large volumes of
cases can be evaluated quickly. The average execution time for
one training run for ISIGE on an Intel(R) Core(TM) i7-4770
with 32 GB RAM is 1.8 h. In the case of ANN, the average
times for Meijner, Mirshekarian, and Sun are 22.35, 15.09 and
37.16 seconds for one run, respectively. For SINDy one com-
plete configuration takes around 12.30 minutes on an Intel(R)
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Fig. 6. Generation of the results ε-Lexicase ISIGE for cluster N. Division of cluster N into training, validation and test sets used in the homonymous
phases.

TABLE III
MRMSE (MG/DL) FOR THE TEST SET FOR ALL METHODS AND CLUSTERS

TABLE IV
PARKES ERROR GRID ZONES

Xeon(R) CPU E5-2670 with 32 GB RAM, where more than
2700 different combinations of parameters are needed.

A. MRMSE Results

Table III shows the MRMSE in the test for each method and all
clusters. The MRMSE values of SINDy and SGE are lower than
the values for the mean prediction in most cases. The average
MRMSE in all clusters is 38.96 [mg/dL] and 37.79 [mg/dL],
respectively. The best values for each cluster and the best mean
are marked.

B. Parkes Error Grid Analysis

To measure the error of these techniques, we should not
only look at the MRMSE. Since we are dealing with a clin-
ical problem, it is necessary to take into account the clinical
consequences. An established method for assessing errors made
by blood glucose estimation or prediction systems is the Parkes
Error Grid (PEG), [32]. In the PEG the actual value of blood
glucose and the predicted values are plotted on a grid and
associated with risk levels. These levels go from A to E and
are described in Table IV.

TABLE V
PERCENTAGE OF PREDICTION / MEASUREMENT PAIRS IN THE PARKES

ERROR ZONES BY CLUSTER AND METHOD

For this work we use the version of PEG designed for
type-I diabetes [32]. In addition, Prediction-Error Grid Analysis
(PRED-EGA) [33] is a valuable tool for evaluating the accuracy
of glucose prediction models in the context of managing Type-1
diabetes. This analysis technique is derived from the earlier
continuous glucose-EGA [34], which has been demonstrated
as a reliable and robust method for assessing the precision of
glucose predictions concerning both nominal glucose values and
their corresponding derivatives or rates of change. PRED-EGA
comprises two essential components:

� Point-EGA (P-EGA): Point-EGA focuses on evaluating
the accuracy of the model’s predictions concerning nom-
inal glucose values. It provides insights into how well the
prediction model aligns with the actual glucose measure-
ments at specific points in time. This component helps
determine the model’s ability to produce predictions con-
sistently close to the actual glucose values.

� Rate-EGA (R-EGA): R-EGA is designed to assess the
model’s capability to characterize the derivative and rate
of change of glucose measurement values over time. It
is crucial for a better understanding of the rate at which
blood glucose levels are changing. Rate-EGA allows us to
evaluate how well the model captures and predicts these
changes in glucose levels, which is particularly important
for proactive interventions and maintaining stable blood
glucose levels.

Table V shows the percentage of cases in each of the zones
of the PEG, for each method and divided by clusters. Zone E
has been omitted, since its value was zero for all methods in all
clusters. Analyzing the results, most of the points are in zones A
and B in all the methods, with SINDy standing out as the method
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Fig. 7. Plot showing the PEG and Rate-EG for each method and all
clusters.

with the highest mean number of points in zone A, 59.0%, and
with a total of 92.4% when adding the means of zones A and
B. In addition, we must also highlight the results obtained by
ISIGE, achieving 93.6% in total for the sum of the averages of
zones A and B. As we move away from zones A and B, the
predictions made put the patient at greater risk, with C being not
very recommendable, D potentially dangerous, and E leading to
an erroneous and extremely dangerous treatment. In this aspect,
the models have an average percentage below 10% in zone C,
with SGE standing out with only 6.2%. In the case of zone D,
SINDy and ISIGE, are below 1.0%, with the lowest being ISIGE,
with an average of only 0.2% of the points in this zone.

Fig. 7 shows the PEG and Rate-EG error zones for all the
clusters and all methods. If we look at the subfigures of PEG,
7(a), (c) and (e), we can see that most of the points are located
between zones A and B. To a minor amount, we can find points
in zones C and D, particularly in the left zone of the grid. This
zone is related to the actual values associated with hypoglycemia
(values below 70), those predictions that give a high glucose
value being in this zone are potentially dangerous, so it is of great
interest to avoid these situations. On the other hand, it is easier to

detect hypoglycemic values compared to hyperglycemic ones.
Results obtained using Rate-EG are in subfigures, 7(b), (d),
and (f). In the case of SINDy and ISIGE, we can see that most of
the points are in section −1 1 of the y-axis, so we can interpret
that the models obtained generate predictions with a low rate
of change, having some difficulty in capturing abrupt changes
in measured glucose (zone D of the Rate-Eg). In the case of
the ANNs, more significant variability can be observed in their
predictions but with a greater volume of points in zones C,
D, and E. The interpretability of machine learning models is
a topic of significant interest, yet a consensus on its definition,
quantification, and measurement remains elusive. Complexity,
transparency, and the ability to be simulated are among the key
characteristics often associated with interpretability. However,
interpretations may vary depending on the perspective of the
evaluator, with mathematicians and healthcare professionals
likely to have differing opinions on the same model. In this study,
focusing on the healthcare domain, we specifically examine the
transparency of models as a crucial aspect of interpretability.
Based on the work of Lipton (2018) [35] and Belle (2021) [36],
three dimensions are proposed to analyze model transparency:
simulatability, decomposability, and algorithmic transparency.

� Simulatability refers to the capacity of the model to be sim-
ulated by a human, with simplicity and compactness being
key attributes. Simple and compact models are more likely
to fall into this category. However, it is essential to note
that more than simplicity alone is required, as an excessive
number of simple rules can hinder the ability of a human to
mentally calculate the decisions of the model. Conversely,
some complex models, such as neural networks without
hidden layers, may still exhibit simulatability.

� Decomposability entails breaking down the model into
interpretable parts, including inputs, parameters, and
computations, and subsequently explaining each compo-
nent. Unfortunately, not all models satisfy this property,
making it challenging to explain their inner workings
comprehensively.

� Algorithmic transparency focuses on understanding the
procedural steps employed by the model to generate its
outputs. Models that employ clear procedures, such as
similarity-based classifiers like K-nearest neighbours, ex-
hibit algorithmic transparency. On the other hand, com-
plex models like neural networks construct elusive loss
functions, and the solution to the training objective of-
ten requires approximation. Inspecting the model through
mathematical analysis is the primary requirement for it to
fall into this category.

Some models inherently possess one or more of these quali-
ties, making them candidates for transparent models. For exam-
ple, logistic/linear regression models used to predict continuous
and categorical targets, where the target is a linear combination
of variables, can be considered transparent due to their clear
modelling choices. However, to maintain transparency, such
models must be limited, and the variables used should be un-
derstandable to the intended users. The complexity of the model
is directly linked to its transparency. Even if a model satisfies
several transparency dimensions, a highly complex procedure
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TABLE VI
EXPRESSIONS FOR EACH CLUSTER USING ISIGE

or a large number of dimensions can render the model less
interpretable.

The definition of transparency by Lipton and Belle aligns
with the models obtained by SINDy and ISIGE, suggesting
their transparency and explainability. Evaluating the complexity
of these models confirms their interpretability, although SINDy
models with numerous terms may pose challenges in interpre-
tation due to the increased complexity introduced.

Table VI presents the expressions obtained by ISIGE for the
different clusters. Notably, a consistent element observed across
all expressions is the inclusion of G(tn) at the beginning. This
common occurrence arises from the grammar utilized during
the expression generation process, ensuring that all the expres-
sions obtained conform to the form of FDEs. By imposing this
starting point, the resulting expressions adhere to the desired
mathematical structure.

To facilitate comprehension of the expressions, they have
been simplified using the Python sympy library [37], which
enables a more accessible understanding of the obtained mathe-
matical representations. The employment of this library aids in
unraveling the complexity of the expressions and enhances their
interpretability.

The recurrent occurrence of the variable HR in the expressions
is interesting. Previous studies (Rothberg et al., 2016) [38], have
extensively investigated the correlation between heart rate and
blood glucose levels, establishing a solid connection between
these variables. Therefore, the presence of HR in the expressions
is justified, considering its established relationship with the
target variable. Additionally, it is worth noting that HR often
co-occurs with carbohydrate intake in the expressions. This
frequent association suggests a potential connection between
heart rate, carbohydrate intake, and the target variable. This
observation raises intriguing possibilities for future research, as
it could provide valuable insights into the relationship among
these variables. Further investigations in this direction may
be warranted to explore and uncover the significance of this
relationship. Furthermore, it is interesting to highlight that in
the solution of cluster number 8, the expression includes terms
for carbohydrate intake and HR, while the term for insulin bolus
is absent. This solution demonstrates satisfactory performance
due to the time series behaviour of the cluster. Nevertheless, this
finding calls for specialized clinicians to conduct in-depth stud-
ies and assess the validity and applicability of such a solution.
However, thanks to the transparency of the model, a healthcare
specialist could choose to replace this expression with another
one that obtained a good result in the validation phase.

The variables in the models are interpretable in both medical
and computational terms. However, the models do not neces-
sarily explain known situations, i.e., the physiological variables
that appear in a solution may not coincide with what is expected
according to classical compartmental models. By contrast, the
models can establish conclusions unknown to the medical staff,
i.e., a combination of variables that influence the evolution of
glucose, which would not be taken into account in a classical
model, may appear. Once the real influence of these variables
(or a combination of them) has been contrasted, it can lead to
novel medical conclusions.

VI. CONCLUSION AND FUTURE WORK

In conclusion, this paper proposes a novel approach to glu-
cose prediction in diabetes management that emphasises inter-
pretability: Interpretable Sparse Identification by Grammatical
Evolution (ISIGE). The proposed technique combines clustering
with ISIGE to obtain finite difference equations that predict
postprandial glucose levels up to two hours after meals.

In this study, we have employed data from 24 different par-
ticipants with diabetes mellitus type-I. The data were divided
into four-hour segments with two hours before and two hours
after a meal, i.e. carbohydrate intake. Clustering was performed
based on the blood glucose values for the two-hour window
before the meal, dividing the cases into 15 clusters. Forecasts
were calculated for the two-hour window after the meal. The
results of the newly proposed method are compared to SINDy
and artificial neural networks (ANN).

Using Parkes Error Grid to quantify the safety and robustness
of the predictions, the essential conclusions of this work are:

� Predictions produced by comparison methods (SINDy and
ANNs) are in zones A and B, indicating that the predictions
of these models are generally safe. ISIGE achieves 93.6%
predictions in zones A and B, which is the highest among
all methods.

� SINDy has the highest number of predictions (59%) in
zone A, and 92.4% in either zone A or B.

� All models have fewer than 10% of predictions in zone
C, with ISIGE standing out with only 6.2%. SINDy and
ISIGE have below 1.0% of predictions in zone D, with the
lowest being ISIGE, with an average of only 0.2%. None
of the studied methods has predictions in zone E.

� Although only few predictions are in zones C and D, they
represent a risk for participants and should be monitored.

We have used the mean of root mean square error (MRMSE)
to quantify the accuracy of the predictions. In this sense, the
conclusions are:

� The average MRMSE over all clusters is 38.96 [mg/dL]
for SINDy and 37.79 [mg/dL] ISIGE. The results indicate
that the models have different performance levels across
different clusters.

� Although ANN is one of the best-performing techniques
for glucose prediction and one of the most commonly used
methods in this field, in our study, both SINDy and ISIGE
obtained better results in most clusters.

Transparency plays a pivotal role in enhancing the inter-
pretability of machine learning models in the healthcare domain.
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By focusing on the dimensions of simulatability, decomposabil-
ity, and algorithmic transparency, we can assess and analyze the
transparency of models. Transparent models exhibit simplicity,
compactness, and transparent procedures, making them more
amenable to human understanding. The insights gained from
this study provide valuable guidance for future developments in
interpretability, helping to advance the explainability of machine
learning models in healthcare and beyond.

The use of personalized models that use longitudinal data
from one individual can be considered an alternative to the
“population” model and should be explored as future work.
In future versions of our proposal, we will devote part of our
efforts to optimizing the code, which can significantly reduce the
execution time by modifying certain aspects of the evaluation
linked to the tool. In this current research, we have explored the
application of K-means clustering to group pre-meal glucose
time series by their numerical values to aid in predicting future
blood glucose levels. This approach has proven effective in
identifying distinct patterns associated with glycemic control.
However, we acknowledge the importance of considering both
the value and shape of time series data for a more comprehensive
understanding of glucose dynamics. In future work, we intend
to focus on a combined clustering approach. In this line of
research, we would first group time series by their numerical
values to capture the range within which glucose values fluc-
tuate. Subsequently, we would apply a shape-based clustering
technique, such as K-shape [39], to further refine the clusters
based on the shape of the time series. This combined method may
offer a more refined and nuanced analysis of glycemic patterns,
potentially improving the accuracy of blood glucose prediction
models [40]. The transparency and explainability features of
the proposed technique hold great promise for addressing two
critical challenges in the field of healthcare monitoring systems,
such as the handling of missing data, or errors in continuous
glucose monitors [41]. This line of research deserves to be
further developed in the future. We conclude that ISIGE can
potentially assist diabetes clinicians in developing personalised
treatment plans for their patients, offering a promising alterna-
tive to traditional black-box models like ANNs.
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