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ξ-π: A Nonparametric Model for Neural Power
Spectra Decomposition

Shiang Hu , Zhihao Zhang , Xiaochu Zhang , Xiaopei Wu , and Pedro A. Valdes-Sosa

Abstract—The power spectra estimated from the brain
recordings are the mixed representation of aperiodic tran-
sient activity and periodic oscillations, i.e., aperiodic com-
ponent (AC) and periodic component (PC). Quantitative
neurophysiology requires precise decomposition preced-
ing parameterizing each component. However, the shape,
statistical distribution, scale, and mixing mechanism of AC
and PCs are unclear, challenging the effectiveness of cur-
rent popular parametric models such as FOOOF, IRASA,
BOSC, etc. Here, ξ-π was proposed to decompose the
neural spectra by embedding the nonparametric spectra
estimation with penalized Whittle likelihood and the shape
language modeling into the expectation maximization
framework. ξ-π was validated on the synthesized spectra
with loss statistics and on the sleep EEG and the large
sample iEEG with evaluation metrics and neurophysiologi-
cal evidence. Compared to FOOOF, both the simulation pre-
senting shape irregularities and the batch simulation with
multiple isolated peaks indicated that ξ-π improved the fit
of AC and PCs with less loss and higher F1-score in recog-
nizing the centering frequencies and the number of peaks;
the sleep EEG revealed that ξ-π produced more distin-
guishable AC exponents and improved the sleep state clas-
sification accuracy; the iEEG showed that ξ-π approached
the clinical findings in peak discovery. Overall, ξ-π offered
good performance in the spectra decomposition, which al-
lows flexible parameterization using descriptive statistics
or kernel functions. ξ-π is a seminal tool for brain signal
decoding in fields such as cognitive neuroscience, brain-
computer interface, neurofeedback, and brain diseases.

Index Terms—Power spectra, aperiodic, peaks, de-
composition, neural oscillation.
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I. INTRODUCTION

N EURAL oscillations are the repetitive or periodic activi-
ties centering frequencies, shaping the neuron extracellu-

lar field potentials and transmitting activities between neural
masses. Aperiodic and transient neural activities are ubiqui-
tously produced by the neural assemblies. The synchronous
activities by millions of neurons are macroscopically detectable
by intracranial Electroencephalography (iEEG), EEG, and other
brain recordings [1]. Although the neural underpinnings and
interpretation of periodic and aperiodic activity are significantly
different, the two activities constantly mix in brain recording
producing two typical shapes in the neural power spectra. The
1/f-like background spectra are the aperiodic component (AC)
attributed to the aperiodic activity, while the spectral peaks are
the periodic component (PC) reflecting the periodic activities.
Studying neural activities has to quantitatively characterize the
AC and PCs, such as the AC offset, slope and the PC center
frequency (CF), bandwidth, and amplitude [2]. AC has potential
applications in studying brain development [3], [4], [5], cogni-
tive performance [6], and psychiatric disorders, such as attention
deficit hyperactivity disorder [7] and schizophrenia [8]. The
studies on PCs help reveal the nature of cognitive processes
and the origin of brain dysfunction [9], [10], [11], [12]. The PC
parameters are closely related to the cognitive processes [1], the
pathological state [13], the brain aging [5], [14], and the brain
functions such as the vision with α rhythms [15], the motion
with μ rhythms [16], the attention with γ rhythms. Nevertheless,
the mixing of AC and PCs hinders the study of brain functions
correctly, requiring a precise and robust spectral decomposition
model.

Several models have been proposed for EEG/MEG spectral
decomposition, as shown in Table I. They can be distinguished
by the scale in which the spectra are fit: natural or logarith-
mic. ξ-α model adopts the Student’s t function to fit AC and
PCs in the natural scale, centering attention on a sole alpha
peak [17]. BOSC (Better OSCillation detection) detects the PCs
based on a chi-squared distribution and linearly fits the AC in
the log-log space assuming a 1/f form [18]. IRASA (Irregular
Resampling Auto Spectral Analysis) can estimate AC according
to the different robustness of fractal and periodic activities to
resampling but cannot isolate the peaks [19]. As a recent and
popular model, FOOOF (Fitting Oscillations & One Over F)
employs the Gaussian and the power law functions to fit the PCs
and AC in the log scale, respectively [20]. Further, adapted from
FOOOF, the SPRiNT (Spectral Parameterization Resolved in
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TABLE I
SUMMARY OF SPECTRAL DECOMPOSITION MODELS

Fig. 1. Spectral shape comparison between scalp EEG (left, 130 chan-
nels) and intracranial EEG (right, 123 channels).

Time) allows for the time-resolved spectral decomposition [21],
and the PAPTO (Periodic / Aperiodic Parametrization of Tran-
sient Oscillations) considers the spectral peak as arising from
transient events [22]. These models may be limited to incomplete
decomposition, parametric fitting with hard kernels, or log scale
transformation.

Although the shape, statistical distribution, scale, and mixing
mechanism of background and periodic spectral components
are not yet clearly understood, opinions can be drawn from
practices. Firstly, as shown in Fig. 1, the iEEG spectral shape
may be of greater diversity and present more peaks than the
scalp EEG/MEG spectra. The shapes of AC and PC may not
strictly follow the power law function and symmetry bell shape,
respectively. The left and right petals of a spectral peak may
be convex to CF. Two neighboring peaks easily overlap if their
CFs are close, where the parametric models may mistakenly
fit the two as one peak. Prior studies found that the AC may
be either scale-free activity or pink noise, complying with the
power law distribution [23]. Whereas the physical nature of 1/f
like AC is not yet determined, which may be modeled from the
1-order autoregressive process, the point process, the sum of
Lorentzians, or the avalanches in self-organized criticality [24],
[25], [26]. Thus, the shape of AC and PC may be irregular, with
the exact statistical distribution remaining unknown. Secondly,
the existing models are inconsistent in scale transformation.
ξ-α parametrizes the spectra in the linear power vs. frequency
space, BOSC detects the AC in the log-power vs. log-frequency
space, IRASA estimates the fractal component of power spectra
in the linear power vs. frequency space but fits the power
law in the log-power vs. log-frequency space, while FOOOF,
SPRiNT, and PAPTO decompose the spectra in the log-power vs.
frequency space. Inconsistencies of scale transformation imply
two fundamentally different mixing mechanisms of AC and PC:

additive and multiplicative modulations. The additive model
is the most parsimonious and viable option for decoding the
resting brain activity. The level of 1/f activity and alpha power
are not positively correlated, which is in line with the additive
but not the multiplicative model [27]. One should not apply log
or other nonlinear transformations to the power and frequency
before decomposition, avoiding under- or over-estimating the
parameters [28]. Overall, any bias to one component introduced
in parametric decomposition and nonlinear transformation will
contaminate the fit of other components. Misfit spectral compo-
nents will derive biased oscillatory parameters. This is critical
to practical inferences and theoretical interpretations in quanti-
tative neurophysiology.

To address the known issues, we designed a nonparametric
decomposition model following the natural scale and additive
mechanism, leaving parameterization as a subsequent step.
Since nonparametric models do not need to predetermine a
function but learn from data, they help fit the natural shape
characteristics, i.e. monotonicity for AC and unimodality for
PC. Several models may suit this problem, such as the shape
regression, the generalized additive models for location, scale,
and shape, the unimodal smoothing, and the shape-constrained
additive models [29], [30], [31], [32]. Besides, the unmixing step
isolates unknown components from power spectra. From the
view of Bayesian statistics, this step estimates the latent popu-
lation variances from observed sample variances, which may be
properly resolved in the expectation-maximization framework.

II. METHODS

A. Mathematical Basis of ξ-π

1) Decomposition: The power spectra estimate commonly
takes the smoothed periodogram or multitapers method by seg-
menting the recordings into quasi-stationary epochs that may
be segments, windows, or tapers elsewhere. Assuming the FFT
size equals N , the sampling rate is fs, the frequency resolu-
tion is Δf = fs/N . Note that the complex normal distribution
of Fourier coefficients is asymptotically independent across
frequencies due to the stochastic properties of finite Fourier
transforms [33], [34]. Thus for the segment s = 1, . . . , ns and
the frequency f = 1, . . . , nf , the Fourier coefficient yf,s ∈ C

1

is additive over multiple processes/components k = 1, . . . , nk

of brain activities, which is expressed as

yf,s = 1T
nk
bf,s + εf,s, εf,s ∼ NC(0, σε) (1)
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Fig. 2. Schematic flowchart of ξ-π. (a) Input spectra; (b) peak de-
tection; (c) initial decomposition using the Student’s t function; (d) re-
decompose spectra via E step; (e) fit individual components using SLM
via M step; (f) output the AC and PCs at the end of fitting. Spt: Spectra,
GF: global fit.

where 1n ∈ Rn×1 is a vector of ones, the Fourier coef-
ficients corresponding to multiple brain processes follow
a multivariate complex normal distribution bf,s ∈ C

nk×1 ∼
NC

nk
(0,Σf ), the model error is assumed with the constant

variance across frequencies, the diagonals of matrix Σf are
σf = [σf,1, . . . , σf,nk

]T , and the off-diagonal entries represent
the cross spectra between two different brain processes.

Estimating the population variance of (1) derives the mix of
variance components, i.e. the mixed power spectrum

cf = Σnk

k=1σf,k + σf,ε (2)

where σf,k ∈ R
1 is the power spectrum of the component k at

the frequency f .
The observed power spectrum pf is the sample variance over

finite segments, which approximates to cf

pf =
1

ns

ns∑
s=1

|yf,s|2 (3)

The spectral decomposition is to estimate the variance σf,k of
latent variables bf,s from pf . This is solved by the expectation-
maximization (EM) algorithm. The E and M steps take the
effects of ‘re-decompose’ and ‘individual fit’ accordingly as
shown in Fig. 2. The initial condition is defined as θ

(0)
f =

[σ
(0)
f,1, . . . , σ

(0)
f,nk

, σ
(0)
ε ]T where the σ(0)

f,k is generated by the Stu-

dent’s t function [17] as shown in Fig. 2(c), and the σ(0)
ε was set

to 0.01 for all frequencies.
In the E step, given the number of iterations i, the parame-

ter θ(i)
f = [σ

(i)
f,1, . . . , σ

(i)
f,nk

, σ
(i)
ε ]T and the pseudo mixed power

spectrum c
(i)
f produced in the M step, taking minimum norm

least square solution to estimate latent variables bf,s

E
θ
(i)
f

(b
(i)
f,s |yf,s ) = σ

(i)
f c

(i)
f

−1
yf,s (4)

which shows that the Fourier coefficient decomposition behaves
as Wiener filtering.

In addition, the pseudo power spectra of each component and
model error are

d
(i)
f,k = E

θ
(i)
f

(b
(i)
f,kb

(i)∗
f,k |pf ) = σ

(i)
f,k + (pf − c

(i)
f )c

(i)−2

f σ
(i)2

f,k

(5)

e
(i)
f = E

θ
(i)
f

(ε
(i)
f ε

(i)∗
f |pf ) = σ

(i)
f,ε + (pf − c

(i)
f )c

(i)−2

f σ
(i)2

f,ε

(6)

And utilizing the variance components model, the complete
negative log-likelihood is

lc =

nf∑
f=1

ns∑
s=1

{
log σ

(i)
f,ε + ε

(i)∗
f,s σ

(i)−1

f,ε ε
(i)
f,s

+ log
∣∣∣Σ(i)

f

∣∣∣+ b
(i)∗
f,s Σ

(i)−1

f b
(i)
f,s

}
(7)

In the M step, given the pseudo power spectra d
(i)
f,k and e

(i)
f ,

the Q function is

θ
(i+1)
f,k = argmin

θf,k

(log σf,ε + σ−1
f,εe

(i)
f + log σf,k + σ−1

f,kd
(i)
f,k)

(8)
The solution to this convex problem is the estimation of

spectra component σ(i+1)
f,k and decomposition error σ(i+1)

ε . Note
that the two parts in this Q function follow an identical structure
known as the Whittle likelihood [33], [34], [35]. Theoretically,
the Whittle likelihood holds statistical consistency to the spectra
density estimation [36], [37]. The Whittle likelihood [34] of the
spectral component is

lw = log σf,k + σ−1
f,kdf,k (9)

This allows estimating multiple spectral components in a non-
parametric way by incorporating the shape constraint detailed
in the Section II-A2. The spectra decomposition error for all
frequencies is estimated by taking average reference [38]:

σ(i+1)
ε =

1T
nf

nf
[e

(i)
1 , . . . , e(i)nf

]T (10)

2) Nonparametric Fitting: The estimation of σ(i+1)
f,k in the M

step is solved by the shape language modeling (SLM) based on
the cubic spline and shape priors [39], [40]. The priors from the
natural shape characteristics are monotonically decreasing for
AC and rising first to CF then falling for PC. The SLM lowers
uncontrollable flexibility of spline fitting by prescribing shape
priors into a set of shape primitives, performing better fit than
parametric models and nonlinear regression in a shorter time.
Here, the strategy behind SLM is in line with the penalized Whit-
tle likelihood as both are Bayesian approaches. In the M step,
the prescription is piecewise polynomial Hermite interpolation
jointing with different knots. Specifically, for AC fit, the number
of knots is set as nf/4, and the shape is set as monotonous
decreasing; for PC fit, the number of knots is set as nf/3, and
the shape is set as a simple peak.

B. Algorithm Implementation

The implementation of ξ-π has the following steps:
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a) Input spectra (Spt): Dividing the spectral values by their
maximum to benefit the generalizability of parameters set
for peak detection. The normalization removes the effect
of absolute magnitude and judges the peaks by the scale-
free shape properties.

b) PC detection: The PC detection is to isolate the prominent
peaks forming the concave shapes, which needs to localize
the spectral peaks and valleys. The MATLAB ‘findpeaks’
function is efficient in detecting peaks. The valleys are
detected from the up-down inverted spectra, i.e., the neg-
ative spectra. The parameters were set to: ‘min peakwidth,
0.9’, ‘min peakheight, 0.05’, and ‘min peakprominence,
0.025’.

c) Initial decomposition: Based on the leftmost maximum
and the first valley right near the maximum, the Student’s
t function was used to initially fit AC. Then it sequentially
took the next peak-valley pair to initially estimate PCs.

d) Re-decompose: All initialized components were submit-
ted to the EM algorithm, where the E step regenerates
pseudo power spectra of individual components ( (4) (5)
(6)).

e) Individual fit: The M step fits the individual component
using SLM. The (d-e) loop will be executed iteratively to
minimize the incomplete negative log-likelihood.

f) End of fitting: The iteration ends when the EM algorithm
iterates to a preset number of times or the Q function is
lower than the threshold.

C. Parameterization

Parameterizing the AC/PC helps quantify brain rhythms
and represent neural dynamics. ξ-π, as a nonparametric
model, allows flexible parameterization using user-preferred
models upon actual needs. For the model comparison and
evaluation in this work, the same function as FOOOF
was adopted to quantify decomposed AC/PCs by ξ-π,
that is

log pf = a1−log(a2 + fa3)︸ ︷︷ ︸
AC

+

nk−1∑
k=1

pk,1 exp

(
−(f − pk,2)

2

2p2k,3

)
︸ ︷︷ ︸

PC
(11)

where a1, a2, and a3 are the AC offset, AC knee, and AC
exponent, respectively. a2 = 0 if the AC knee is not ac-
counted for. In addition, PC is modeled by the Gaussian
function in the (11) where pk,1, pk,2, pk,3 stand for the max-
imum power, CF, and half of the bandwidth for the PC k in
the log scale. Note that the scale transformation is made for
comparison.

D. Simulation

Prior findings show that AC commonly exists over the global
brain but PC may merely exist over local brain regions [5],
[41], [42]. The time series and its spectra of the aperiodic
activity or the periodic oscillation with sole spectra peak can
be simulated, providing an objective standard to assess ξ-π. The
general scheme is synthesizing the AC and PCs separately and

then summing them as mixed spectra. The PC simulation follows
two different ways: 1) PC-resampling: pruning band-limited
periodic spectra with shape irregularities after the AC estimated
by IRASA was removed from real spectra; 2) PC-sine waves:
estimating the spectra from time series composed by a few
sine waves that differ in CFs for batch simulating spectra with
multiple isolated peaks.

1) AC: Either parametric or nonparametric models subjec-
tively adopted to simulate AC will later show biased favor to the
corresponding decomposition model in the validation process.
A theoretically valid approach is learning the AC prototypes
from real spectra by unsupervised learning. Thus, we randomly
selected a channel from the no-peak set consisting of 297 iEEG
channels detailed in the Section II-E2 [43] as the ground truth
AC as shown in Fig. 3(b).

2) PC-Resampling: As shown in Fig. 3(d), the simulation
of special cases aims to validate the decomposition effects on
the spectra that present a peculiar peak. Although the spectra
peak does not usually follow the strict symmetric bell shape,
there is no straightforward way to simulate the peculiar peak
by generating the time series first. Alternatively, the simulation
was done by learning from real iEEG activity, as shown in
Fig. 3(a). Firstly, IRASA was applied on the iEEG channels in
the precentral gyrus to estimate AC; secondly, the mixed PC was
isolated by subtracting AC from the original spectra; thirdly, the
PC with shape irregularity was obtained by pruning the lower
and higher frequencies. Finally, the three special cases of PCs
were simulated: (a) overlapping peak: the CFs of two peaks
were close so that the left slope of the peak with higher CF
rode on the right slope of the peak with lower CF, forming a
high amplitude valley between the two peaks. (b) skewed peak:
the left and right slopes of a peak were asymmetric around its
CF. The long tail on one side of the peak slopes made the peak
skewed toward the other side. (c) concave upward peak: the
left and right slopes of a peak were concave upward, forming a
sharp hat on the top.

3) PC-Sine Waves: Large samples of spectra were generated
through batch simulation for loss statistics and quantitative
comparison, as shown in Fig. 3(c). The number of peaks takes
the range of 0-5. The CFs are required to distribute in different
narrow bands and follow the priority of α(8-13 Hz), θ(4-8 Hz),
β(13-30 Hz), δ(1-4 Hz), γ(30-42 Hz). The priority of narrow-
band peak comes from the empirical probability of the peak
occurrence in a specific band. In addition, two peaks are avoided
from overlapping by setting two CFs distant at least 3 Hz. For
instance, when simulating a PC with 2 peaks, we randomly set
the CFs, one in the α band and the other one in the θ band.
Besides, the amplitudes of sine waves increase with the CFs
shifting from δ, θ to α and decrease with the CFs shifting from
α, β to γ. Finally, the 100 samples by 60 seconds of time series
were generated by the repetitive simulation.

4) Loss Statistics: Mean squared error (MSE): The MSE of
decomposed AC is expressed as:

MSEAC =
1

nf

nf∑
f=1

(pAC
f − σ̂AC

f )
2

(12)
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Fig. 3. Spectra simulation pipeline. (a) PC-Resampling: IRASA was applied to remove AC; then the skewed, overlapping, or concave upward
peak were pruned from mixed PC; (b) AC was randomly selected from the no-peak set (297 channels); (c) PC-Sine waves: mixing no more than 5
types of sine waves with CFs in different narrow bands; the priority of sine waves follows the order [α, θ, β, δ, γ]; the mixed PC was obtained after
estimating the spectra of mixed time series; (d) Synthesized Spt: Special cases – adding the PC from (a) to the AC; Batch simulation: adding the
PC from (c) to the AC.

where pAC
f is the simulated ground truth AC and σ̂AC

f is the
decomposed/fitted AC. The MSE of decomposed PC takes the
form:

MSEPC =
1

nf

nf∑
f=1

nκ∑
κ=1

(pPC
f,κ − σ̂PC

f,κ )
2

(13)

where the pPC
f,κ is the simulated ground truth of PC, σ̂f,κ is the

decomposed/fitted PC, and κ is indexing the peaks.
Number of peaks: The set number of peaks in batch simulation

is taken as the ground truth to check the decomposition effects
in PC detection. The number of decomposed PCs was counted
and compared with the simulated truth. The overestimation ratio
(OER) and the underestimation ratio (UER) are defined as

OER = nκ↑/nbs, UER = nκ↓/nbs (14)

where nbs denotes the total number of batch simulated samples,
andnκ↑(nκ↓) indicates the number of samples that detected more
(less) peaks than the set.

Identification of CFs: To quantify the PC detection, the fre-
quency bins of each simulated sample are labeled as ‘CF’ or ‘no
CF’ based on whether the frequency was set as a CF or not. Thus,
being CFs or not across the frequencies and repeated samples

forms the binary discrimination problem, allowing for the use
of model evaluation metrics such as accuracy, precision, recall,
and the F1-score.

E. Real Data and Analysis

1) Sleep State Classification Using CCSHS EEG: The open
Cleveland Children’s Sleep and Health Study (CCSHS) [44],
[45] database contains the polysomnography recordings from
515 teenagers. Each subject underwent the recordings of C3
and C4 electrodes lasting for 41 220 s. The data were segmented
into epochs with 30 s duration, inspected to manually remove
artifacts, and annotated as Wake, NREM-1(N1), NREM-2(N2),
NREM-3(N3), and REM states by trained technicians. Here,
the N2 was used to represent the NREM state because of its
overwhelming dominance compared with the N1 and N3, both of
which have short coverage and low occurrence [46]. The CCSHS
EEG was 0.5-50 Hz bandpass filtered.

For each sleep state, the C3 and C4 epochs from randomly
picked two subjects were concatenated into 10 mins recordings
by ignoring the differences across electrodes and subjects. The
data concatenation aims to later perform both time-varying
spectral decomposition and cross-subject/electrode sleep state
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prediction. Since the whole sleep recording is long enough, we
repeated this procedure sequentially in the time order without
using the same epoch twice to create multiple data collections.
The EEG recordings of 3 states by 10 mins by 19 collections
were prepared for sleep state classification. Hence, we finally
conducted 19 times of independent sleep state classification
experiments.

For the recording per state per collection, the time-varying
spectra were estimated by applying a 30 s sliding window with
50% overlapping, which yielded 39 windows. The time-varying
AC parameters, exponent and offset, were obtained after param-
eterization. Therefore, we obtained 39 pairs of time-varying AC
parameters per state per experiment. Later, the linear discrimi-
nant analysis (LDA) was performed to predict sleep state based
on the AC exponents [47]. The leave-one-out strategy was used
in cross-validation by partitioning the 39 windows as a training
set of 38 windows and a test set of 1 window and repeating 39
folds. Three LDA predictors were constructed for differentiating
the states of Wake-N2, Wake-REM, and N2-REM, respectively.
The distinguishability of AC exponents across states was further
evaluated through prediction accuracies.

2) Peak Discovery Using MNI iEEG: The open MNI iEEG
dataset was collected from 106 epilepsy patients (33.1 ± 10.8
yrs.) over multi-sites and curated by the Montreal Neurologi-
cal Institute and Hospital (MNI) [43]. In addition to epileptic
lesion regions, the healthy brain regions of individual patients
underwent the iEEG recordings for brain state monitoring and
clinical evaluation. Ethical approval was granted at the MNI
(REB vote: MUHC-15-950). Although the number of iEEG
channels planted into the healthy brain regions were different for
each patient, the 1772 channels accumulated from 106 patients
broadly covered the whole brain in the MNI space, providing
a spectral atlas of the human brain. The sampling rate was
commonly downsampled to 200 Hz. A 64 s segment was selected
from each channel, which contains no epileptic activity and other
artifacts. With the 1772 channels of iEEG, the decomposition
models were validated by the following metrics:

WLS: The weighted least square (WLS) measures the resid-
uals between the real spectra and the reconstructed global fit
(GF) summing over the decomposed AC and PCs. The smaller
the WLS, the better the model. The WLS is expressed as

WLS =

nf∑
f=1

gf

(
pf − σ̂AC

f −
nκ∑
κ=1

σ̂PC
f,κ

)2

(15)

where pf is the real spectra, σ̂AC
f and σ̂PC

f,κ are the decomposed
AC and PCs, and gf is the entry of a normalized weight vector
with relatively large values in the α, β and θ bands. The spectral
magnitudes vary considerably between low and high frequen-
cies, resulting from the typical characteristic of exponentially
decaying in magnitude across broadband. The gf was designed
as an elastic ruler to improve the reliability of the residual
calculation.
R2: The R2 is calculated by taking the square of the correla-

tion coefficient between GF and Spt. It indicates the similarity
between the GF and the original spectra.

Whittle likelihood: The Whittle likelihood as (9) takes the
form of negative log-likelihood which is a statistical measure to
indicate how the model is close to the data. Thus, the smaller
the Whittle Likelihood, the better the model.

Peak discovery proportion: The spectra decomposition dis-
covered the peaks and allowed counting the proportion of the
number of channels presenting a peak within a narrowband to the
total channel number in a brain region. The study [43] reported
that four brain regions presented the specific peak discovery
proportions after inspection by the clinicians. That is, 72% of
36 channels in the hippocampus have a delta peak at∼1 Hz; 68%
of 19 channels in the cuneus have an alpha peak at ∼8 Hz; 72%
of 39 channels in the opercular part of the inferior frontal gyrus
(OFG) have a beta peak at 20–24 Hz; 64% of 123 channels in the
precentral gyrus have a beta peak at 20–24 Hz. These findings
are taken as the empirical standard to assess the decomposition
effects on peak detection. After spectra decomposition, the peak
discovery proportion was counted for these regions and visually
validated for each channel.

III. RESULTS

A. Simulation Analysis

1) Special Cases With Shape Irregularity: Fig. 4 is the
demonstration of how ξ-π performed on three typical spec-
tra with peculiar shapes. As to ‘overlapping’ in Fig. 4(a),
although both models found 1 AC and 2 PCs, ξ-π enabled
fitting the AC and 2 PCs with good coincidence and align-
ment as to the original Spt and the CFs, while FOOOF un-
derfitted the AC and the overlapping peak with a major peak
and a minor peak which was just the low amplitude tail in
the original Spt. The AC and PC fit showed clearly that ξ-π
can fit the original Spt with high coincidence, but FOOOF
fitted the AC much lower than the spectra at very low fre-
quencies and failed to fit the overlapping peak by mixing two
Gaussians.

In terms of ‘skewed’ in the Fig. 4(b), ξ-π decomposed Spt
into 1 AC with good coincidence and 1 PC with the low ampli-
tude long tail being underfitted, but FOOOF failed to fit the AC
at very low frequency and fitted the sole skewed peak with two
peaks. The AC fit shows that the AC decomposed by ξ-π may not
exponentially decay to zeros at high frequencies, and FOOOF
fitted much higher than the spectra at very low frequencies. The
PC fit displays that ξ-π generally coincided with the ground
truth PC except for the long tail with low amplitude and high
frequencies, but FOOOF fitted higher amplitude than the ground
truth peak, shifted the CFs toward higher frequency, and did not
fit the right slope of the PC.

Regarding ‘concave upward’ in Fig. 4(c), ξ-π enabled to
fit the original shape of ground truth AC and PC, but FOOOF
overfitted the AC at very low frequencies and decayed fast to
zeros, although the ground truth AC were non-zeros and FOOOF
failed to fit the ground truth PC with high peak amplitude and
shifted CF toward lower frequency.

Thus, ξ-π was good at keeping the natural shape charac-
teristics, although the shape may be extraordinary, whereas
FOOOF may bring about extremely high amplitude in very low
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Fig. 4. Special cases with shape irregularity. (a) Overlapping peak; (b) Skewed peak; (c) Concave upward peak. The 1-2 columns display the
decomposed individual components. The 3-4 columns are the AC fit to the ground truth AC and the composite PC fit to the ground truth PC by
summing over the individual PCs. Spt: simulated spectra; All the plots are the power against the frequency(Hz) in the natural scale.

frequency, decay exponentially to zeros in AC fit, and fail to fit
the peak shape even shift the CFs in the PC fit.

2) Batch Simulation and Loss Statistics: Fig. 5(a) displays
the distribution of set CFs in batch simulation. For each row,
the grids in color are the set CFs in a simulated sample,
and the number of grids is the same as the number of simulated
peaks. The number of peaks and the distribution of the CFs were
different for each simulated sample. Fig. 5(b) compares the peak
number between the simulation and the fit. As to columns from
left to right, the preset number of peaks is [0, 1, 2, 3, 4, 5]. The
number of simulated samples with a preset peak number was
[19, 17, 17, 11, 18, 18] correspondingly, which equaled the sum
of bubble sizes in the same color within a column. The bubbles
along/above/below the diagonals indicate the proper/over/under
estimation of the peak number, respectively. The OER (UER)
of ξ-π and FOOOF were 0% (7%) and 47% (30%). This means
that ξ-π is reliable in recognizing the peak number; FOOOF may
not only easily detect more peaks but also neglect more peaks
than ξ-π.

Table II is the loss statistics of decomposition models for
fitting AC/PCs and CF identification. The mean ± deviation of
LogMSE in AC (PC) fit was 0.78 ± 1.46 (0.89 ± 1.41) for ξ-π

TABLE II
LOSS STATISTICS OF BATCH SIMULATION

and 2.98 ± 1.25 (1.49 ± 1.26) for FOOOF. For both AC and
PC, ξ-π generally had much less MSE than FOOOF; especially,
the LogMSE increment from ξ-π to FOOOF in fitting AC was
more obvious than that in fitting PC; the LogMSE of ξ-π did not
show much difference between AC fit and PC fit, whereas the
LogMSE of FOOOF in AC fit was higher than that of FOOOF
in PC fit. This may indicate that ξ-π is generally better than
FOOOF in terms of the fitting error and the stability in AC and
PC fit; FOOOF may generally have a larger fitting error than
ξ-π, and the AC fit using FOOOF usually produced larger error
than the PC fit. Besides, ξ-π achieved generally correct iden-
tification of CFs with accuracy(Acc) 99.86%, precision(Prec)
100%, recall(Rec) 97.15%, and F1 98.56%.
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Fig. 5. Set CFs and comparison of peaks number. (a) The set CFs
in batch simulation; (b) The number of fit peaks vs. the number of
simulated peaks; the bubble radius positively correlates with sample
size.

B. Validation From Real Data

1) Sleep State Classification Using CCSHS EEG: Fig. 6(a)
is the decomposed AC and the power law fit to the C4 spectra
of subject 1800001 at the wake-N2-REM sleep state. Unlike
FOOOF inherently adopted the power law function and obtained
the AC exponent simultaneously, ξ-π only obtained the AC after
decomposition. The power law function was applied subsequen-
tially to the ξ-π decomposed AC so as to obtain the AC exponent.
Hence, the left and middle plots displayed the decomposed AC
and further power law fit to the ξ-π decomposed AC corre-
spondingly, whereas the right plot showed the AC directly fit
with the power law function by FOOOF. The comparison be-
tween the left and the right plots clearly showed that ξ-π could
keep the natural shape characteristic of three sleep states by ig-
noring the low amplitude loss at high frequencies, while FOOOF
only fitted the rough trend with a linear decreasing function in
the log-log scale.

In addition, the comparison between the middle and the right
plots indicated that all the included angles of wake-N2, N2-
REM, and wake-REM derived from ξ-π were greater than that
from FOOOF, meaning the greater distances of AC exponents
within any pair of sleep states. This can be confirmed from that
the AC exponents of wake, N2, and REM by ξ-π and FOOOF

were 0.784, 2.077, 2.547, and 0.866, 1.813, 2.199, respectively.
Thus, Fig. 6(a) illustrated that ξ-π yielded greater interstate
differences of AC exponents, resulting from a better fit than
FOOOF.

Fig. 6(b) shows the violin plots of AC exponents of three sleep
states. The AC exponents generally showed an increasing trend
from wakefulness to N2 and then to REM for both models. This
meant that the AC exponent was positively associated with sleep
depth, which was in line with the previous findings [46].

The independent sample t-test was made to measure the
interstate difference of the AC exponent, which followed the
way of measuring the interclass distance of features in a clas-
sification task, reflecting the interclass distinguishability. Based
on ξ-π, the two p values for the pair ‘wake-N2’ and the pair
‘N2-REM’ were <0.001 (***), while based on FOOOF, the
p values of the pair ‘wake-N2’ and the pair ‘N2-REM’ were
>0.001 but <0.01 (**). This proves that ξ-π helped improve
interstate distinguishability using the AC exponent. ξ-π may
be an effective method in EEG biomarker extraction for sleep
staging studies.

Fig. 6(c) shows the LDA prediction accuracy using AC expo-
nents to discriminate sleep states. In each bar plot, the mean
accuracy and the standard deviation were estimated over 19
collections. The mean accuracies of ξ-π vs. FOOOF were 83.47
± 17.22% vs. 79.73 ± 18.28% for Wake-N2, 98.43 ± 2.67%
vs. 96.33 ± 6.08% for Wake-REM and 84.46 ± 18.11% vs.
81.68 ± 21.48% for N2-REM. The independent sample t-test
was performed on the accuracies of 19 collections between
ξ-π and FOOOF. The p values within each pair of ‘Wake-N2’,
‘Wake-REM’ and ‘N2-REM’ were all<0.05. This indicated that
the prediction accuracies based on ξ-π were significantly higher
than that based on FOOOF. Besides, the standard deviations of
accuracies over 19 collections based on ξ-π were all less than that
based on FOOOF. Hence, Fig. 6(c) meant that ξ-π was stabler
and significantly more accurate than FOOOF in predicting sleep
states.

2) Peak Discovery Using MNI iEEG: Fig. 7 illustrates spec-
tral decomposition on an iEEG channel from the middle tem-
poral gyrus randomly picked from the MNI iEEG dataset. Each
subplot displayed the decomposition with individual compo-
nents and its ‘log-log’ plot which showed the GF but omitted
the PC. The raw spectra mainly contained 1 AC and 1 PC that
was slightly skewed and concave upward. ξ-π decomposed the
raw spectra into 1 AC and 1 PC, whereas FOOOF decomposed
the raw spectra into 1 AC and 2 PCs.

The AC fit by ξ-π generally followed the monotonically
decreasing trend and had well coincidences in <8 Hz low
frequencies, while the AC fit by FOOOF only roughly cap-
tured the real AC trend but missed the fit in low (<4 Hz)
frequencies and the local details at 10–30 Hz. The PC fit by
ξ-π was only one component, all under the raw, and nearly
kept the peak shape, while the PC fit by FOOOF were two
Gaussian curves. The major PC by FOOOF showed an even
larger bandwidth and a CF slightly shifted toward high fre-
quency, compared to the raw peak, and the minor PC by FOOOF
seemed to overfit in the frequency range where no peak existed
actually.
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Fig. 6. Sleep state classification using AC exponent. (a) An illustration of AC fit to estimate AC exponent in decomposing the Wake-N2-REM
spectra. (b) Violin plots of AC exponents under the Wake, N2, REM states, and the interstate statistical significances of AC exponents. (c) The
prediction accuracies. *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Fig. 7. Illustration of spectral decomposition on an iEEG channel from the middle temporal gyrus. Spt: spectra; AC: aperiodic component; PC:
periodic component; GF: global fit.

The GF difference between ξ-π and FOOOF can be inspected
from the log-log plot. The GF by ξ-π generally coincided with
the Spt and the tiny fit error in the high frequency >20 Hz can
be neglected. Nevertheless, the GF by FOOOF hardly fitted the
Spt. The fitting error of GF by FOOOF would be more apparent
after the log scale was back-transformed to the natural scale.

Besides, Table III shows the comparison quantified by the
evaluation metrics with the mean (± standard deviation) over

1772 channels of iEEG. The LogWLS of ξ-π with −0.8 ± 1.5
were generally much lower than that of FOOOF with 1.9 ±
1.4. The R2 of ξ-π with 0.9976 ± 0.0079 was generally higher
than that of FOOOF with 0.9867 ± 0.0109. And the Whittle
likelihood of ξ-π with−212.88± 182.13 were generally smaller
than that of FOOOF with −201.01 ± 117.28. It was found that
ξ-π had a lower Whittle likelihood than FOOOF for 97.2%
channels, meaning the superiority of ξ-π.
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TABLE III
LOSS STATISTICS ON MNI IEEG

TABLE IV
PEAK DISCOVERY PROPORTION

The empirical standard from the resting MNI spectra atlas
summarized in the Section II-E2 were filled in the Table IV
together with the reported proportion by decomposition models.
For hippocampus (δ peak) and cuneus (α peak), although both
models derived lower proportions than the empirical standard,
ξ-π was closer to the empirical standard with 5.34% increment
on average than FOOOF. For the OFG and the precentral gyrus,
ξ-π detected 16.74% less and 3.48% more peaks than the
empirical standard, respectively; whereas FOOOF reported the
existence ofβ peak in almost all channels, which was far from the
standard. Except that ξ-π found 6 more channels in the OFG (36
channels) presenting δ peak than the empirical standard, the peak
discovery by ξ-π nearly approached the clinical finding with a
3.67% deviation on average for the other three brain regions.

Hence, ξ-π was generally much closer than FOOOF to the
empirical standard in peak discovery. FOOOF was not as good
as ξ-π at detecting peaks in the low-frequency range, such as δ
and α peaks, and much more sensitive than ξ-π to detect the β
peaks even if no β peak existed. The high sensitivity of FOOOF
in detecting β peaks validated the high OER found in the section
III-A2. Both loss statistics and the validation against the clinical
evidence suggest that ξ-π was effective.

IV. DISCUSSION

The advantages of ξ-π were summarized as follows: 1) Great
robustness to irregular shape. ξ-π would perform well by
following the natural shape characteristics without the restriction
of kernel functions. When the spectra have multiscale AC, the
AC exponent heavily depends on the frequencies [19], [48],
[49]. The spectra may often present shape irregularities when
working with invasive brain recordings, such as two close CFs
as shown in Fig. 4(a) [50]. 2) Flexible parameterization. ξ-π
precisely decomposes the spectra as the first step and then
offers the chance of flexibly using the descriptive function to
users for parameterization [51]. Based on the individual PCs,
the amplitude, bandwidth, and CF are easily measurable with
descriptive statistics where kernel functions may be unnecessary.
3) Natural scale. The natural scale helps display the prominence
and predominance of PCs fairly for both low-frequency and

high-frequency PCs, refraining the model from being more
sensitive to the high-frequency low-amplitude peaks that will be
magnified in the log scale [52]. As a counterexample, FOOOF
detected peaks that may not exist in the β band, as shown in
Table IV. The scale transformation not only matters the visual
prominence of PCs but also determines the mixing mechanism.
The additive mechanism in the log scale equals to the multiplica-
tive mechanism in the natural scale. 4) Additive mechanism.
ξ-π fits in the natural scale using the additive mechanism, helping
for interpretation. The additive mechanism is the most parsimo-
nious and viable option for decoding resting-state activity and
most event-related activities. The level of 1/f activity and alpha
power are not positively correlated within participants, in line
with the additive but not the multiplicative mechanism [27]. The
multiplicative mechanism should not be used because it involves
nonlinear operations and problematic assumptions [27], [53].
The multiplicative mechanism may be only reasonable when
the same underlying source in processing event-related brain
activities perfectly couples with the baseline AC and the narrow-
band PC caused by experimental stimuli. It is the multiplicative
mechanism used in FOOOF that will greatly enlarge the fitting
error and interfere with the individual fit.

The utilization of ξ-π should take care of the following points.
1) Uncertainty in the spectral estimate. Depending on the
method used to estimate the power spectrum and the amount
of data used, there may be spurious peaks resulting from noise
or obscured peaks due to spectral bias. Before the spectral
estimation, we recommend the users clean the recordings by
manually selecting the quasi-stationary noise-free epochs or
adopting the advanced preprocessing tools [54], [55] and novel
quality control measures as proposed in [56], [57]. The Welch’s
window smoothing method, the mutitapers approach, and the
autoregressive model can make the spectrum smooth [58], [59],
[60]. Since the multitapers approach is a frequency-specific
method and insensitive to weak noise, it can be a good choice
to characterize the neural oscillations [61]. 2) Non-sinusoidal
neural oscillation. The sinusoidal assumption in the Fourier
spectra may generate spurious PCs because of the raise-decay
asymmetry of non-sinusoidal oscillations [28]. Non-sinusoidal
periodic signals may have various waveform shapes that are
ununimodal [62], [63], [64]. Non-sinusoidal waveforms resulted
in the harmonics with multiple PCs appearing in the spectral
curve. ξ-π will identify all PCs without bias to any of them
purely based on thresholds in the ‘PC detection’ step. After
decomposition, the harmonics can be determined by: (a) CFs
are equidistant, such as f0, 2f0, 3f0, 4f0; (b) the maximum
amplitudes of PCs decrease with the CFs getting larger. The
existence and the operation of harmonics come to the individual
PCs. For instance, the interpretation of PCs can be mainly
ascribed to the fundamental PC at f0. Since the non-sinusoidal
waveforms are stereotyped, ξ-π can be extended with a directory
of non-sinusoidal basis functions, the matching pursuit algo-
rithm, the empirical mode decomposition, and applied together
with the evaluation of cycle properties [63]. The cross-frequency
coupling analysis may help disassociate the harmonics and the
non-harmonics [65]. 3) AC knee vs. Weak PC. The following
two situations may be obscured to lower the identifiability of AC
and PCs. Weak PC: the AC slope obscures the left side of a weak
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PC that doesn’t clearly show a local maximum, making the left
side of PC appear as a flattening of the AC slope; AC knee: the
AC may have a lower slope to the left of a spectral knee and a
higher slope to the right [23], [48], [66]. It is indeed possible that
the weak PC and AC knee compromise each other. However, the
discussion about the AC knee and weak PC that interferes with
the AC slope only makes sense in the log-log scale. ξ-π doesn’t
work with the log-log scale but only performs the fitting on the
natural scale. As the first step of ξ-π, the ‘PC detection’ is the key
to its identifiability of AC and PCs. The ‘PC detection’ mainly
adopts the MATLAB “findpeaks” routine, which identifies peaks
by a few preset thresholding parameters. In the case of weak PC,
the weak PC becomes more prominent in the natural linear-linear
scale than that in the log-log scale. If the local maximum of a
weak PC can be detected by “findpeaks”, then ξ-π can identify
the PC and finally output the PC fit. Otherwise, if the maxima of
weak PC don’t exist in the natural scale after being mixed with
AC, it becomes impossible for “findpeaks” to identify a local
maximum even though the thresholding parameters are finely
tuned. In the case of AC knee, the spectral curve is only AC
with varying slopes and knee. No matter in the log-log scale or
the natural scale, it is a monotonically decreasing function. The
ξ-π model will fit the AC knee with a monotonically decreasing
function based on the shape language modeling (SLM). In
the case of “AC knee vs. Weak PC”, the identifiability of ξ-π
model relies on (a) the existence of a local PC maximum; (b)
whether the local PC maximum can be found by the “findpeaks”
function in the ‘PC detection’ step. ξ-π is currently a data-
driven dominant approach based on the shape characteristics.
The determination of AC knee without a local maximum can
be taken as a prior that ξ-π may fit a minor PC around knee
location in natural scale. More importantly, ξ-π can be updated
to a biophysically model-driven approach by incorporating more
neurophysiological priors relating to neural oscillation, such as
the synaptic firing mechanism and the neural field theory.

The limitations and outlook are: 1) ξ-π can be extended
with the brain connectivity, the electrophysiology source imag-
ing [67], and the dynamic spectra decomposition [21]. 2) Note
that the main goal of this paper was to propose the nonparametric
model ξ-π and demonstrate its superiority in decomposition and
fitting. The parameterization on the AC exponent and the CFs of
PC provided additional supportive evidence. Complete investi-
gation on parameterization is beyond the current scope, which is
worthy of being excavated through quantitative neurophysiology
studies in the future.

V. CONCLUSION

This study presented ξ-π as a nonparametric model to address
the issues in dealing with shape irregularities, statistical distribu-
tion, and scale transformation and to resolve the spectral mixing
problem of multiple neural oscillatory processes. Its advantages
were demonstrated with elaborated simulation, together with the
sleep state classification and the peak discovery studies through
neurophysiological evidence. Its applications may be exten-
sively explored in cognitive neuroscience, mental disorders,
brain-machine interface, etc. The MATLAB packages and tuto-
rial are freely available at https://github.com/ShiangHu/Xi-Pi.
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