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Abstract—Type 1 diabetes mellitus (T1DM) is character-
ized by insulin deficiency and blood sugar control issues.
The state-of-the-art solution is the artificial pancreas (AP),
which integrates basal insulin delivery and glucose mon-
itoring. However, APs are unable to manage postprandial
glucose response (PGR) due to limited knowledge of its
determinants, requiring additional information for accurate
bolus delivery, such as estimated carbohydrate intake. This
study aims to quantify the influence of various meal-related
factors on predicting postprandial blood glucose levels
(BGLs) at different time intervals (15 min, 60 min, and 120
min) after meals by using deep neural network (DNN) mod-
els. The prediction models incorporate preprandial blood
glucose values, insulin dosage, and various meal-related
nutritional factors such as intake of energy, carbohydrates,
proteins, lipids, fatty acids, fibers, glycemic index, and
glycemic load as input variables. The impact of input fea-
tures was assessed by exploiting eXplainable Artificial In-
telligence (XAI) methodologies, specifically SHapley Addi-
tive exPlanations (SHAP), which provide insights into each
feature’s contribution to the model predictions. By lever-
aging XAI methodologies, this study aims to enhance the
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interpretability and transparency of BGL prediction mod-
els and validate clinical literature hypotheses. The findings
can aid in the development of decision-support tools for
individuals with T1DM, facilitating PGR management and
reducing the risks of adverse events. The improved under-
standing of PGR determinants may lead to advancements
in AP technology and improve the overall quality of life for
T1DM patients.

Index Terms—Predictive models, postprandial blood
glucose response, machine learning, explainable artificial
intelligence, interpretability, meal-related features.

I. INTRODUCTION

TYPE 1 diabetes mellitus (T1DM) is an autoimmune disor-
der characterized by the destruction of pancreatic β-cells,

inadequate insulin production, and compromised glycemia reg-
ulation [1]. As a result, the primary objective in T1DM manage-
ment is achieving glycemia control via exogenous insulin admin-
istration. The accurate determination of insulin dosage at specific
time points presents a significant challenge, as patients face
fluctuations in metabolic needs [2]. Recent years have witnessed
remarkable technological advancements with the emergence of
closed-loop systems, commonly known as the artificial pancreas
(AP). These innovative systems aim to replicate physiological
insulin release through automated, glucose-responsive insulin
delivery. Comprising an insulin pump, a continuous glucose
monitor (CGM), and a control algorithm built on heuristics and
theoretical knowledge, the AP systems are designed to optimize
glycemia control by minimizing both hyperglycemic and hypo-
glycemic episodes [3]. In spite of their successful automation
of basal insulin delivery, AP systems encounter challenges in
efficiently addressing postprandial glucose regulation (PGR), a
critical concern for individuals with T1DM who must manually
determine the preprandial insulin dose based on meal informa-
tion [4].

To overcome this challenge, the integration of innovative
decision support algorithms into T1DM therapy can poten-
tially facilitate PGR management. Advanced methods of ar-
tificial intelligence (AI), specifically machine learning (ML),
focusing on predicting future blood glucose levels (BGLs) of-
fer a potential approach for improving diabetes treatment and
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mitigating adverse events [5], [6]. Existing literature highlights
the potential of ML-based approaches, including artificial neural
networks, to predict future BGLs, enabling early detection of
hypo- and hyperglycemic events, and optimizing insulin ad-
ministration [6], [7], [8]. This knowledge can be integrated
into closed-loop systems, like AP, to improve insulin delivery
adequacy. However, predicting BGLs remains challenging due
to various factors beyond insulin infusions, including meal
intake, physical activity, sleep patterns, and emotional states,
which impact real glucose signals [9]. Despite the importance
of these factors, there is a scarcity of models that incorporate
them into their framework, also considering the lack of real
data availability. Prior studies [10], [11] investigated the role of
nutritional factors as input components in forecasting post-
prandial BGLs over various prediction horizons (PHs). These
reported a significant impact of nutritional factors on the pre-
dicted BGLs, with increasing PHs showing more influence.
Nonetheless, the aforementioned works, as the majority of BGLs
prediction models in the literature, lack interpretability, render-
ing them as black boxes for ML scientists, healthcare practi-
tioners, and patients. Indeed, in the field of decision-support
models for medicine, there is a growing demand for transparent
models capable of generating dependable and interpretable pre-
dictions [12]. In this regard, eXplainable Artificial Intelligence
(XAI) has emerged as a crucial research area. XAI encompasses
a range of techniques and methodologies with the primary
objective of providing human-understandable explanations for
the decisions and predictions generated by AI models [13], [14].
As a result, various methodologies and algorithms have been
developed to unveil the inner workings of AI models and their
decision-making processes [15].

Within this context, the present study aims to investigate
the impact of specific input features on BGLs prediction by
employing XAI methodologies. To achieve this objective, a
postprandial BGL prediction model is proposed, having as fea-
tures BGL values, the quantity of insulin administered during
mealtime, microboluses of insulin provided by the AP system
before the meal, as well as meal-related attributes (e.g., intake
of energy, carbohydrates, proteins, lipids, fatty acids, fiber,
cholesterol, glycemic index, and glycemic load). This inves-
tigation specifically involves the development of three distinct
prediction models, with PHs of 15 min, 60 min, and 120 min
after the meal. To assess the influence of each input feature and
to confirm clinical evidence on the importance of nutritional
factors, the SHapley Additive exPlanations (SHAP) approach
is exploited [16]. In this regard, it is worth mentioning that the
aim of this research is the assessment of the relative influence
of various nutritional factors, and not towards the development
of an advanced predictive model for glucose levels. Thus, in the
proposed approach, the predictive model serves as a means to
an end, rather than the primary object. According to our current
understanding, the comprehensive impact of various nutritional
factors on BGLs in T1DM appears as not thoroughly addressed
with respect to XAI, but only from a clinical point of view, in
the existing literature [17], [18], [19].

The work is structured as follows. Section II presents a
thorough literature review on ML-powered BGL prediction
systems and XAI applications, highlighting the current state of

TABLE I
PREDICTION PERFORMANCE COMPARISON IN CURRENT LITERATURE. PH

[PREDICTION HORIZON], RMSE [ROOT MEAN SQUARED ERROR]

knowledge and gaps in the field. Sections III and IV outline
the methodology employed, including data collection and study
design. Section V reports the obtained results, providing detailed
insights into the measured parameters and their significance.
Building upon this, Section VI presents a comprehensive dis-
cussion, interpreting the findings within the context of existing
diabetes management strategies. Finally, Section VII summa-
rizes the key findings and paves the way to future works.

II. RELATED WORKS

In recent years, ML has disclosed new perspectives in AP
systems, providing the opportunity to successfully extract
knowledge from data. Particularly, ML methodologies focused
on predicting future BGLs have emerged as a promising ap-
proach for empowering individuals with T1DM [6], [9], [20],
[21], effectively addressing the limitations associated with ad-
verse events [5]. In the literature, several ML-based strategies,
such as deep neural networks (DNNs), have demonstrated po-
tential in BGL prediction and early detection of hypo- and
hyperglycemic events, leading to improved preprandial insulin
administration. In particular, numerous studies have investigated
BGL prediction using different neural network models, includ-
ing Feed Forward Neural Network (FFNN) [10], [22], [23],
[24], Long Short Term Memory (LSTM) [25], [26], [27], [28],
[29], [30], and Convolutional Neural Network (CNN) [31], [32].
Although these ML models achieve satisfactory performance
in predicting BGLs (see Table I), their lack of interpretability
remains a significant issue [33].

Indeed, in the field of medical ML research, an ongoing debate
revolves around the importance of transparent models capable
of producing reliable and interpretable predictions [34]. The
process of defining a medical problem that can be effectively
addressed through ML, acquiring relevant data, cleansing the
data, and refining the ML model to achieve optimal perfor-
mance still requires substantial effort. As a result, researchers
often overlook or neglect the incorporation of explainability
methods. However, there has been a noticeable surge in the
number of scientific papers focusing on several applications of
XAI, such as image classification [35], [36], [37] and natural
language processing [35], [38], [39]. Surely, in recent years, the
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Fig. 1. Pipeline of the proposed approach. Data from 15 T1DM patients are selected from the dataset and filtered to reduce noise. Eight statistical
attributes are computed from the preprandial glycemic history and considered input features along with preprandial glycemic values, administered
insulin, and meal-related factors. For each of the three PHs, a fully-connected DNN model is optimized via a grid search of hyperparameters and
validated using the LOSO-CV strategy. Then, the top-performing model is subjected to the XAI method for output interpretation. Shapley values are
computed for all input features to evaluate their influence on the prediction.

healthcare domain has also been affected, especially involving
biomedical [40] and tabular data [34]. This growing interest
is motivated not only by the necessity of explaining existing
black-box models and developing interpretable white-box mod-
els, but also by the critical importance of proactively addressing
concerns related to discrimination and biases within datasets
and model training [33], in order to prevent disparities and
promote equitable representation of the patients’ population in
AI-powered systems.

In this context, the SHAP method [16] has emerged as
rigorous approach and wide-ranging applicability. As a model-
agnostic technique, SHAP allows the quantification of each
feature’s contribution to the prediction process. Notably, SHAP
efficiently provides both global and local explanations, unify-
ing disparate approaches such as Local Interpretable Model-
agnostic Explanations (LIME) [35], DeepLIFT [41], and
Layer-wise Relevance Propagation (LRP) [42]. Furthermore, a
significant advantage of SHAP over other XAI techniques is its
versatility, as it can be employed in both classification [43] and
regression problems [44].

In diabetes management, XAI applications in the current
literature mostly relates to predicting early asymptomatic stages
of diabetes for early diagnosis [45], [46] or assessing the risks of
adverse events [47], [48] in an interpretable manner. As for BGLs
prediction, a personalized bidirectional LSTM model equipped
with interpretability tools has been proposed in [49] using data
from six T1DM patients. Specifically, the Shapley values related
to CGM measurements, administered insulin, physical activity,
and meal carbohydrates were calculated on the network output at
PHs of 30 min and 60 min. Physical activity had limited effects
on the regression performance and was therefore disregarded,
while CGM values and carbohydrates showed a positive impact
on the predicted glucose value, in contrast to the negative impact
of insulin. In [50] a decision tree algorithm has been proposed to
predict various characteristics of PGR in women with gestational
diabetes. The Shapley values were computed to identify the most
significant contributors among CGM measurements, responses
from habit surveys, demographic information, and meal-related

features. Findings revealed the glycemic load, amount of carbo-
hydrates, type of meal, amount of starch, and food consumed
6 hours before the current meal as the prominent factors. De-
spite these compelling studies, the application of XAI to AP
research remains largely unexplored, primarily attributed to the
complexity of the BGL prediction problem and the novelty of
the explainability trend in this field.

III. MATERIALS AND METHODS

This section provides an overview of the dataset used and
presents the proposed method. As mentioned in Section I, the
objective of this study was to assess the influence of input
features on the predictive capability of BGLs. In order to achieve
this goal, an XAI methodology was employed. The schematic
representation of the proposed method is illustrated in Fig. 1.

A. Dataset Description

This study was conducted on the AI4PG dataset, provided by
the Diabetes Outpatient Clinic of Federico II University Hospital
in Naples, Italy [25]. The utilization of this dataset in the present
study received the necessary ethical approval from the Ethical
Committee of University of Naples Federico II (Registration
number 338/20).

The dataset comprises tabular data collected from 25 individ-
uals diagnosed with T1DM equipped with a closed-loop system,
the Medtronic MiniMed 670G [51]. Within the patients’ group,
there were 12 males and 13 females, with an average age of
40± 12 years and a duration of diabetes of 15± 12 years. In
addition to the measured CGM values and the administered
insulin doses, the dataset incorporates information regarding
the patients dietary habits. More in detail, the CGM values and
insulin data were automatically extracted from the closed-loop
system, whereas nutritional data were obtained from a 7-day
food record that is the golden standard for measuring dietary
habits. All foods and drinks consumed (including dressings)
were reported providing as much detail as possible (i.e. cooking
methods, brands names). Energy intake, nutrient composition,
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glycaemic index, and glycaemic load were estimated using a val-
idated software (Metadieta) [52]. Each entry within the dataset
corresponds to a specific meal, encompassing a range of CGM
measurements (mg/dL) capturing pre- and postprandial BGLs.
Overall, the dataset comprises 1264 meals, including breakfasts,
lunches, and dinners, with CGM glycemia values available at
5-min intervals from 30 min before the meal to 120 min after.
Multiple features associated with each meal are estimated and
reported, including the intake of energy (kcal), the quantities of
carbohydrates (g), proteins (g), lipids (g), fatty acids (g), fibers
(g), and cholesterol (mg), as well as the corresponding glycemic
index (GI) and glycemic load (GL) values. Furthermore, the
dataset provides insights into insulin delivery. Specifically, it
includes information on the microboluses administered by the
AP, spanning three hours before the meal until mealtime, along
with manual boluses (MBs) of insulin delivered at mealtime
(in I.U.). The MB insulin dosage was calculated by the patient,
considering the quantity of carbohydrates and meal intake.

Participants were not required to provide data regarding their
physical activity levels. Nevertheless, over the observation pe-
riod, no cases of temporary blood glucose targets indicative of
physical exercise sessions were observed.

B. Proposed Method

To investigate the influence of specific features on BGLs
prediction, three ML-based systems employing Feed Forward
Neural Networks (FFNN) [53] to forecast postprandial BGLs
in patients individuals diagnosed with T1DM are proposed.
Different PHs (15 min, 60 min, and 120 min) after a meal are
considered.

The FFNNs took as input features:
� a 30 min window of BGLs (Gly_30b - Gly_0) along

with associated statistical attributes such as minimum
(Gly_min), maximum (Gly_max), mean (Gly_mean),
standard deviation (Gly_std), peak-to-peak difference
(Gly_ptp), median (Gly_median), kurtosis (Gly_kurt),
and skewness (Gly_skew);

� information regarding the insulin dosages:
– manually-administered bolus (MB) of insulin (Bolus)

at mealtime;
– cumulative sum of microboluses delivered by the

closed-loop system worn by patients in the three-hour
interval preceding the meal (Ins_history), as an ab-
solute measure of the system’s insulin delivery;

� meal-related information:
– energy intake (Energy);
– carbohydrates (Carbo), glycemic index (GI),

glycemic load (GL);
– Proteins;
– Fibers;
– Lipids, monounsaturated fatty acids (MUFA),

polyunsaturated fatty acids (PUFA), saturated fatty
acid (SAFA), Cholesterol.

The data were preprocessed by selecting for each patient a
number of observations between 30 and 100. Then, the prepran-
dial BGLs were filtered with the Savinsky-Golay technique [54]

to smooth out noise and leave the dynamics unchanged. Fully-
connected DNNs were exploited to forecast BGLs. In order
to determine optimal hyperparameter values of the FFNN at
different PHs, a grid search strategy [53] was adopted. Ulti-
mately, three separate models were derived, specifically tai-
lored to predict at distinct PHs: 15 min, 60 min, and 120 min.
Each model was validated by using Leave-One-Subject-Out
Cross-Validation (LOSO-CV) strategy. Among various vali-
dation methods, such as holdout and k-fold, the LOSO-CV
approach stands out as one of the most robust validation methods
for inter-subject analysis. Indeed, being the test set composed of
data belonging to a subject not seen during the training, LOSO-
CV provides a reliable evaluation of the model performance
on new and unencountered data. Additional details concerning
the preprocessing step and experimental setup are reported in
Section IV. The assessment of prediction performance for each
postprandial PH was carried out through Root Mean Square
Error (RMSE), defined by the following equation:

RMSE =

√
1

N

∑
N

(ŷt − yt)
2 (1)

where ŷt and yt represent the predicted and measured BGLs at
time instant t, respectively; and N denotes the total number of
observations in the dataset.

As the central focus of this study lies in achieving an in-
terpretable decision-support system for T1DM management,
special attention was given to addressing the crucial aspect of
interpretability. To this purpose, the SHAP technique [16] was
employed to analyze the impact of features on the output model.

C. Model Interpretability: SHAP

SHAP [16] is a method to explain individual predictions, pro-
viding relevance scores to each input feature. This methodology
utilizes Shapley values, derived from coalitional game theory, to
attribute the contribution of each feature to the final prediction.
The basic principle of SHAP technique is to decompose the
model output into the cumulative impacts of individual features.
For complex models such as DNNs, the adopted SHAP method
(i.e., Kernel SHAP) relies on weighted linear regression to
compute the importance of each feature. In particular, it employs
a simpler explanation model g, which serves as an interpretable
approximation of the original prediction model. Given M input
features, the Shapley value explanation g(z′) is conceptually
derived using a linear additive model [16]:

g(z′) = φ0 +

M∑
j=1

φjz
′
j , (2)

where z′j denotes the presence (1) or absence (0) of the fea-
ture j; φj is the Shapley value representing the relative feature
contribution; and φ0 is the base value when all input features are
absent (0).

By assigning a value to each input, SHAP allows for a com-
prehensive understanding of how and to what extent each feature
influenced the final prediction. This is achieved through system-
atic analysis of various feature combinations, calculating their
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individual effects on predictions when combined with others. In
practice, for each combination, certain inputs are held constant
at their actual values, while the features under evaluation are
randomly perturbed.

To estimate the global relevance of each input on the model’s
outcome, it is possible to compute the feature importance.
Specifically, the absolute Shapley values of feature j were
averaged across the data as follows:

Ij =
1

n

n∑
i=1

∣∣∣φ(i)
j

∣∣∣ (3)

where n is the number of instances in the dataset.
One notable characteristic of SHAP is its model-agnostic

nature, making it applicable to a wide range of ML models. Ad-
ditionally, SHAP offers consistent explanations, i.e. provides the
same explanation for a given model and dataset, and effectively
accommodates complex model behaviors, including interactions
among features. This adaptability highlights its effectiveness in
capturing intricate relationships within the data.

IV. EXPERIMENTS

In this section, the conducted experiments are illustrated,
together with the preprocessing and the experimental setup
adopted. The main steps of the proposed pipeline are reported in
Fig. 1. After a first data preprocessing step (data selection, filter-
ing, and statistical measures calculation), a Leave-One-Subject-
Out Cross-Validation (LOSO-CV) model validation procedure
was carried out with a hyperparameter optimization. Finally,
found the best model, SHAP technique was exploited for inter-
pretability.

A. Preprocessing Step

A subgroup of 15 subjects was selected from the initial cohort
of 25 patients in the AI4PG dataset. The selection criterion was
a minimum of 30 recorded meals per person. In cases where the
number of recorded meals exceeded 100, only the first 100 meals
were considered for the analysis. This rigorous selection aimed
to ensure an adequate number of data points for reliable and
robust analysis, resulting in a final dataset of 1036 meal records
from 15 subjects. For each dataset entry, the Savitzky-Golay
filtering technique [54] with a first-order polynomial and a 15-
step sliding window was employed to smooth the BGLs trends.
Specifically, BGL values measured each 5 min from 30 min
prior to the meal until the mealtime were utilized as inputs for
the FFNN model. Additionally, 8 statistical measures, computed
from the preprandial BGLs values for each meal entry, were
incorporated as additional input: minimum, maximum, mean,
standard deviation, median, peak-to-peak difference, kurtosis,
and skewness. In addition, microboluses administered by the
AP system in the 3h before the meal were summed to obtain
a single quantity that takes into account the amount of basal
insulin. Finally, all features were scaled using min-max scaling
strategy (see Section IV-B for more details).

TABLE II
SEARCH SPACE ADOPTED DURING THE GRID SEARCH FOR TUNING

HYPERPARAMETERS

B. Experimental Setup

After the preprocessing, a ML model validation proce-
dure was conducted. As mentioned in Section III-B, FFNNs
were employed to predict postprandial BGLs at different PHs
(15 min, 60 min, 120 min). In order to identify the optimal
hyperparameters for the FFNN models, a grid search strategy
was exploited. More specifically, Table II provides the tuned
hyperparameters and the search spaces. Relatively shallow neu-
ral networks were considered, with a number of layers ranging
from 1 to 3. Incorporation of a regularization term, employing
weight decay with a penalty on L2 norm, was employed while
systematically varying the weight decay values, as illustrated
in Table II. The maximum number of epochs was established
at 1000, with a patience value of 10 for the stopping criteria,
as a usual trade-off between computational complexity and the
model’s generalization capability [53]. Ultimately, three distinct
models were derived, each specifically tailored for predicting
BGLs at different PHs.

The proposed method was validated using the LOSO-CV
strategy to effectively address inter-subject variability. This it-
erative approach includes training the model on n-1 subjects,
where n indicates the total number of subjects in the dataset,
and considering the subject excluded during the training process
as a test to assess the model. Moreover, in each iteration of
the LOSO-CV strategy, all data underwent min-max scaling,
taking into account the minimum and maximum values from
the training data. The data were scaled to adjust the different
scales of the involved features.

Each model was evaluated on the test set by using RMSE as
described in Section III-B.

Subsequent to the identification of the best-performing mod-
els at 15 min, 60 min, and 120 min after the meal, the FFNNs
were retrained, wherein data from the patient with the best
RMSE was excluded to form the test set. Finally, the inter-
pretation of the models’ output was accomplished through the
utilization of the SHAP, described in Section III-C.

V. RESULTS

A. Prediction Results

The model’s performance was evaluated by computing the
RMSE between the real and predicted BGLs generated by the
FFNNs at different PH after the meal (15 min, 60 min, 120 min).
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TABLE III
PERFORMANCE AT DIFFERENT PREDICTION HORIZON (PH) OF THE

PROPOSED FFNN MODELS BY MEANS OF ROOT MEAN SQUARED ERROR
(RMSE) AND SELECTED HYPERPARAMETERS VALUES

The mean and standard deviation of the RMSEs are summarized
in Table III, alongside the selection of the best model. The results
were obtained by averaging the RMSEs across n folds of the
LOSO-CV strategy, where n represents the number of patients
considered, in this case, 15.

Final performance in terms of RMSE was found to be compa-
rable to previous literature (e.g. [21], [23], [27], [31] in Table I).
However, it is essential to acknowledge that differences in data
utilization, experimental conditions, preprocessing techniques,
and hyperparameter configurations among various studies may
influence the outcomes, making an unbiased comparison of the
proposed methods challenging.

Moreover, unlike other studies in the literature that often
employed hold-out or k-fold cross-validation strategies [10],
[20], [23], [59], [60], this investigation opted for the LOSO-CV
approach. LOSO-CV is considered one of the most reliable
validation methods for inter-subject analysis, as it accounts for
the variability among subjects.

B. Interpretability Results

As discussed in Section I, the aim of this study is to quantify
the impact of input features, especially meal-related features,
on postprandial BGLs prediction by using XAI methodologies.
Specifically, the SHAP technique (see Section III-C) was em-
ployed to interpret each trained FFNNs.

First, feature importance analysis was conducted for assessing
the global influence of each specific input feature on the models’
output. Specifically, following (3), the absolute Shapley values
of feature j were averaged across the data of a single patient.

Subsequently, the average importance of each feature was com-
puted over 15 patients. The calculated feature importance for
each PH are presented in Fig. 2, providing a concise visualization
of the average contribution of individual features to the model
output. The length of each bar reflects the mean of the absolute
Shapley values per feature across all data, helping identify the
most influential factors. Higher feature importance values for
a feature correspond to heightened impacts on increasing or
decreasing the final prediction. In Fig. 2(a), it can be observed
that the most influential features are those related to glycemia,
with the exception of Gly_kurt and Gly_skew, which appear
negligible, along with the marginal impact of administered
insulin and nutritional factors. The situation begins to change
at PH = 60 min in Fig. 2(b), with an increasing importance of
certain factors such as Carbo, Lipids, Energy, Bolus, and GL.
Finally, in Fig. 2(c), there is a further decrease in the effect of
glycemic features and an increase in meal-related factors. The
main exception is represented by Gly_25b, which remains highly
impactful at PH = 120 min.

However, feature importance does not allow a thorough un-
derstanding of the features’ effects. In order to evaluate the
relationship between the value of the input variable and the pre-
diction output, summary plots have been exploited and reported
in Fig. 3. This representation takes advantage of the importance
of features to order them in a descending manner, and at the same
time shows the relationship between the value of the input vari-
able and its impact on prediction. Specifically, summary plots of
Shapley values, as shown in Fig. 3 for a single subject, provide
a global perspective on feature importance and its underlying
drivers by showing the distribution of individual feature con-
tributions. As observed, certain glycemic features (i.e., Gly_0)
exhibit a positive correlation for all the PHs, wherein higher
input values correspond to higher predictions. Conversely, an
inverse pattern is noticed for Gly_30b, wherein higher input
values lead to lower predictions, and lower input values result in
higher predictions. In Fig. 3(a), Carbo does not appear as a row
because its influence at PH = 15min is negligible, just like the
other meal-related factors at the bottom. On the other hand, as
already observed from the feature importance plots, it becomes
essential to take into account the meal-related factors as the PH
extends. In Fig. 3(b) and (c), it is evident that at lower values of
Carbo, the impact is concentrated on very low negative SHAP
values. However, as the feature value grows, the intensity of the
impact towards positive SHAP values also grows, resulting in
higher predicted outputs. Interestingly, Bolus and GL exhibit the
opposite behavior.

Ultimately, Shapley correlation matrices were employed for
gaining deeper insights into feature interplay. For the sake of
brevity, Shapley correlation matrices for a single subject are
presented in Fig. 4. These grids reveal intricate feature rela-
tionships by calculating correlations between Shapley values
for pairwise feature combinations. Unlike standard correlation
matrices computed on input features, Shapley value correlations
consider individual feature effects on the prediction, thus expos-
ing potential counter-intuitive relationships between features.
The heatmaps in Fig. 4 illustrate patterns of alignment (red) or
opposition (blue) in feature contributions on the output for all
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Fig. 2. Boxplots for feature importance analysis at (a) 15 min, (b) 60 min, and (c) 120 min after mealtime. Each feature bar corresponds to the
average importance computed over 15 subjects, and the error bars indicate the associated standard deviation. Before the meal: Gly 30b to Gly 5b
- glycemia history from 30 min to 5 min before the meal; Gly median - median of glycemia history from 30 min before meal to mealtime; Gly mean -
mean of glycemia history; Gly std - standard deviation of glycemia history; Gly ptp - peak-to-peak difference of glycemia history; Gly min - minimum
of glycemia history; Gly max - maximum of glycemia history; Gly kurt - kurtosis of glycemia history; Gly skew - skewness of glycemia history; Ins
history - sum of microboluses delivered by HCLS within the three-hour period preceding the meal. At mealtime: Gly 0 - glycemia value; Bolus -
manual bolus of insulin. Meal-related: GL - glycemic load; Carbo - grams of carbohydrates; GI - glycemic index; Proteins - grams of proteins; Lipids
- grams of lipids; SAFA - grams of saturated fatty acid; MUFA - grams of mono-unsaturated fatty acids; PUFA - grams of poly-unsaturated fatty acid;
Cholesterol - milligrams of cholesterol; Fibers - grams of fibers; Energy - kcal of energy.

three PHs on the best fold. Notably, the intensity of values in the
top-left area of the heatmaps indicates strong correlations among
features related to glycemic history. Specifically, Fig. 4(b) and
(c) demonstrate consistency between the effects of Gly_30b and
Gly_25b, while the behavior changes from Gly_20b to Gly_0. In-
terestingly, the effects of nutritional factors related to meals show
limited correlations with glycemia. Stronger SHAP correlations
are observed between Energy and meal nutritional components,
such as Carbo and Lipids. At PH = 120 min, these correlation
values demonstrate increased strength, as evidenced by the
intensification of values in the bottom-right area of the heatmap.
Additionally, the effect of insulin administered before the meal
(Ins_history) is partially correlated with glycemic history (from
Gly_30b to Gly_median), probably given its computation based
on CGM measurements.

VI. DISCUSSION

The present study evaluated the performance of the proposed
FFNN models for predicting BGLs. The models’ RMSE per-
formance, as depicted in Table III, demonstrated a level of
accuracy that was comparable to the findings reported in Table I
of previous studies. However, it is crucial to acknowledge that
direct comparisons between different studies should be inter-
preted with caution. Several factors can influence the outcomes,
including variations in data sources, experimental conditions,
and preprocessing methods. Nevertheless, the results demon-
strated that the FFNNs effectively predicted BGLs and exhibited
performance comparable to state-of-the-art approaches.

This investigation used the LOSO-CV approach to account for
inter-subject variability, by using each individual subject’s data
as an independent validation set while training on the remaining
subjects’ data. By doing so, the model can better generalize
to new, unseen data and minimize the risk of overfitting. As
a result, the proposed model offers valuable insights, showing
promising performance and generalization capability in blood
glucose prediction.

As stated in Section I, the primary objective of this study
was to assess the impact of different features, particularly those
associated with meals, on BGL predictions using a post-hoc
XAI. Indeed, the significance of nutritional factors on PGR as
reported in the literature [61] can lead to the hypothesis that
these nutritional factors may have an impact on BGL predictions,
although several aspects remain unclear, such as the extent to
which these factors are subject dependent. Consequently, in the
proposed approach, feature selection (FS) before training was
intentionally excluded. As a matter of fact, FS would have re-
stricted the exploration, as our focus was on using XAI to unveil
the impact of features. To retrospectively evaluate each feature’s
contribution and expand understanding without preconceived
notions, SHAP method was employed.

The study reports interpretability results in the form of feature
importance (Fig. 2) and summary plots (Fig. 3), allowing for a
comprehensive understanding of the model’s predictive factors.

Figs. 2(a) and 3(a) show feature importance forPH = 15min
after the meal. As observed, the influence of Bolus and the
majority of meal-related features on the postprandial predicted
BGLs was found to be negligible. However, the preprandial



3130 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 28, NO. 5, MAY 2024

Fig. 3. Best-fold summary plots of SHAP values at (a) 15 min, (b) 60 min, and (c) 120 min after mealtime for a single subject. Features are listed
on the vertical axis in descending order of importance, with the most significant factors at the top, while the horizontal axis illustrates the variation
of the Shapley values. For a single observation, the influence of a feature is visualized through a point along the relative row, whereby the color of
the point corresponds to its feature value, and its position is determined by its positive or negative Shapley value. As the influence of the feature on
the output strengthens, the point progressively moves away from the gray vertical line, which represents zero impact. Before the meal: Gly 30b to
Gly 5b - glycemia history from 30 min to 5 min before the meal; Gly median - median of glycemia history from 30 min before meal to mealtime; Gly
mean - mean of glycemia history; Gly std - standard deviation of glycemia history; Gly ptp - peak-to-peak difference of glycemia history; Gly min
- minimum of glycemia history; Gly max - maximum of glycemia history; Gly kurt - kurtosis of glycemia history; Gly skew - skewness of glycemia
history; Ins history - sum of microboluses delivered by HCLS within the three-hour period preceding the meal. At mealtime: Gly 0 - glycemia value;
Bolus - manual bolus of insulin. Meal-related: GL - glycemic load; Carbo - grams of carbohydrates; GI - glycemic index; Proteins - grams of proteins;
Lipids - grams of lipids; SAFA - grams of saturated fatty acid; MUFA - grams of mono-unsaturated fatty acids; PUFA - grams of poly-unsaturated
fatty acid; Cholesterol - milligrams of cholesterol; Fibers - grams of fibers; Energy - kcal of energy.

Fig. 4. Best-fold correlation matrices between SHAP values corresponding to each feature pair at (a) 15 min, (b) 60 min, and (c) 120 min after
mealtime for a single subject. The intensity of red denotes a strong positive correlation, while the intensity of blue signifies a strong negative
correlation between effects.
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glycemia history within the 30 min window had a significant
impact on the postprandial glucose response (PGR). Specifically,
higher glycemia values at mealtime (Gly_0) were associated
with higher predicted BGLs, showing a high correlation be-
tween the preceding and immediately following BGLs. This
observation may align with physiological dynamics in real-life
scenarios, wherein, within 15 min from the meal, the effects
of Bolus and meal intake may not have fully manifested. This
can be attributed to the time required for insulin and nutritional
factors to circulate in the body and the inherent delays in glucose
readings by the CGM device [62], [63]. As a matter of fact, clin-
ical studies have shown that although insulin levels peak within
40 min to 60 min after injection, the maximum insulin action is
observed approximately 100 min after injection [63], [64].

Figs. 2(b) and 3(b) illustrate the results obtained by using
SHAP technique for a PH of 60 min after the meal. In this case,
the Carbo intake of the meal, as well as GL, appear to hold
greater significance. Specifically, postprandial blood glucose is
notably influenced by GL. Serving as a product of GI and
Carbo, GL enables the simultaneous description of both the
quality and quantity of carbohydrates in a meal. Considering
that the impact on blood glucose is affected not only by the
quantity but also the quality of carbohydrates consumed, the
higher impact of GL seems appropriate, as it accounts for both
aspects [65]. Furthermore, higher values of Carbo lead to an
increase in the predicted BGLs, accurately capturing the impact
of the meal on glycemic dynamics. For PH = 60 min, Bolus
exhibits a greater impact on BGL prediction, aligning with the
actual influence of insulin on glycemic levels, as it typically
begins to take effect approximately 60 min after injection [63].
More in detail, an increase in Bolus values at mealtime exerts
an adverse effect on the predicted BGLs (see Fig. 3(b)), aligning
with the well-known influence of insulin, which lowers glycemia
values. Furthermore, the findings suggest that nutritional factors,
in general, have a more significant impact on BGL prediction
after 1 h from the meal. This observation can be interpreted as
further confirmation that BGL values are influenced by nutri-
tional factors over the medium term, consistent with previous
research [17].

Finally, Figs. 2(c) and 3(c), show SHAP results for PH =
120min. As can be observed, in this instance, the importance of
the carbohydrate intake Carbo appears to be more significant.
However, the nutritional factor driving better blood glucose
prediction at 2 h becomesGL, for the observed relative increased
predictive value of GI . The predictive power of lipids intake
Lipids also becomes relevant, which is expected to influence
the late postprandial blood glucose response in people with
T1DM [18], [66].

The obtained results contribute to advancing the transition
from physiological knowledge to clinical practice. This rep-
resents a critical step toward a better understanding of PGR
determinants in individuals with T1DM and could offer valu-
able implications for advancing AP technology and develop-
ing decision-support tools for T1DM patients. Some aspects,
however, still need to be addressed. First, the ML models used
strongly depend on training data, and the availability of high-
quality data is essential to get accurate predictions. One of the
biggest challenges faced in this study was the limited public

availability of real-world data, especially data that included
detailed meal-related information beyond just carbohydrates.
Most studies in the literature [9], [67] use synthetic data (i.e.
UVA/Padova simulator [68]), or real public datasets (i.e. Ohio
dataset [69], DirectNet [70]) that provide only blood sugar or
only the amount of carbohydrates and insulin bolus as meal-
related information. As our primary objective was to explore
the impact of various nutritional factors on blood glucose, it was
necessary to collect data with an experimental campaign. This is
not an easy task in practical AP applications, since it would pose
a heavy burden on the patients. However, it is worth noting that
ongoing research to develop applications for automatic identi-
fication of food composition [71], [72] could help gather infor-
mation on nutrients. Another aspect that should be addressed
relates the input features used for the prediction of postprandial
glycemic levels: in fact, these have been selected based on theo-
retical and physiological considerations [23], [61], and available
data, but may not capture all relevant variables. Indeed, beyond
nutritional factors, it would be of considerable interest to explore
the influence of variables associated with physical activity and
the psychological well-being of patients [73], [74]. In this regard,
XAI-based features impact findings could be used to carry out
feature selection to improve model performance by identifying
the most influential input features [75], [76], [77]. Thirdly, in
this study, PH until 120 min after the meal was explored, and
it seems sufficient to start disentangling the different times at
which the various nutrients exerted their influence on blood
glucose. However, extending the postprandial period up to six
hours would be an interesting avenue for investigation; this
would make it more likely to capture later postprandial events
such as hypoglycemia and hyperglycemia [61], [78].

VII. CONCLUSION

This study focused on addressing the challenges of manag-
ing PGR for individuals with T1DM through the use of DNN
models. Despite the effectiveness of current AP technology in
integrating basal insulin delivery and glucose monitoring, it falls
short in managing PGR due to an incomplete understanding of
its determinants. Consequently, this research aimed to quantify
the influence of various input features on predicting postprandial
BGLs at different time intervals after meals. By incorporating
preprandial glycemic history, insulin dosage, and a range of
nutritional factors as input variables, the models showed sat-
isfactory performance in predicting glucose levels. Although
these findings may not be immediately applicable due to cur-
rent limitations, this study holds the potential to advance our
understanding of the factors that influence postprandial glucose
response in individuals with Type 1 Diabetes (T1DM) and the
development of Artificial Pancreas (AP) technology.

To enhance interpretability, the SHAP explainability method
was utilized, revealing the significant influence of meal-related
factors like carbohydrates, lipids, and glycemic load on post-
prandial glucose levels up to two hours after a meal. By bridging
the gap in our understanding of PGR determinants, this research
contributes to the advancement of T1DM care, offering a deeper
comprehension of PGR determinants. It holds the potential to of-
fer valuable insights for the advancement of AP technology and
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the development of more effective and personalized approaches
to diabetes management.
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