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Attention Mechanisms in Clinical Text
Classification: A Comparative Evaluation

Christoph S. Metzner , Shang Gao , Drahomira Herrmannova , Elia Lima-Walton,
and Heidi A. Hanson

Abstract—Attention mechanisms are now a mainstay
architecture in neural networks and improve the perfor-
mance of biomedical text classification tasks. In particu-
lar, models that perform automated medical encoding of
clinical documents make extensive use of the label-wise
attention mechanism. A label-wise attention mechanism
increases a model’s discriminatory ability by using label-
specific reference information. This information can either
be implicitly learned during training or explicitly provided
through embedded textual code descriptions or informa-
tion on the code hierarchy; however, contemporary stud-
ies arbitrarily select the type of label-specific reference
information. To address this shortcoming, we evaluated
label-wise attention initialized with either implicit or ex-
plicit label-specific reference information against two com-
mon baseline methods—target-attention and text-encoder
architecture-specific methods—to generate document em-
beddings across four text-encoder architectures—a convo-
lutional neural network, two recurrent neural networks, and
a transformer. We also present an extension of label-wise
attention that can embed the information on the code hi-
erarchy. We performed our experiments on the MIMIC III
dataset, which is a standard dataset in the clinical text
classification domain. Our experiments showed that using
pretrained reference information and the hierarchical de-
sign helped improve classification performance. These per-
formance improvements had less impact on larger datasets
and label spaces across all text-encoder architectures. In
our analysis, we used an attention mechanism’s energy
scores to explain the perceived differences in performance
and interpretability between the text-encoder architectures
and types of label-attention.
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I. INTRODUCTION

ROUGHLY 80% of the information stored in EHRs is
unstructured data and comes as free-form text written by

healthcare professionals [1]. However, the manual retrieval and
classification of this information are infeasible because these
activities are time-consuming, cost-intensive, error-prone, and
require significant domain knowledge [2]. To overcome these
barriers and automate the classification of clinical documents,
the biomedical informatics community leverages machine learn-
ing, natural language processing (NLP), and deep learning-based
methods. Particularly, contemporary NLP models use the popu-
lar domain-agnostic building block located at specific positions
in the architecture of deep neural networks called attention.

Attention mechanisms dynamically manage the perceived
information stream by using soft weights to indicate the rele-
vance of a token to a task within a text input sequence [3]. The
introduction of the Transformer [4] further increased the popu-
larity of attention mechanisms because it enabled state-of-the-art
performance across multiple NLP tasks while relying solely on
multiple self-attention layers. As a result, current state-of-the-art
clinical document classification models incorporate different
types of attention mechanisms. For example, self- and target-
attention have been deployed by the HiSAN model to classify
cancer pathology reports [5], whereas models that perform the
automated encoding of hospital discharge summaries primarily
utilize label-wise attention [6], [7], [8].

Label-wise attention’s popularity in extreme multi-label sce-
narios stems from its ability to incorporate label-specific auxil-
iary information [9], [10]. Auxiliary information can be either
implicitly learned through randomly initialized embeddings or
explicitly provided by using embeddings of textual code descrip-
tions or information on the code hierarchy [11]. Selecting the
appropriate type of auxiliary information for the task and dataset
at hand is nontrivial; however, in most studies, this selection is
often arbitrary. Furthermore, given the often-existing linguistic
mismatch between the formally defined code descriptions and
the informally written clinical documents [12], it is important
to quantify the differences between the outputs of different
types of text-encoder architectures with differently initialized
label-attention mechanisms.
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In this work, we evaluate label-attention mechanisms that in-
corporate either implicit or explicit auxiliary information across
multiple text-encoder architectures — convolutional neural net-
works (CNN), recurrent neural networks (RNN), and transform-
ers — in the multi-label classification setting using hospital
discharge summary notes. We also compare the performance
of our label-attention mechanisms against target-attention and
other common methods for generating document embeddings.
Our contributions are as follows:

� We perform the first comprehensive comparative study on
the label-attention mechanism in clinical text classification
with a focus on improving the automated encoding of
clinical documents with medical codes (i.e., ICD-9).

� We examine the effect of different attention mechanisms
on CNN-, RNN-, and transformer-based text-encoder
architecture-specific document embeddings.

� We show that initializing an attention mechanism’s ref-
erence information with explicit label-specific auxiliary
information improves classification performance.

� We are the first to demonstrate a performance improve-
ment in clinical document classification by incorporating
information on code hierarchy solely via the attention
mechanism with minimal increase in compute time and
without requiring an additional neural network.

II. RELATED WORK

Attention mechanisms are universally used in contemporary
deep learning models and significantly improve performance in a
wide range of NLP tasks, including aspect-level sentiment anal-
ysis [13], opinion mining [14], neural machine translation [15],
and text classification [16]. Despite the ubiquity of attention
mechanisms in deep learning, only a few studies in the NLP
domain have empirically compared their effects on the perfor-
mance of deep neural networks. Kardakis et al. [13] investigated
global-, self-, and hierarchical-attention mechanisms in RNNs
by performing sentiment analysis of movie reviews that showed
an average increase in accuracy through attention by two points.
Jain et al. [17] and Feucht et al. [18] analyzed a single type
of attention across multiple encoder architectures to predict
ICU-related tasks (e.g., readmission, medical encoding of notes)
by using MIMIC-III clinical notes. Jain et al. [17] tested target-
attention, which utilizes a single query that contains the refer-
ence information about the entire label space, to find important
parts within documents and reported accuracy improvements in
CNNs and Bi-LSTMs. Feucht et al. [18] investigated how the
performance of different transformers (e.g., BERT, Hierarchical-
BERT, Longformer) is impacted by similar label-attention
mechanisms with pretrained embeddings of textual code de-
scriptions. Although their work is similar to ours, the under-
lying relationships between the different types of text-encoder
architectures and attention mechanisms remain unexplored.

A noticeable trend in deep learning models used to perform
automated medical encoding of clinical documents is the re-
liance on an attention mechanism that can incorporate label-
specific information. Early work by Shi et al. [12] highlighted
the benefits of incorporating textual code descriptions in their
attention mechanism to assign ICD-9 codes to sentence-level

diagnosis descriptions. Their attention mechanism creates a
single weighted document representation that contains the simi-
larities between a diagnosis description and all considered ICD-9
code description embeddings. Mullenbach et al. [6] argued
that using a single document representation is insufficient to
assign multiple medical codes to a clinical note and proposed
a label-attention mechanism instead. Label-attention generates
one document representation for each label in the label space
to capture locations in the text that are semantically relevant
to the specific label by using queries with label-specific refer-
ence information. Contemporary state-of-the-art models utilize
label-attention as a critical component in their architecture but
differ in their approach to initializing the query matrix randomly
or pretrained. Randomly initialized queries are learned during
training [6], [7], [19], whereas pretrained queries use label
description embeddings as a starting point and are fine-tuned
during training [6], [9]. For example, Liu et al. [8] proposed
the hierarchical label-wise attention transformer model that uses
randomly initialized label-attention on token- and chunk-level
data to extract the most informative features from a clinical
document, thereby achieving state-of-the-art performance on
MIMIC-III-50. Despite label-attention’s widespread use, the
different architectures of the proposed models prevent a fair
evaluation of both query initialization strategies. Therefore, we
perform the first comparative evaluation of label-attention by
following the implementation of Mullenbach et al. [6].

Medical encoding systems have an intrinsic hierarchical struc-
ture that provides information about the relationships between
high-level categories and low-level codes. A large body of work
on the subject contains diverse methods to exploit these hierar-
chical relationships to improve model performance [11]. Some
studies use label co-occurrence or label correlation during the
training process to initialize specific parts of the neural network
by introducing bias and exploiting the parent-child relationships
between the labels [20], [21]. Others use graph neural net-
works (GNN) to learn the hierarchical relationships of the label
space [22], [23]. Xu et al. [24] combined label correlation and
a GNN to learn a precise representation of the hierarchy. Shen
et al. [25] instead used weak supervision to create a hierarchical
structure of the label space. In particular, they approached the
problem from the perspective of a layman trying to classify
an unknown set of documents. They argue that laymen would
first classify the documents with high-level categories before
selecting more specific low-level labels. This way, knowledge
about high-level categories will enrich the available information
for predicting the low-level labels associated with a document.
We adopted their idea of a layman approach to this problem in
our implementation of the hierarchical label-attention mecha-
nism and show that it is possible to incorporate the hierarchical
structure in a simple attention mechanism.

III. MATERIALS AND METHODS

A. General Document Classification Attention Model

Many deep learning models incorporate different attention
mechanisms within different parts of their architectures, thereby
making it difficult to perform a direct and fair comparison
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Fig. 1. Structure of the general document classification attention
model. The text-encoder segment represents a CNN-, RNN-, or
transformer-based architecture. The label-attention layer utilizes implicit
(i.e., random embeddings) or explicit (e.g., embedded textual code de-
scriptions) auxiliary information. The multi-label classification models
use a sigmoid activation function after the output layer and the binary-
cross-entropy objective function.

of the impact of attention mechanisms on a model’s perfor-
mance [26]. With this fair comparison in mind, we designed a
general attention-based document classification model (Fig. 1)
that consists of the following layers: i) an embedding layer;
ii) a text-encoder architecture; iii) an attention layer; and iv) a
linear output layer. We describe each layer in more detail in the
following sections.

B. Embedding Layer

The first layer of each model is a pretrained word-embedding
layer that takes a text sequence as input, X = [x1, x2, . . . , xN ],
where N is the number of words. The embedding layer trans-
forms each word to its corresponding dense vector representa-
tion with dimension de, which results in a word-embedding ma-
trix, XE ∈ RN×de . For the CNN- and RNN-based models, we
initialize the word-embedding layer with pretrained embeddings
of each word in the vocabulary generated with Word2Vec [27];
the vocabularies and word embeddings were created from the
training documents of each dataset. In contrast, the pretrained
transformer model comes with a byte-pair-encoding vocabulary
based on the corpus associated with the model during pretrain-
ing [28].

C. Base Text-Encoder Architectures

We consider four base text-encoder architectures in this study:
i) CNN, ii) bi-directional long short-term memory network (Bi-
LSTM), iii) gated recurrent unit network (Bi-GRU), and (iv)
transformer-based Clinical-Longformer (CLF). We limited the
scope of our study to these four text-encoder architectures as
they represent the most-common and fundamental architectures
in the contemporary clinical text classification literature [29]; we
selected the CLF as the representative of the transformer class

as it was pretrained on clinical text and can process up to 4096
tokens, which is important for longer clinical documents.

Generally, each encoder type takes the word-embedding ma-
trix,XE , as the input and learns a latent document representation
with dimension dh, which results in a latent document matrix,
H . A dropout layer with probability p is connected in series to
prevent overfitting [30]. The model passes the dropout layer’s
output to an attention mechanism or other common method used
to generate document embeddings.

1) Convolutional Neural Network (CNN): The first encoder
architecture is a shallow CNN that follows the implementation
by Kim [31]. The CNN passes the learned word-embedding
matrix XE to three parallel 1D convolution layers with dh filters
and window sizes of three, four, and five tokens, thereby learning
multiple n-grams that contain relevant task-specific information.
Following the ReLU activation, the three outputs are padded
and concatenated, which results in the latent document matrix
H ∈ RN×3dh .

2) Recurrent Neural Network (RNN): The next text-encoder
architectures are two popular RNNs: the Bi-LSTM [32] and
the less complex Bi-GRU [33]. Each bi-directional, two-layered
RNN model takes the word-embedding matrix XE as the input
and learns a latent document matrix H ∈ RN×2dh with 2dh
representing the bi-directional pass over the size of the hidden
states.

3) Transformer-Based Clinical Longformer (CLF): The final
text-encoder architecture is the transformer-based CLF [34].
The CLF takes the word-embedding matrix XE as the input
and learns a latent document representation H ∈ RN×dh with
hidden dimension dh = 768.

D. Attention Mechanism

In text classification, attention mechanisms guide a neural
network’s prediction process by assigning attention weights to
each token in the input text sequence [35]. Modern attention
mechanisms usually follow the design proposed by Vaswani
et al. [4], which utilizes three inputs—the key-value pair ma-
trices and the query matrix. The keys, K, and values, V , are
two learned sequences that encode the key features of the latent
document representation,H , whereas the queries,Q, are a refer-
ence to the information that the model is searching for within the
input [36]. The mechanism uses K and Q to find relationships
between the input text sequence and the reference information.
We investigated if the type of initialization of Q, either random
or with pretrained embeddings, influences model performance.
Specifically, we evaluated the popular label-attention mecha-
nism [6] in the single- and multi-head setting and proposed a
new hierarchical adaption of the label-attention mechanism that
can incorporate the hierarchical relationships of the label space.

1) Label-Attention: Label-attention enables the model to
learn a single document embedding for each label in the label
space, |L|, thereby increasing a model’s discriminatory abil-
ity [6]. In our implementation, we pass the latent document
representation H into two separate position-wise feed-forward
layers with the weights WK ∈ Rdh×dh and WV ∈ Rdh×dh , bi-
ases bK and bV , kernel size and stride of one, and an Exponential
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Fig. 2. Flow of our hierarchical label-attention mechanism. Both K
and V are generated from the encoder output by using a feed-forward
layer with ELU activation. Both Q and Qcat are initialized with random
or pretrained embeddings. The label query vector ql,c is enriched with
information on the code hierarchy by adding the parent category context
vector ccat,c.

Linear Unit (ELU) activation function to generate the key-
value pair matrices K ∈ RN×dh (1) and V ∈ RN×dh (2). The
query matrix Q ∈ R|L|×dh is a trainable embedding matrix
initialized either randomly (random label-attention) or with
pretrained embeddings of textual code descriptions (pretrained
label-attention). Textual code descriptions vary in length; how-
ever Q consists of fixed length embeddings. The Doc2Vec algo-
rithm [37] is a natural solution to this issue, as it generates fixed-
length embeddings with size de; each description represents its
own document tagged with its respective medical code as the
label. Each element of Q is a query and represents the reference
information for a specific label. Label-attention uses the three
inputs,K,V , andQ, to compute the label-specific context vector
(3). We used a 1D convolution layer as a dimension alignment
layer to map the resulting pretrained query embeddings with
size de to dh to avoid dimension mismatch between K and Q.
The task-specific textual code descriptions were retrieved from
ICD-9 [38].

K = ELU(FeedForward(H,WK) + bK) (1)

V = ELU(FeedForward(H,WV ) + bV ) (2)

C(Q,K, V ) = softmax

(
Q ·K�
√
dh

)
V (3)

The scaled matrix product (i.e., compatibility function) uses
K and Q to compute the energy scores, E ∈ R|L|×N , which
indicate the strength and direction of the association between the
hidden representation of a token and the label-specific reference
information in Q. The softmax operation (i.e., distribution func-
tion) retrieves the label-specific attention scores, A ∈ R|L|×N ,
and the attention scores are subsequently applied to V to gener-
ate the label context matrix,C ∈ R|L|×dh , for a given document.

2) Hierarchical Label-Attention: This study proposes an ex-
tension of label-attention (Fig. 2) that can incorporate the code

hierarchy of medical encoding systems. Hierarchical label-
attention allows us to exploit the interdependence between
the less specific but easier-to-predict high-level and low-level
classifications. We argue that performing label-attention on two
hierarchy levels enriches the downstream information and will
lead to improved model performance. The hierarchical label-
attention first generates context vectors, CCat ∈ R|LCat|×dh , for
all high-level categories, |LCat|, associated with the label space
by using label-attention described in Section III-D1 and the three
input matrices, K, V , and, QCat ∈ R|LCat|×dh . QCat contains
random or pretrained reference information for the high-level
categories. Subsequently, we enrich the low-level label query
matrix Q ∈ R|L|×dh with the high-level category information
in CCat (4). Specifically, we add the context vector ccat,c of
the high-level parent category c to each related low-level label
query ql,c ∈ Lc, where Lc refers to all labels associated with
category c, to obtain an enriched label query ql for label l for all
task-specific categories Lcat:

ql(lc, c) = ql,c + ccat,c

∀ 1 <= ql,c <= Lc and ∀ 1 <= c <= Lcat. (4)

We retrieved the high-level categories directly from the med-
ical encoding system of each classification task. For the ICD-
9 codes, we used the high-level chapters as the categories
(e.g., Infectious and Parasitic Diseases) [38]. Our hierarchical
label-attention design was inspired by a proposed attention-via-
attention mechanism [26].

3) Multi-Head Label-Attention: We implemented a multi-
head variant of the label-attention and hierarchical label-
attention mechanisms. Multi-head attention [4] uses h attention
heads to linearly project h different parts of the Q, K, and V
matrices in parallel (5). The output is then concatenated and
projected by using WO ∈ R(h×dv)×dh .

Multihead(Q,K, V ) = Concat(head1, . . ., headh)WO

where headi = Attention(QWi,Q,KWi,K , V Wi,V ) (5)

The query, key, and value projection matrices have the
shape of Wi,Q ∈ Rdh×dk , Wi,K ∈ Rdh×dk , Wi,V ∈ Rdh×dv ,
and dk = dv = dh/h.

4) Baseline Methods: We tested the validity of the label-
attention mechanism against two baseline methods: an
architecture-specific baseline method for generating document
embeddings and an alternative-attention mechanism called
target-attention. For the first baseline, we substituted label-
attention with a max-pooling operation over the logits after the
output layer for CNN-based models. We used the average hidden
state space over all time steps as the input to the output layer
for both RNNs. Lastly, the transformer-typical baseline method
utilizes the hidden representation of the first token of the encoded
sequence as the input to the classification layer. Target-attention
deploys a query matrix, QT ∈ R1×dh , with a single element
that attempts to capture the task-specific reference information
on the label space and generates only a single context vector for
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TABLE I
STATISTICS FOR MIMIC-III

prediction, CT ∈ R1×dh (6) [5].

CT (QT ,K, V ) = softmax

(
QTK

�
√
dh

)
V (6)

E. Output Layer

Given the generated context vector cl, we compute the pre-
diction probability of label l by using projection weights wl and
bias bl of a linear layer, with W ∈ R|L|×dh and B ∈ R|L|×1 (7),
followed by the sigmoid activation function.

ŷl = act(w�
l cl + bl) (7)

F. Training
We trained the model parameters by using the Adam optimizer

and minimizing the the binary-cross-entropy loss for the multi-
label experiments. We used a linear learning rate scheduler to
stabilize training during the first five epochs. We implemented
an early stopping mechanism to interrupt the training process
once the performance on the validation dataset stops improving
after ten epochs for the MIMIC-III notes [6]. The tunable model
hyperparameters (e.g., batch size, learning rate) are shown in
Section IV-B.

G. Dataset: MIMIC-III

MIMIC-III is a publicly available database that contains de-
identified EHRs (e.g., clinical notes, vital signs, laboratory mea-
surements) for over 40,000 patients; more detailed information
on the clinical aspects of the dataset can be found in Johnson
et al. [39]. Each unique patient ID is associated with at least
one hospital admission ID. Every hospital admission ID was
annotated by trained human encoders with a subset of the ICD-9
diagnosis and procedure codes. We formulated this problem as a
multi-label document classification task. Therefore, our models
aimed to predict a subset of labels, yi ∈ {0, 1}l, associated
with document i from the entire label set |L| of the set of N
documents D = {(xi, yi)}Ni=1 by utilizing only the discharge
summary note and potentially available addenda associated with
the respective hospital admission ID. We performed experiments
on the entire dataset for the full label set (MIMIC-III-Full) and
on a smaller subset that contained documents associated with
the 50 most frequent ICD-9 codes (MIMIC-III-50). We split the
data into training, testing, and validation sets by following the
splits proposed by Mullenbach et al. [6]. We tokenized each
sequence, lower-cased all tokens, and removed non-alphabetic
tokens or tokens that occurred less than three times in the corpus.
We set the maximum document length to 3,000 tokens for the
CNNs and RNNs and 4,096 tokens for the CLF to account for

TABLE II
FOR MIMIC-III WE DENOTE THE SELECTED HYPERPARAMETERS FOR THE

ARCHITECTURE-SPECIFIC METHODS FOR GENERATING DOCUMENT
EMBEDDINGS AS B, TARGET-, AND LABEL-ATTENTION AS T AND L

the differences in information content provided by word-tokens
used by CNNs and RNNs and subword-tokens used by the CLF.
Table I presents relevant statistics for this dataset.

IV. EXPERIMENTS

A. Evaluation Metrics

The model performance was assessed with evaluation metrics
commonly featured in the document classification literature [7].
We report micro- and macro-averaged F1-scores, micro- and
macro-averaged scores for the area-under-curve (AUC), and
precision at k for k in [5, 8, 15] for the classification experiments.

B. Hyperparameter Optimization

We performed hyperparameter optimization for all text-
encoder architectures on the validation split of MIMIC-III-50
by using a hill-climbing strategy to alleviate the computa-
tional burden; we utilized the found hyperparameters for the
MIMIC-III-Full models. Table II lists and indicates the optimal
hyperparameters for each architecture and dataset. The explored
hyperparameters are based on previous work [40]. We selected
a learning rate of 1e−4 for the CNN, BiGRU, and BiLSTM [40]
and tuned the learning rate for the CLF with values provided
by [34].

V. RESULTS

A. Results: MIMIC-III – Single-Head Label-Attention

Table III shows the performance scores for our single-head
label-attention experiments on MIMIC-III-Full and MIMIC-
III-50 and compares them with the performances of current
benchmark models taken from the original studies. For MIMIC-
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TABLE III
PERFORMANCE RESULTS ON MIMIC-III-FULL AND MIMIC-III-50 FOR THE ARCHITECTURE-SPECIFIC BASELINE (B), TARGET-ATTENTION MECHANISM (T),

RANDOM (R), PRETRAINED (P), HIERARCHICAL RANDOM (HR), AND HIERARCHICAL PRETRAINED (HP) LABEL-ATTENTION MECHANISM ACROSS MULTIPLE
TEXT-ENCODER ARCHITECTURES

III-Full, the results indicate that label-attention substantially
improves classification performance over both baselines across
all four text-encoder architectures. However, hierarchical ran-
dom label-attention underperforms both baselines for the CNN-
and CLF-based models. Models using pretrained reference in-
formation performed on average 0.014 points better than their
randomly initialized counterparts on the macro-averaged F1-
score across all text-encoder architectures. As expected, both
RNNs are less sensitive in performance to different query
matrix initializations than the CNN- and CLF-based models.
Unexpectedly, incorporating code hierarchy via our hierarchical
label-attention did not significantly boost model performance.
Hierarchical pretrained label-attention performed better than
hierarchical random label-attention. Overall, CLF experienced
the largest boost in performance with label-attention, followed
by the Bi-LSTM and Bi-GRU, and the CNN benefited the least
from label-attention. The CLF with hierarchical pretrained label-
attention achieved the best performance across all our models
with macro- and micro-averaged F1-scores of 0.070 and 0.552,
respectively.

For MIMIC-III-50, the results suggest that random, pre-
trained, and hierarchical pretrained label-attention perform sig-
nificantly better than the baseline methods across all text-
encoder architectures except for the CLF-based model with ran-
dom hierarchical label-attention. In contrast to MIMIC-III-Full,
the initialization of the reference information for the smaller
dataset can have a significant impact on model performance
and suggests that selecting random or pretrained embeddings
depending on the given text-encoder architecture optimizes per-
formance. Context-based text-encoder architectures (e.g., Bi-
GRU, Bi-LSTM, and CLF) achieved their best performances
when using label-attention and hierarchical label-attention with
pretrained embeddings. In contrast, CNN-based models had
their best result when using random label-attention because of
potential synergies with learning multiple n-gram patterns. Hier-
archical pretrained label-attention achieved equal or better per-
formance than pretrained label-attention across all text-encoder
architectures, and the performance difference for the Bi-GRU is
significant. Models that use hierarchical random label-attention
performed worse than the remaining types of label-attention.
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TABLE IV
FREQUENCY COUNT OF LABELS THAT ACHIEVE THEIR BEST PERFORMANCE

WITH EITHER RANDOM (R), PRETRAINED (P), HIERARCHICAL RANDOM
(HR), OR HIERARCHICAL PRETRAINED (HP) LABEL-ATTENTION

MECHANISMS BROKEN DOWN BY FREQUENCY QUARTILE ACROSS ALL
TEXT-ENCODER ARCHITECTURES FOR MIMIC-III-FULL

Notably, the Bi-GRU performed significantly better than the
Bi-LSTM for the RNN-specific baseline method by using the
averaged hidden states over all time steps as the input for
the classification layer. Overall, CLF-based models achieved
the highest performance, followed by the Bi-GRU, and last with
similar performance the CNN and Bi-LSTM. The CLF-based
model that uses pretrained label-attention scored the best per-
formance with a macro- and micro-averaged F1-score of 0.597
and 0.664, respectively. The performance discrepancies between
our best models and the current state-of-the-art model stem from
the differences in the applied text-encoder architectures. For
example, the HiLAT [8] first splits each clinical document into
smaller equally long chunks allowing it to use a transformer-
based text-encoder architecture with dense self-attention to en-
code each chunk, whereas our best CLF-model is designed to
encode the entire sequence at once using sparse self-attention.
Sparse self-attention is more likely to underperform compared
to dense self-attention but provides computational benefits like
memory usage. By reducing the effective document, the HiLAT
is able to learn more fine-grained semantic information from
the clinical document, whereas, our CLF-based model makes
long-range connections, potentially neglecting local semantic
information. We re-emphasize that for the purpose of this study,
we focus on more fundamental architectures, which is why
we chose the more straightforward CLF as our Transformer
baseline rather than a more complicated architecture such as the
HiLAT.

For MIMIC-III-Full, we counted the number of times a spe-
cific type of label-attention achieved the highest performance
for all labels in the label space. We then examined how the
strategy used to initialize label-attention relates to the text-
encoder architecture. Table IV summarizes the retrieved counts

per frequency quartile for all labels for which at least one
attention type achieved a nonzero performance; no label in
Q1 achieved nonzero performance across all evaluated models,
and thus Q1 is omitted. The results indicate that i) all mod-
els experience difficulties in predicting minority classes (e.g.,
only 1% of labels in Q2 were predicted correctly), ii) different
text-encoder architecture and label-attention type combinations
can learn to correctly classify a different subset of labels, iii)
hierarchical pretrained label-attention helps CNN- and CLF-
based models classify minority classes better (e.g., Q2, Q3),
and iv) the majority of labels achieve their best performance
with models utilizing either hierarchical pretrained or pretrained
label-attention mechanisms.

B. Results: MIMIC-III – Multi-Head Label-Attention

We performed extensive experiments on a multi-head ver-
sion of the label-attention mechanism. Table V lists the micro-
and macro-averaged F1-scores of our experiments for both
MIMIC-III datasets. For both datasets, all text-encoder archi-
tectures that used multi-head label-attention experienced sig-
nificant performance improvements over their single-head ver-
sions. Significant performance improvements were predomi-
nantly achieved by using multi-head attention with either two
or four attention heads. Additionally, hierarchical random label-
attention experienced the strongest performance increase from
using multi-head attention compared with the remaining types
of label-attention. We believe this significant performance in-
crease stems from each attention head attending to its own
set of features of the input, thereby allowing the model to
learn more important parts more easily. For MIMIC-III-Full,
multi-head label-attention significantly improved the macro-
average scores across all text-encoder architectures with the
strongest performance of 0.092 achieved by the Bi-GRU using
random multi-head label-attention. This indicates that multi-
head label-attention can improve the classification of minority
classes, which is beneficial for the identification of rare diseases.
Further, the micro-averaged F1-scores for the Bi-GRU-based
models were unaffected by the implementation of multi-head
attention, whereas the Bi-LSTM-, CNN-, and CLF-based mod-
els experienced significant performance improvements. The
CLF-based model that used hierarchical pretrained multi-head
label-attention performed slightly better than the single-head
version with a micro-averaged score of 0.554. For MIMIC-III-
50, the Bi-LSTM benefited tremendously from using multi-head
attention and showed significant improvements over the single-
head version for random, hierarchical random, and hierarchical-
pretrained label-attention across all numbers of attention heads.
Multi-head attention had less impact on the performance of CLF-
based models compared with the remaining three encoders. Our
results suggest that the ideal number of attention heads depends
on the architecture used, as well as trade-off considerations
between improvement gains and compute requirements.

Our results on MIMIC-III revealed the following:
i) label-attention generally improves classification performance
over architecture-specific baselines and target-attention
methods, ii) using label-attention with pretrained embeddings
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TABLE V
MULTI-HEAD LABEL-ATTENTION RESULTS ON MIMIC-III

is preferable over random embeddings for contextual-based
text-encoders (e.g., RNNs and transformers), iii) using the
transformer-based CLF achieves the best performance at
the cost of a significant increase in compute time (i.e.,
GPU-usage), iv) the Bi-GRU outperforms the Bi-LSTM on
aggregate, v) incorporating code hierarchy via label-attention
can significantly improve model performance for biomedical
text classification tasks and for the Bi-GRU and CLF in
particular, and vi) multi-head label-attention has a strong
impact on the classification performance, of the CNNs and
RNNs but only a marginal affect on CLF-based models.

VI. DISCUSSION

A. Comparison of Attention and Energy Scores

Modern attention mechanisms consist of two primary oper-
ations: i) the matrix multiplication between the input sequence
in K and the reference information in Q, which results in the
energy scores, and ii) the softmax operation, which produces
the attention scores by normalizing the raw energy scores. Both
energy and attention scores are essential to direct a model’s
focus to the most relevant tokens associated with a medical
concept; however, both sets of scores differ in their interpretation
depending on the nature of the desired analysis.

The primary difference between energy scores and attention
scores lies in the interpretation of the output of the deployed
mathematical operations. The matrix multiplication allows us to

interpret the magnitude and sign of the output as the strength
and direction of the association between the input in K and the
label-specific reference information inQ. In this way, the output,
or energy score, provides a global view of how related the token
is to a medical concept regardless of its current document or
corpus. In contrast, the softmax function output can be inter-
preted as pseudo-probabilities that indicate the local importance
of a token for predicting a positive association relative to all
other words in a document. The final attention score is therefore
influenced by the relevance of all other tokens and the total
length of a document [45]. While attention scores help the model
discriminate between signal and noise in a specific document,
the softmax operation retrieves the underlying global association
between a token and the label-specific reference information
initially captured by the energy score and, ultimately, with the
associated medical concept.

Consider the following two energy score sequences with
three tokens E1 = [−1.0,−2.0,−3.0] and E2 = [3.0, 2.0, 1.0].
After applying the softmax operation, we get identical attention
scores A1 = A2 = [0.665, 0.245, 0.090] for both energy score
sequences despite having different initial energy scores. This
example illustrates that a token may appear relevant locally
within the context of a document but may possess a negative
underlying global association with the medical concept that the
token is trying to explain. This ambiguity is critical because the
medical profession’s acceptance of neural networks as a diag-
nostic tool depends on the traceability of a model’s reasoning
for its predictions [46].
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Lastly, our work explores how different initialization strate-
gies of the reference information in Q impact model per-
formance and a model’s motivation behind its predictions.
These differences in Q across the label-attention types can be
directly observed in the generated energy scores but not in the
attention scores, making energy scores the ideal candidate for
understanding the effect of different attention architectures and
initialization strategies. However, we want to emphasize that
in clinical practice the combination of both sets of scores are
essential for sufficiently interpreting a model’s predictions.

B. Random vs. Pretrained Label Reference Information

This study investigates the impact of an attention mecha-
nism’s initialization strategy on classification performance and
potential differences between the initialization of an attention
mechanism’s query matrix with random or pretrained embed-
dings across various text-encoder architectures. Our results in
Section V indicate observable differences between both strate-
gies for smaller datasets such as MIMIC-III-50, whereas the
differences become negligible for larger datasets.

Randomly initialized models try to learn label-specific ref-
erence information from the available samples during training.
This method relies on the training corpus having a diverse set of
documents to provide information about the entire label space;
however, the label spaces of clinical text classification tasks are
often dominated by a small but frequently occurring set of labels
which inhibits the learning of representative features for infre-
quent labels. This imbalanced representation of learned features
can sometimes be addressed by incorporating prior knowledge
about the label space, such as the initialization of an attention
mechanism’s query matrix with pretrained embeddings of tex-
tual code descriptions. The purpose of using these pretrained
embeddings is to prime the model with information relevant
to each label and to push model performance. For example,
if a document has the ICD-9 code 427.31 - Atrial Fibrillation
assigned to it, then we expect the most relevant tokens or phrases
to be similar to atrial, fibrillation, or a combination of both. We
think the encodings of relevant tokens will be closer to the label-
specific query vector in the embedding space, thereby resulting
in larger energy scores. Thus, we hypothesize that the choice
of text-encoder architecture and type of label-attention directly
affect the resulting energy scores on a token level. To investigate
this hypothesis, we retrieved the energy score distributions from
the test corpus of MIMIC-III-50 for all label-attention types
across the four text-encoder architectures (Fig. 3).

We can infer from Fig. 3 the following differences between the
energy score distributions for the label-attention mechanisms: i)
RNN- and CLF-based models are less sensitive in their energy
score distributions to differently initialized query matrices (i.e.,
reference information) compared with the CNN-based model.
We think using the contextual-based encoding of clinical doc-
uments allows RNNs and transformers to generalize better and
produce more similar token-vector representations, and this
increases robustness for the computation of the energy scores.
In contrast, CNNs learn embeddings from multiple n-grams

Fig. 3. Differences between the energy score distributions for all
types of label-attention and text-encoder architectures extracted from
the MIMIC-III-50 test documents. The dots are outliers and represent
token-specific energy scores that lie beyond ±1.5IQR.

disconnected from the context of the document, and this results
in a more diverse set of token-vector representations that affect
the computation of the energy scores. ii) The majority of energy
scores are negative across all label-attention and text-encoder
architecture combinations, except for CNN when using random
label-attention. This is reasonable because only a minority of
tokens are indicative of medical classifications in clinical text
classification tasks. iii) Label-attention mechanisms with pre-
trained embeddings have larger extreme values and a larger
spread for their energy scores compared with their respective
randomly initialized counterparts. This is an artifact of using the
dot product between a token representation and the embedded,
label-specific reference information used to calculate the energy
score for each token. Essentially, the model can more confidently
distinguish between relevant tokens and noise, thereby improv-
ing its discriminatory ability.

As mentioned above, prior knowledge can be used to address
the label imbalance issues commonly found in clinical text
classification tasks to improve the prediction performance of
rare classes. We retrieved the model performance broken down
by label frequency quartile to investigate if pretrained embed-
dings can improve prediction performance on minority labels
for MIMIC-III-Full. The results in Table VI show that models
overall and across all text-encoder architectures have improved
performance on minority labels (i.e., Q2 and Q3) when using
hierarchical pretrained or pretrained label-attention compared
against their respective randomly initialized counterpart. This
indicates that using pretrained embeddings in an attention mech-
anism helps the model learn meaningful features used to search
for tokens or phrases relevant to the model.
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TABLE VI
MODEL PERFORMANCE PER QUARTILE WITH RANDOM (R), PRETRAINED
(P), HIERARCHICAL RANDOM (HR), OR HIERARCHICAL PRETRAINED (HP)
LABEL-ATTENTION ORGANIZED BY FREQUENCY QUARTILE AVERAGED AND

ACROSS ALL TEXT-ENCODER ARCHITECTURES FOR MIMIC-III-FULL

C. Model Interpretability: Phrase-Level Evaluation

Showcasing a model’s ability to provide interpretability helps
build trust in clinicians in AI-driven clinical support systems and
improve patient outcomes [47]. To investigate the general capa-
bility of models that use label-attention to provide such evidence
and potential differences between the various label-attention
types on a global level, we extracted the most relevant phrase
per code across all MIMIC-III-50 test documents. Specifically,
for each model, we extracted the key phrase, kp, with the largest
average energy score out of a pool of phrases with different
sizes from the entire set of label-specific energy score sequences,
E, (8):

kp = max

⎛
⎝1

s

j+s−1∑
i=j

ei

⎞
⎠ i : [0, N ], (8)

where ei is the energy score of the ith token in the sequence with
N tokens, and s is the phrase size with either i) three, four, or five
tokens for the RNNs/CNNs or ii) four, six, or eight tokens for
the CLFs. The phrase size differences account for the reduced
information provided by the CLFs’ subword-tokens.

Table VII provides examples for extracted text snippets con-
taining highly relevant phrases including their word-specific
energy scores for the prediction of ICD-9 codes, e.g., lactic
acidosis for the ICD-9 code 276.2 Acidosis. A clinician can
use the energy scores in tandem with the respective attention
scores to interpret the prediction of a medical code by answer-
ing the following two questions: i) How strong is the global
relationship between a word and the medical concept? ii) How
important is the same word relative to all other words in the
clinical document? The first question can be answered using the
energy scores where high energy scores indicate that particular
word is universally associated with a medical concept across
all documents in the corpus, e.g., the model is able to associate

TABLE VII
MODEL INTERPRETABILITY WITH LABEL-ATTENTION FOR TWO ICD-9 CODES

TABLE VIII
EXPERT EVALUATION OF THE MOST-RELEVANT LABEL-SPECIFIC KEY

PHRASE PER FREQUENCY QUARTILE FOR THE RANDOM (R), PRETRAINED
(P), HIERARCHICAL-RANDOM (HR), AND HIERARCHICAL-PRETRAINED (HP)

LABEL-ATTENTION MECHANISMS

hypoxic, a term describing the deficiency of oxygen in tissue,
with the ICD-9 code 518.81 Acute Respiratory Failure. The
latter question can be answered using the attention scores where
larger scores represent higher importance within that particular
document. See Section VI-A for a more detailed discussion on
the differences between energy and attention scores.

A medical professional evaluated a total of 256 extracted
phrases for their associations (3 - Strong Association, 2 -
Somewhat Associated, and 1 - No Association) with the re-
spective ICD-9 codes. The results of this evaluation are shown
in Table VIII and indicate differences in evidence-based inter-
pretability between the text-encoder architectures and between
the label-attention mechanisms. On the text-encoder architecture
level, we see that context-based text-encoder architectures are
more likely to provide immediate evidence across a larger subset
of ICD-9 codes compared with the n-gram-based CNN; this
difference is more prominent for infrequent codes associated
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Fig. 4. Achievable performance improvements per category of hier-
archical pretrained label-attention (HP) over pretrained label-attention
(P) for CNN, Bi-GRU, Bi-LSTM, and CLF. Aggregated number of cate-
gories achieving their best performance with hierarchical pretrained or
pretrained label-attention, respectively (left). The relative performance
difference is computed by subtracting P from HP (i.e., each point above 0
represents cases in which HP performs better. Points below 0 represent
cases in which P performs better). Each statistic was computed as the
aggregated, macro-averaged F1-score of all associated labels with their
parent category (right).

with Q1. We think that the CNNs’ design causes the model to
put emphasis on phrases that help the model to better discrimi-
nate between the codes but are not meaningful to humans. For
the CNN, Bi-GRU, and the CLF, the pretrained label-attention
mechanisms are more likely to provide evidence for a larger set
of medical codes compared with their respective randomly ini-
tialized counterparts. We think that initializing attention mech-
anisms with pretrained embeddings helps the model look for
phrases similar to the code description. For example, code 36.15
Single internal mammary-coronary artery bypass models often
assigned the highest importance to phrases such as coronary
artery disease for the CNN or coronary artery bypass graft
for the CLF. However, the results indicate that both pretrained
label-attention mechanisms assign high relevance to specific
phrases across all labels. For example, the phrase potassium
chloride meq was indicated as highly relevant across all labels
while only being positively associated with a subset of codes.
The retrieval of the same phrase as important across labels with
opposing associations may indicate that label-attention is prone
to propagating similar reference information across the different
label-specific queries.

D. Attention to Code Hierarchy
This study proposes an extension of label-attention that can

incorporate the hierarchical structure of a medical encoding sys-
tem (e.g., ICD-9) without needing to train an auxiliary network.
Contemporary work often deploys auxiliary networks (e.g.,
GNNs) to learn the code hierarchy and infuse the primary model
with information on the hierarchical relationships between the
labels to improve predictions [22]. In contrast, our hierarchical
label-attention method incorporates hierarchical relationships
by learning a set of features associated with high-level categories
for each document that are then propagated downstream to
enrich the low-level label reference information (i.e., each label
query is enriched with the features of its parent category). We

hypothesize that our category-wise incorporation of hierarchical
information will lead to performance improvement on a category
level. To test this hypothesis, we retrieved the label-specific
performance and computed an aggregated, macro-averaged F1-
score for all 14 categories associated with the MIMIC-III-50
classification task. The results are shown in Fig. 4. For the CNN,
Bi-GRU, and CLF, the majority of categories exhibit improved
performance. In particular, the Bi-GRU- and CLF-based models
strongly benefited from deploying hierarchical label-attention.
We showed that enriching the label-specific reference informa-
tion with high-level categorical information leads to improved
classification performance overall (see Section V) and on a cate-
gory level. The analysis also demonstrates that the performance
gains are equally distributed across all categories.

VII. CONCLUSION

In this work, we compared two strategies to initialize the ref-
erence information of the label-attention’s query matrix across
four text-encoder architectures, CNN, Bi-GRU, Bi-LSTM, and
the transformer-based CLF, on the two common MIMIC-III
clinical text classification tasks. We compared these methods
against common methods to generate document embeddings
and against target-attention. We showed that utilizing pretrained
reference information in an attention mechanism’s query matrix
improves classification performance across smaller label spaces,
but the performance increase is negligible with an increasing
number of labels and documents. Additionally, we demonstrated
that performance improvements are achievable by incorporating
the hierarchical structure of medical encoding systems via the at-
tention mechanism without requiring a second external network.
Furthermore, we showed that label-attention mechanisms can
provide highly relevant phrases allowing clinicians to interpret
the prediction of a specific medical code. We expect our research
to be helpful for future work that explores label-attention and
pretrained reference information to maximize the potential of
deep-NLP models for the automated classification of clinical
documents with medical codes. The source code is available at
https://github.com/cmetzner93/attention_mechanisms.
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