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Abstract—The global prevalence of childhood and ado-
lescent obesity is a major concern due to its association
with chronic diseases and long-term health risks. Artificial
intelligence technology has been identified as a potential
solution to accurately predict obesity rates and provide per-
sonalized feedback to adolescents. This study highlights
the importance of early identification and prevention of
obesity-related health issues. To develop effective algo-
rithms for the prediction of obesity rates and provide per-
sonalized feedback, factors such as height, weight, waist
circumference, calorie intake, physical activity levels, and
other relevant health information must be taken into ac-
count. Therefore, by collecting health datasets from 321
adolescents who participated in Would You Do It! applica-
tion, we proposed an adolescent obesity prediction system
that provides personalized predictions and assists indi-
viduals in making informed health decisions. Our pro-
posed deep learning framework, DeepHealthNet, effectively
trains the model using data augmentation techniques, even
when daily health data are limited, resulting in improved
prediction accuracy (acc: 0.8842). Additionally, the study
revealed variations in the prediction of the obesity rate
between boys (acc: 0.9320) and girls (acc: 0.9163), allowing
the identification of disparities and the determination of
the optimal time to provide feedback. Statistical analysis
revealed that the performance of the proposed deep learn-
ing framework was more statistically significant (p<0.001)
compared to the other general models. The proposed sys-
tem has the potential to effectively address childhood and
adolescent obesity.
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I. INTRODUCTION

CHILDHOOD and adolescent obesity rates have become
a growing concern worldwide in recent years. According

to the World Health Organization (WHO), the number of over-
weight children and adolescents aged 5–19 years has increased
from 32 million in 1990 to 42 million in 2013, globally [1], [2],
[3], [4], [5], as shown in Table I [6]. Obesity in childhood and
adolescence is associated with various health problems, such
as cardiovascular disease, type 2 diabetes, and musculoskeletal
disorders, and can lead to a higher risk of obesity and related
health problems in adulthood [7], [8], [9].

Predicting obesity rates is crucial because early identification
of individuals at risk can help prevent and manage obesity-
related health problems [10], [11], [12]. Artificial intelligence
(AI) technology has been widely used recently to implement
digital healthcare using various approaches [13], such as im-
plementing smart homes using the Internet of Things [14],
[15], building multimodality interfaces for real-world applica-
tions [16], [17], [18], and providing feedback to users using
biomedical sources [19], [20], [21]. Furthermore, AI technology
is potentially beneficial to this field through its accurate and
personalized predictions of obesity rates for adolescents. AI
algorithms can be trained in large health information datasets
and provide tailored feedback to individuals, allowing them to
make informed health decisions [22], [23], [24], [25], [26].

The rising prevalence of childhood and adolescent obesity
has become a significant public health concern. Recently, there
has been an increasing focus on developing accurate and ef-
fective approaches to predict obesity rates in children and ado-
lescents [27], [28]. A key factor in this effort is the collection
and analysis of relevant health data [29]. Various health-related
data, such as height, weight, waist circumference, calorie intake,
physical activity levels, and other relevant health information,
must be collected to accurately predict obesity rates in children
and adolescents [30], [31], [32], [33], [34]. These data are essen-
tial to develop accurate algorithms to predict obesity rates and
provide personalized feedback to individuals. The availability of
such datasets can enable researchers and healthcare providers to
develop more effective interventions and prevention strategies
for childhood and adolescent obesity [11], [35], [36]. However,
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TABLE I
GLOBAL OBESITY TRENDS FOR CHILDREN, ADOLESCENTS, AND ADULTS BY
GENDER OVER THE PERIOD 2020–2035 [WORLD OBESITY FEDERATION]

there are various challenges in collecting and analyzing these
data, such as ensuring data quality, protecting privacy, and
addressing ethical considerations [29], [37], [38].

Several studies have examined the use of AI technology to
predict obesity rates among children and adolescents. Gupta
et al. [24] trained a general long-term memory network (LSTM)
using static and dynamic electronic health record data over a
period of 1–3 years to predict obesity for individuals between
3–20 years. On average, they achieved an area-under-the-curve
score of 0.88. Mondal et al. [35] employed a machine learn-
ing (ML) classifier to categorize individuals into three groups
based on childhood health maintenance data: normal weight,
overweight, and obese. The experimental results demonstrated
the classification accuracies of 89%, 77%, and 89% for the
three respective scenarios. In addition, Cheng et al. [39] used
the Obesity Prediction in Early Life (OPEL) database as their
dataset. After pre-processing the data, they divided the children
who had clinical visits 2, 3, 5, and 8 times between ages 0 and 4
into male and female groups. They trained an LSTM model and
obtained a mean absolute error of 0.98 and a lasso regression
value of 0.72.

The primary objective of this study was to investigate the
application of AI technology in predicting obesity rates in
adolescents. The study evaluated the abilities of AI algorithms
to predict obesity rates and provide personalized feedback to
individuals. The overarching objective is to mitigate obesity
among adolescents by introducing a model with demonstrated
efficacy in predicting adolescent obesity. In addition, the study
explored the importance of data collection, a crucial aspect
in predicting obesity rates in adolescents. The types of data
required for accurate predictions, the challenges involved in
collecting and analyzing such data, and the potential advantages
of data-driven approaches to combat childhood and adolescent
obesity were examined.

The study also proposes a prediction system that uses an
AI model to predict the likelihood of obesity in adolescents
proactively and offers customized feedback based on these pre-
dictions. We adapt deep learning technology because previous
research has not used it to predict obesity rates in adoles-
cents. The proposed model, DeepHealthNet, outperformed other
comparable machine learning-based models in accurately pre-
dicting obesity rates. DeepHealthNet effectively employs data

augmentation techniques to train deep learning models, even
when available daily health data are limited, resulting in im-
proved predictive performance. Furthermore, the study inves-
tigated variations in the prediction of the obesity rate between
boys and girls, to reveal any disparities and determine the optimal
time to provide feedback. The implementation of the proposed
system has significant potential to address the issue of childhood
and adolescent obesity.

II. MATERIALS AND METHODS

A. Participants

Initially, 321 participants (aged 10–12 years, 133 males and
188 females), who were students of the same elementary school
in Seoul, participated in the use of the Would You Do It!
(WUDI!) mobile application [40]. Of these 321 participants, 187
(75 males and 112 females) officially underwent body measure-
ments by the Korea Sports Promotion Foundation (KSPO) for
the experiment, immediately before and after the experimental
period. The overall experimental protocols and environments
were reviewed and approved by the Institutional Review Board
of Chungbuk National University (CBNU-202308-HR-0196).

The participants were healthy, with no neurophysiological
abnormalities, musculoskeletal disorders, or growth hormone
deficiencies. Before the experiments, they were briefed on how
to use the mobile application and the smartwatch and sync the
data using an animated tutorial. Parents and school personnel,
including principal and class teachers, were informed of the
experimental protocols, paradigms, and purpose. After ensuring
that the parents and guardians of the participating students had
understood the information, their written consent was obtained
according to the Personal Information Protection Act of Korea,
and their signature was obtained on a form that specified their
consent to the anonymous public release of data. The physical
and mental states of the participating students were evaluated to
compare the effect of the application used on individual states.
Furthermore, each participant was required to maintain normal
daily routines and be in normal health during the experiments.

After submitting the signed consent form, each participant
received a Samsung Galaxy Fit 2 smartwatch, prepared for the
experiment to acquire detailed data on their activity and sleep
for better accuracy and further analysis. As the application
developer, Injewelme Co., Ltd., has officially partnered with
Samsung Health, the data collected by the Samsung device
were automatically synchronized from Samsung Health to the
provided application WUDI! for this experiment, via application
integration (Fig. 1).

Furthermore, prior to the experiment, each participant and
their parents had to log in to WUDI!. First, parents had to
agree to the service terms and enter basic information about
their child, including height and weight. As consent for the
use of the service is required from parents of minors under
14 years of age according to Korean law, participants could
obtain the invitation code to activate their use of the WUDI!
application only after the parents had completed the registration
correctly. When the students installed WUDI!, they had to input
the MMS invitation code and then watch an animated tutorial
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Fig. 1. Data configuration for acquiring daily health data, such as height, weight, body mass index (BMI), step count, sleep time, kcal intake,
exercise, and burned kcal. Data were collected by physical examination, a smartwatch (Samsung Galaxy Fit 2), and the WUDI! application
(Injewelme Co. Ltd.) from 321 participants.

that showed how to properly use the mobile application and sync
the smartwatch.

B. Experimental Protocols for Data Acquisition

The body measurements of the participants were obtained
twice. For this experiment, KSPO supported by providing mea-
suring tools and two staff members in charge of the Songpa Fit-
ness Certification Center to the participating elementary school
immediately at the 3rd week of July 2021 and the 5th week
of September 2021. Offline measurements consisted of three
parameters: 1) height, 2) weight, and 3) waist size, to confirm
and compare the body changes of the individuals objectively. A
simple survey was administered to students asking what kind of
gift they would like to receive as a surprise. The purpose of this
survey was to prepare for a subsequent intervention to increase
participation and attract more attention to WUDI!.

WUDI! is a mobile application that allows student participants
to choose a character as an avatar, customize the avatar with
items purchasable with game coins, and complete missions and
mini-games to gain points to level up the avatar and coins to
purchase game items and lottery tickets for the monthly draw.
The missions consisted of three parts: “Play Well”, “Sleep
Well” and “Eat Well”. Play Well tracked the activity of users,
either by acquiring data from the smartwatch when they wore
it or obtaining GPS data, step count, and moving minutes from
the on-board sensors of the mobile phone when they did not
wear the smartwatch. Additionally, the smart wearable device
automatically recognizes exercise (swimming, football, jumping
rope, running, etc.), measures burned calories, and takes photos
of food on their smartphone to obtain calorie information from
the food they ate. Sleep Well tracked the sleep of users, either
acquiring data from the smartwatch when they wore it during
sleep or obtaining the smartwatch usage information from the
mobile phone with the log record module to know when the
usage ceased at night and reactivated in the morning. Eat Well
tracked the nutrition intake, asking users to take a picture of
the food when they had a meal, and then analyzing the picture
to understand the content and caloric information of the meal
through Vision AI analysis.

Each mission was assessed daily, and there were rewards on
mission completion: points to level up and coins to purchase
items. Mini-games were designed for user motivation, allowing
them to play a limited number of rounds per day as a reward
for daily mission completion in terms of nutrition (Eat Well)
and activity (Play Well). Additionally, there were one-on-one
competitions and a guild system, intended to motivate the ap-
plication use by developing a sense of competition and bonding
with each other. A contender can randomly choose another user
to participate in the one-on-one competition to see who burned
more calories within a given period. A guild could be formed
with classmates, and there was a ranking board for the guild
and individual users so that users could compete for individual
ranks and guild ranks. In an approximately three-minute tutorial,
participants completed the installation and registration of the two
mobile applications, WUDI! and Samsung Health, and learned
the proper usage of WUDI!.

To parents, WUDI! provided the visualized statistics and the
predicted body change of their adolescent. In addition, there was
a weekly report summarizing the analysis of data on activity,
nutrition, and sleep of the previous week. Parents could partic-
ipate by updating their height and weight weekly, which was
used to track body changes during the experiment and adjust the
trend of change along with the official body measurement before
and after the experiment. There were two additional functions
to obtain more information from parents: expert columns on
health, skin, food and law, and an online commerce platform
with special prices offered by Samsung Electronics.

The experimental period was about 6 months: a month dur-
ing summer vacation and the remaining 5 months during the
semester. The experiment was initially designed to compare
the difference in overall measurements between two periods.
After the initial body measurements, 321 participants started
using WUDI! on their own mobile phones from the 4th week
of July 2022. During the experiment, participants were free to
use WUDI! voluntarily. However, there were two interventions
from Injewelme Co., Ltd.. First, there were two monthly draws to
award gifts based on the results of the survey of the participants.
Second, events were randomly scheduled during the experi-
mental period to double the rewards awarded, such as points
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Fig. 2. Overall system framework for obesity prediction for adolescents. DeepHealthNet was proposed for training and evaluating the prediction.
It comprises the outlier removal step, data preprocessing step for transforming health data, application of the SMOTE step to augment the data,
training and validation step, and prediction step.

and coins, to maintain the high usage rate of WUDI! during
the experiment period. Participants were free to undergo body
measurements after the experiment. Consequently, 187 partici-
pants completed both body measurements, but there were some
participants who continued to use WUDI! without undergoing
the second body measurement.

C. Data Preprocessing

Preprocessing the raw data is essential to ensure that the
data are cleaned, formatted, and transformed into a suitable
format that can be effectively used for ML models (Fig. 2).
The characteristics used were height, weight, step count, burned
calories, calorie intake, and total sleep time. In cases where
height and weight were recorded multiple times in a day, the
last-day record was used. Outliers were removed if their values
showed a significant deviation from the offline measurements.
In cases where data was missing, the mean imputation technique
was applied within each interval, utilizing the actual values ad-
jacent to the empty data points. The data were then preprocessed
into a time-series data format with multiple features, based on
individuals and dates. However, this resulted in a significant
number of missing values. All features were not recorded on

the same date; thus, daily records were crucial to preserve the
characteristics of time-series data. Therefore, instead of deleting
rows with missing values, we chose to supplement missing
values with the average of the nearest one or two values (Fig. 2).

To perform labeling, we performed a preprocessing step that
reduced n days’ worth of data for an individual to a single row
by using the average value of n days. This step involved two
elements: how many days’ worth of data being reduced and the
length of the gap between the start dates of each bundle. For
example, if we reduce 10 days of data by averaging every two
days with two gaps, the data will be condensed into five data
points. However, we only selected a gap length that allowed us
to reduce all of the data up to the last day. For instance, if we
reduce 10 days’ worth of data into three bundles of three days
with three gaps, the data on the 10th day cannot be condensed
and hence are not included. The equation to calculate the bundle
number is as follows. D is the total number of record dates, n is
how many days’ worth of data are being reduced, and m is the
length of the gap between the start days of each bundle. Only
the integer result of the function is allowed.

Bundles =
D − (n− 1)

m
(1)
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Algorithm 1: Training Procedure of DeepHealthNet.
• Input: Training raw data
X = {xi}Di=1, {xi} ∈ RP×H : Training data for daily
health, where D is the total number of days, P is the
number of participants, and H is the number of health
parameters (i.e., height, weight, BMI, step count, sleep
time, kcal intake, exercise, burned kcal)
Ω = {Oi}Di=1: Class labels, where
Oi ∈ {Increase,Maintenance,Decrease} and D is
the total number of days
• Output: Trained DeepHealthNet

• Step 1: Preprocessing the input data
1 Input Xbin: Merging data after the outlier removal
2 Transform n days’ worth of data for an individual to a

single row by using the average value of n days
3 Calculate the bundle features using (1) from the input

data
4 Assign the class label according to the features of each

bundle
5 Augment the data using SMOTE ((2))
6 Output Xbin: Preprocessed data with class labels

• Step 2: Training the network
7 Input Xbin: a set of preprocessed data
8 Input Ω = {Otr}Dtr=1: multiclass labels, where

Otr ∈ {Increase,Maintenance,Decrease}, D is
the total number of days

9 The network parameters are initialized to random
values for multiclass labels

10 Calculate feature maps extracted using (3)–(4)
11 Generate the loss value using (5)–(9)
2 Output XN : Weights and loss values (multiclass)

• Step 3: Fine-tune parameters
13 Minimizing loss values by tuning the network

parameters

The labels consisted of three categories: weight maintenance,
weight gain, and weight loss. The first set of data was labeled as
weight maintenance by default due to the absence of a compar-
ison group. The reason that the weight change is set as the main
element of labeling is that it is a factor that changes a lot in a short
period of time among the key and weight that make up the BMI.
In most cases, there was no significant weight change between
the previous and current groups when labeled using this method.
So there was an imbalance between classes due to the large num-
ber of weight maintenance labels. Therefore, we used data aug-
mentation using the synthetic minority oversampling technique
(SMOTE) to solve the data imbalance. SMOTE is a popular data
augmentation technique used to balance a class distribution by
generating synthetic samples of the minority class [41], [42]. It
calculates the difference vector between a minority class sample
and its nearest neighbor and generate new data points by scaling
the difference vector by a random ratio. x0 represents one of the
candidates for integration as a minority class through SMOTE.
IB(x0,r) represents the coverage of the minority class within a

range with a radius of r, centered at x0. pX(x) represents the
original probability density of the minority class.

IB(x0,r) =

∫
B(x0,r)

pX(x)dx (2)

z, the newly generated point, can be obtained by adding a
uniform random variable w multiplied by the vector difference
between xk (a neighboring point) and x0:

z = (1− w)x0 + wxk (3)

The expression for the density function of point z can be
represented as follows. N and K represent the number of
minority class samples and neighboring samples, respectively.

pZ(z) = (N −K)

(
N − 1

K

)∫
x

pX(x)

∫ ∞

r=‖z−x‖
pX

×
(
x+

(z − x)r

‖z − x‖
)

×
(

rd−2

‖z − x‖d−1

)
B
(
1− IB(x,r);N −K − 1,K

)
drdx

(4)

D. Deep Learning Model Architecture

The proposed architecture of the deep learning model consists
of a neural network with multiple hidden layers to effectively
capture complex patterns in the input data (Algorithm 1). The
input layer, which is determined by the specific dimensions of the
input data, receives the data for processing by the neural network.
The first hidden layer comprises 128 densely connected nodes,
where each node receives input from all nodes in the previous
layer. These nodes apply their individual weights and biases to
the inputs received, allowing them to learn and contribute to the
representations of the network.

The second hidden layer consists of 256 densely connected
nodes, mirroring the connectivity pattern of the previous layer.
Each node in this layer receives input from all nodes in the
preceding layer and performs its own computations to extract
higher-level features. This hierarchical structure enables the
network to learn increasingly abstract representations as infor-
mation flows through the layers.

The third hidden layer consists of 128 densely connected
nodes. Similarly to the previous layers, each node in this layer
receives inputs from all nodes in the preceding layer. This layer
further refines the learned features and contributes to the overall
understanding of the input data. The output layer, which depends
on the specific task at hand, generates the final outputs of the
network. In this case, the number of nodes in the output layer
corresponds to the three classes under consideration, namely
“Increase”, “Maintenance”, and “Decrease”. Each node in the
output layer represents the likelihood or probability of the input
belonging to its corresponding class. For activation functions,
the rectified linear unit (ReLU) function [43] is commonly used
in dense layers, including both the hidden layer. ReLU intro-
duces non-linearity into the network, allowing it to learn com-
plex relationships and adapt to various data patterns. However,
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depending on the requirements of the problem, other suitable
activation functions can be utilized. The equation for the ReLU
activation function is as follows:

f(x) =

{
0 for x < 0
x for x ≥ 0

(5)

f(x) = max(0, x) (6)

The proposed model employs the cross-entropy loss function,
which is widely used for multiclass classification problems [44].
Cross-entropy loss measures the dissimilarity between predicted
probabilities and the true class labels, guiding the network to
minimize this discrepancy during training. By optimizing cross-
entropy loss, the model aims to improve its performance for
the prediction of obesity rates. The experiment was conducted
by fixing the loss function with 300 epochs, in which the loss
function optimally converges. The equation for the cross-entropy
loss function is expressed as follows: y represents the true
one-hot encoded label vector and ŷ represents the predicted
probability distribution between classes. p is the predicted prob-
ability observation of the class.

CL(y, ŷ) = −(y log(p) + (1− y) log(1− p)) (7)

CL(y, ŷ) = −Σ(y log(ŷ)) (8)

In addition, the negative log-likelihood (NLL), minimum
negative log-likelihood (MNL), and maximum likelihood es-
timation (MLE) are calculated simultaneously below. p(y) is a
scalar rather than a vector. It is the value of the single dimension
where the y is the truth of the ground. Thus, it is equivalent to
cross-entropy.

NLL(y) = −log(p(y)) (9)

MNL(y) = min
θ

∑
y

− log(p(y; θ)) (10)

MLE(y) = max
θ

∏
y

p(y; θ) (11)

E. Comparison Models

Several ML classification methods can be used to predict obe-
sity rates in adolescents using AI technology. We demonstrated
that the proposed model outperforms traditional machine learn-
ing classification models. The following are some commonly
used classification methods for this task:
·Naïve Bayes classifier (NB) [45]: The NB classifier is a prob-

abilistic method that assumes that the features are independent
of each other. It is effective for datasets with a large number of
features and is computationally efficient.
· Regularized linear discriminant analysis (RLDA) [46]:

RLDA is a statistical method used to find a linear combination
of features that can effectively divide classes. It is effective for
datasets with a small number of features and assumes that the
data are normally distributed.
· Random forest (RF) [47]: This is an ensemble learning

method that combines multiple decision trees to improve the
accuracy of the classification. RF can handle a large number of

features and is useful for feature selection. It handles imbalanced
datasets effectively.
· Decision tree (DT) [48]: A DT is a tree-like structure that

represents the decision-making process. It is a popular method
for classification and can handle both numerical and categorical
data. Decision trees are easy to interpret and visualize.
· Support vector machine (SVM) [49]: SVM is a super-

vised learning algorithm that uses a hyperplane to separate
data points into different classes. It is effective for handling
high-dimensional data and can handle nonlinearly separable data
by using kernel functions [50].
· Long short-term memory (LSTM) [51]: LSTM is a type of

recurrent neural network. It can handle sequential data, such as
time-series data, and is effective in capturing long-term depen-
dencies in the data.

F. Statistical Analysis

A statistical analysis was performed to evaluate the perfor-
mance of ML models in predicting obesity rates in adoles-
cents. To ensure the validity of the analysis, normality [52]
and homoskedasticity tests [53] were performed on the data,
considering the small sample size. The Shapiro-Wilk test was
used to verify the normality of the data, and the results showed
that the null hypothesis of normality was satisfied. Additionally,
we confirmed homoskedasticity using Levene’s test [53] for each
comparative group.

We conducted a paired t-test to compare the performance
of various ML models [54]. This statistical test allowed us to
determine the statistical significance between the models and
identify the most effective model for predicting obesity rates in
adolescents. The results of the paired t-test were analyzed to
provide information on the performance of the ML models and
to guide the selection of the best model to predict obesity rates.

G. Performance Measurement Metrics

Several evaluation metrics can be used to assess the per-
formance of classification models. We use evaluation metrics,
such as accuracy, precision, recall, and F1-score, to assess the
performance of the model [55], [56]. These metrics were used to
measure the ability of the model to accurately predict the obesity
status of adolescents. The results of the evaluation were analyzed
to determine the effectiveness of SMOTE and the performance of
the ML models. Accuracy, denoting the proportion of correctly
classified cases, gives a broad perspective on the overall correct-
ness of the model (12). In contrast, precision emphasizes the ratio
of true positive (TP) predictions among all positive predictions,
shedding light on the model’s ability to minimize false positives
(13). Recall, also known as sensitivity, computes the proportion
of TP predictions among all actual positive instances, indicating
the model’s capacity to identify positive cases (14). Furthermore,
the F1-score, which amalgamates precision and recall, provides
a balanced metric considering both false positives (FP) and
false negatives (FN) (15). TP represents true positive, which
refers to cases where both the real and predicted labels are true.
True negatives (TN) represent true negatives, indicating cases
where both the real and predicted labels are false. FP represents



2288 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 28, NO. 4, APRIL 2024

TABLE II
PERFORMANCE EVALUATION OF DEEPHEALTHNET USING PERFORMANCE METRICS, SUCH AS ACCURACY, F1-SCORE, RECALL, AND PRECISION

false positive, indicating cases where the real label is false, but
the predicted label is true. Finally, FN denotes false negative,
indicating cases where the real label is true, but the predicted
label is false.

Accuracy =
TP + TN

TP + FN + FP + TN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 score = 2× Recall × Precision

Recall + Precision
(15)

In addition, it is crucial to evaluate the models on different sub-
sets of the data using 10-fold cross-validation to obtain reliable
performance estimates. This approach could support obtain a
more robust assessment of the performance and generalization
ability of the model. In this study, the models were trained on
90% of the data and tested on the remaining 10% of the data.

III. EXPERIMENTAL RESULTS

A. Predicted Performances Using Proposed and
Comparison Models

The experimental results presented in Table II demonstrate
the superior performance of the proposed deep learning frame-
work. It achieved an impressive average accuracy of 0.8837,
outperforming all compared models. The F1-score, which mea-
sures the balance between precision and recall, was also high
at 0.8797. The recall value, which indicates the proportion
of true positives identified, was 0.8958, while the precision
value, representing the accuracy of positive predictions, matched
the overall accuracy at 0.8837. Compared to the other mod-
els, the LSTM model exhibited a relatively high accuracy of
0.7008. Among traditional ML classifiers, SVM demonstrated
a commendable performance with an accuracy of 0.6846. In
contrast, the NB model exhibited the lowest accuracy of 0.3714,
which is comparable to random chance accuracy. Therefore,
DeepHealthNet significantly outperformed all models compared
in terms of accuracy, F1-score, recall, and precision. Across
different folds, the standard deviation remained consistently
below 0.02 for all models. Therefore, there was no significant
variance or instability during the training process. Performance
metrics were consistently distributed, suggesting the robustness
and reliability of the models throughout the training phase.

TABLE III
STATISTICAL ANALYSIS OF DIFFERENCES BETWEEN THE PROPOSED AND

COMPARED MODELS IN TERMS OF GRAND-AVERAGE PREDICTED
PERFORMANCES (ACCURACY, F1-SCORE, RECALL, PRECISION)

Overall, the experimental results confirmed the effectiveness
of DeepHealthNet, which consistently demonstrated superior
accuracy and outperformed the models compared in terms of
various performance measures.

Furthermore, the results of the statistical analysis presented
in Table III indicate the differences between the proposed deep
learning framework and the comparison models in terms of
various performance metrics. The obtained p-values indicate
the level of statistical significance and help assess whether the
observed differences are coincidental or truly meaningful. As
the p-values were consistently less than 0.001 for accuracy, F1-
score, recall, and precision, there is a highly significant statistical
difference between the proposed deep learning framework and
the comparison models in terms of these measures.

However, when comparing the proposed deep learning frame-
work with the LSTM model in terms of recall and precision, the
obtained p-value was less than 0.05, indicating a statistically
significant difference. Although the proposed model generally
outperformed the LSTM, this finding suggests that there are
certain scenarios in which the LSTM might exhibit comparable
performance in terms of recall and precision.

B. Performance Measurement Using Confusion Matrix

The study conducted a detailed analysis of the confusion
matrix for the proposed models to analyze their performance
for each class using k-fold datasets, as illustrated in Fig. 3. The
average accuracy of the proposed model was determined to be
0.8837, with the “Decrease” class exhibiting the highest true pos-
itive value at 0.9905. The “Increase” and “Maintenance” classes
showed a similar TP value of 0.9204 and 0.9720, respectively.
Although there were some variations in performance between
different classes, overall performance did not show significant
differences. Therefore, the proposed model was effective in
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TABLE IV
PERFORMANCE EVALUATION OF BOY AND GIRL GROUPS USING PERFORMANCE METRICS, SUCH AS ACCURACY, F1-SCORE, RECALL, AND PRECISION

Fig. 3. Confusion matrices of each class (Increase, Maintenance, and
Decrease) across all the participants using DeepHealthNet.

predicting obesity rates in adolescents, demonstrating compa-
rable performance across all classes.

Among the models compared, the NB model achieved the
highest TP value of 0.9171 for the “Increase” class. For the
“Maintenance” and “Decrease” classes, the LSTM model exhib-
ited the highest TP values of 0.7765 and 0.9203, respectively.
These findings suggest that the NB model correctly identified
instances of increased obesity rates, while the LSTM model
recognized instances of maintaining weight or decreasing obe-
sity levels. The high accuracy observed in this experiment can
be attributed to the availability of sufficient existing data to
measure obesity in adolescents over a short period and to provide
valuable feedback, such as appropriate exercise recommenda-
tions, to manage obesity in this population. Consequently, the
proposed model provided accurate predictions of obesity rates
in adolescents, exhibiting high precision.

Analysis of the confusion matrix confirmed the effectiveness
of the proposed model in predicting obesity rates in adolescents.
The proposed model demonstrated the highest TP in all classes.

C. Comparison of Predicted Performances Between Boy
and Girl Groups

Table IV presents the results of the obesity prediction by
dividing the dataset into the boy and girl groups. The study aimed
to explore whether there are differences in the manifestation of

obesity between boys and girls and whether it would be more
effective to analyze the prediction performance separately for
each group. The proposed deep learning framework was utilized
to assess the performance in predicting obesity in both groups.
The results revealed that the obesity prediction performance
achieved by the proposed model was 0.9320 for the boy group
and 0.9163 for the girl group. Results of boy groups, there was
an improvement in performance by 0.0157 compared to results
of girl groups. The F1-scores for the boy and girl groups were
0.9318 and 0.9155, respectively, further indicating a comparable
performance between the genders. In particular, the prediction
performance in the boy group was approximately 2% higher than
in the girl group. The proposed deep learning framework demon-
strated the highest predictive performance for obesity, regardless
of gender. Specifically, SVM showed the highest performance
(0.7965) in the boy group, while LSTM (0.7675) outperformed
the other models in the girl group. The performance improved
because the separation of the data reduced the sample size and
made the features of each gender more visible.

Table V presents an analysis of the statistically significant dif-
ferences within each gender group for the compared models and
the proposed deep learning framework. The aim of this analysis
was to examine whether there were differences in the obesity
prediction performance between the boy and girl groups and to
determine if the proposed model outperformed the compared
models within each group. Statistical analysis revealed that the
obesity prediction performance of the proposed deep learning
framework was more statistically significant (p< 0.001) com-
pared to the other general models, even when considering the boy
and girl groups separately. This highlights the superiority of the
proposed model in accurately predicting obesity in both genders.

Furthermore, the results presented in Table V can be used to
examine whether there were significant differences in the obesity
prediction performance between the boys and girls groups for
each of the compared models. The results showed that for
models such as DT, SVM, and LSTM, there was a statistically
significant difference in performance between the boy and girl
groups (p<0.005 and p<0.001). However, while there were
no statistically significant differences for the other compared
models (i.e., NB, RLDA, RF, and the proposed model), their
obesity prediction performance was significantly lower. Overall,
the proposed deep learning framework demonstrated a higher
obesity prediction performance than the other models, without
significant differences between the gender groups. This indicates
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TABLE V
STATISTICAL ANALYSIS OF DIFFERENCES BETWEEN PROPOSED AND COMPARED MODELS IN TERMS OF GRAND-AVERAGE PREDICTED PERFORMANCES

(ACCURACY, F1-SCORE, RECALL, AND PRECISION)

Fig. 4. Comparison of classification accuracy per nth-day sessions. (a) Classification accuracy per day session using DeepHealthNet and
the compared models. The red bar indicates the highest accuracy across all day sessions. (b) Comparison of classification accuracy using
DeepHealthNet by gender. In the 164th-day session, the boy group achieved the highest accuracy, and the girl group exhibited the highest accuracy
in the 137th-day session.

that the proposed model can effectively address the issue of
unbalanced data according to gender. The preprocessing module
employed in the framework helps mitigate this issue, ensuring
reliable and accurate predictions regardless of the gender distri-
bution in the dataset.

D. Performance Comparison Using Each Day Session

Fig. 4(a) illustrates the obesity prediction performance for
each day session. The graph illustrates the relationship between
the day session and the corresponding predictive performance of

the proposed model. As day sessions progressed, the predictive
performance of obesity gradually improved. According to the
proposed model, around the 60th-day session, the performance
reached saturation, indicating that the model had learned and
captured the underlying patterns in the data. In particular, the
highest obesity prediction performance was achieved in the
162nd-day session, recorded as 0.8848. However, performance
gradually decreased after the 170th-day session.

In contrast, the prediction performance of the other compared
model groups showed different patterns. For example, in the
case of LSTM, the highest performance was observed in the
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106th-day session, but subsequently the performance exhibited
fluctuations with alternating increases and decreases. These
findings suggest that the proposed model can consistently predict
the obesity levels of the target population for future time inter-
vals, typically spanning approximately 5 to 6 months. However,
the performance of the other compared models showed uncer-
tainty in determining the appropriate time duration to collect
new data sets to achieve accurate predictions. The performance
of the compared models varied and the required period of
data collection to achieve reliable predictions is unclear. These
results emphasized the effectiveness and long-term predictive
capabilities of the proposed model in predicting obesity levels
over an extended period.

Fig. 4(b) shows the temporal evolution of obesity prediction
performance using the proposed model, specifically for each
gender group. The patterns depicted in Fig. 4(b) show the
trajectory of obesity prediction performance for both genders.
The graph shows the variations in performance over several
days for boys and girls. In the 164th-day session, the boy group
achieved the highest result (0.9712), similar to the 162nd-day
session, which encompassed the entire data sample. In contrast,
the group of girls exhibited the highest performance (0.9549)
in the 137th-day session. The day session that represented
the highest performance between the two gender groups had
a one-month difference. This suggests that significant physi-
cal changes, including BMI, occurred over approximately four
months for the girl group. In contrast, six months of daily health
data were required to accurately predict BMI for the boy group,
indicating a slower pace of physical change compared to the girl
group. These contrasting trends in physical changes between
the male and female groups were reflected in the deep learning
model. The findings confirmed that the obtained data were also
considered, given the faster rate of physical change in the girl
group compared to the boy group. The results of this section also
show the practicality of being able to quickly apply to real life
with the optimized date shown in the experiment without having
to experiment with all day sessions when applied in real-world.

E. Convergence Curve for Model Training

The convergence process of the proposed model was exam-
ined to validate its stability and reliability. This process was
visualized through the error change curve and the accuracy val-
ues across different epochs, as depicted in Fig. 5. The proposed
model achieved convergence with saturation after approximately
100 epochs in terms of training accuracy. Beyond this point, the
accuracy values remained consistently high, exceeding 0.9. This
indicates that the model learned effectively from the training
data and reached a stable performance level. Furthermore, the
loss values of the proposed model reached saturation at approxi-
mately 150 epochs, where they remained below 0.1. This means
that the model minimized its training loss and obtained a low
error, making it optimal for the training data.

Overall, the convergence analysis demonstrated that the pro-
posed model became stable after approximately 100 epochs for
the training accuracy and 150 for the loss values. This indicates

Fig. 5. Convergence curve of the training error and classification accu-
racy. (a) Training loss. The errors were calculated to obtain the optimized
parameters during network training. (b) Predicted performance accord-
ing to the number of epochs.

that the model effectively learned from the data and could pro-
vide reliable predictions with high accuracy while maintaining
low levels of error.

IV. DISCUSSIONS

The results of the study demonstrated the excellent perfor-
mance of the proposed deep learning framework for predicting
obesity levels in adolescents. The experimental findings indi-
cated that the proposed model outperformed all the compared
models in terms of accuracy, F1-score, recall, and precision.
The average accuracy achieved by the proposed model was
0.8837, exceeding the performance of all other models. The
F1-score, which measures the balance between precision and
recall, was also high at 0.8797. The recall value, which represents
the proportion of true positives identified, was 0.8958, and the
precision value, indicating the accuracy of positive predictions,
matched the overall accuracy at 0.8837. Furthermore, statistical
analysis indicated the significance of the differences between the
proposed deep learning framework and the models compared in
terms of various performance metrics. The obtained p-values
were consistently below 0.001, indicating a highly significant
statistical difference in favor of the proposed model.

The study also investigated the prediction performance of
the model by dividing the dataset into boy and girl groups.
As a result, the proposed model showed a better obesity pre-
diction performance when boys and girls were divided than
in the combined group. When training in the boy groups, it
showed slightly better performance than when training in the girl
groups. However, both showed higher accuracy than 0.9. This
finding suggested that the proposed deep learning framework
was effective in predicting obesity rates regardless of gender,
demonstrating its robustness and generalizability. The ability of
the model to perform well in both the boy and girl groups is
significant because it demonstrates that the model is not biased
toward a particular gender. This suggests that the features and
patterns captured by the model are relevant and applicable to
both genders to predict obesity levels. This finding has practical
implications, as it indicates that the model can be used in diverse
populations without the need for gender-specific modifications
or adjustments. It can help prevent obesity in real-time by
applying it to applications such as WUDI! to predict obesity
by analyzing data in real-time.
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Furthermore, the statistical analysis conducted within each
gender group reinforced the superiority of the proposed model.
Even when considering the boys and girls groups separately,
the obesity prediction performance of the model was more
statistically significant compared to those of the other models.
This highlights its effectiveness in accurately predicting obesity
levels in both boys and girls and provides additional evidence for
its robustness. Overall, the prediction performance in separate
boy and girl groups emphasized the effectiveness of the proposed
deep learning framework in accurately predicting obesity levels
regardless of gender. This strengthens the applicability and
reliability of the model in diverse populations and contributes to
its generalizability.

The proposed model’s capacity to forecast obesity over time
was demonstrated through the visualization of its performance,
which yielded significant knowledge about its long-term predic-
tive potential. The graph demonstrated a gradual improvement
in the model’s performance as the duration increased, with the
highest prediction performance achieved on the 162nd day ses-
sion. This indicates that the proposed model could consistently
forecast obesity levels over an extended period. The improve-
ment in performance over time suggests that the model benefits
from a longer duration of data collection and learning. As more
data become available, the model can capture more patterns and
relationships, leading to improved predictive accuracy. The satu-
ration point was reached after approximately 60 days, suggesting
that model performance plateaus and that collecting data beyond
this point may not significantly improve predictive capabilities.
The compared models exhibited varying levels of performance,
highlighting the uncertainty associated with determining the
optimal duration to collect new data sets. In contrast, the pro-
posed model demonstrated consistent and reliable long-term
predictions, outperforming the compared models. Performance
visualization of the model over time indicates that the proposed
model can be utilized for long-term obesity prediction, offering
reliable forecasts beyond shorter timeframes. This knowledge is
valuable in decision-making processes related to interventions,
public health policies, and resource allocation, as it allows for
more accurate and informed predictions of obesity levels over
long periods.

However, this study has some limitations. First, the study
focused on a specific age group, and the generalizability of
the proposed model to other age groups or populations needs
further investigation. Second, the study utilized a specific
dataset for training and evaluation, and the generalizability
of the proposed model to other datasets should be explored.
Furthermore, the study did not consider certain factors that
could influence obesity, such as socioeconomic status, dietary
habits, or genetic factors. Incorporating these factors into the
model should enhance its predictive capabilities. Furthermore,
the study employed a deep learning framework, which may
require substantial computational resources and expertise for
implementation. The feasibility and practicality of the proposed
model in real-world settings need further consideration.
Finally, the study did not perform a longitudinal analysis to
assess the performance of the model over a period of time
beyond the available data. In future studies, we look forward to

investigating the stability and accuracy of the model over a more
extended timeframe.

V. CONCLUSION AND FUTURE WORKS

This study proposed a deep learning framework to predict
obesity levels in adolescents. The proposed model demon-
strated superior performance compared to other models, achiev-
ing high accuracy, F1-score, recall, and precision values. Sta-
tistical analysis confirmed the significant differences in fa-
vor of the proposed model. The effectiveness of the model
was consistent between gender groups, highlighting its ro-
bustness. Visualizations proved the model’s ability to pro-
vide reliable long-term predictions, outperforming the com-
pared models, and the convergence curve showed the model
was optimized. Therefore, considering the limitations of this
study and future research directions, we plan to further im-
prove the generalizability of the model by using specific data
such as mental factors and a residential area, incorporating
additional factors and assessing its performance over extended
periods.
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