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TBCA: Prediction of Transcription Factor Binding
Sites Using a Deep Neural Network With

Lightweight Attention Mechanism
Xun Wang , Qiao Lian , Peng Qu , and Qing Yang

Abstract—The identification of transcription factor bind-
ing sites (TFBSs) is crucial for understanding the regula-
tory mechanisms of gene expression, which contributes
to unraveling cellular functions and disease development.
Currently, the most common approach involves the use
of deep learning techniques to predict TFBSs by com-
bining sequence and shape features. Although significant
progress has been made with these methods, the integra-
tion of local features extracted from DNA sequences and
shapes with global features has not yet reached a sufficient
level, and there is still significant room for improvement in
the accuracy of prediction results. In this paper, we pro-
pose a novel framework based on convolution and attention
mechanisms, referred to as TBCA, which combines DNA
sequence information and shape information for predicting
transcription factor binding sites. In this work, we employ
a two-layer convolutional neural network (CNNs) and self-
attention mechanism to extract complex sequence features
from DNA. What’s more, we utilize a Fourier-transform-
enhanced multi-head attention along with channel attention
to extract high-order shape features of DNA. Finally, these
high-order sequence and shape features are integrated
into the channel dimension to achieve accurate TFBSs
prediction. Our research results demonstrate that TBCA
exhibits superior predictive performance in 165 validated
ChIP-seq datasets. Furthermore, the employed attention
mechanisms can automatically learn important features
at different positions and scales, enhancing the accuracy
and robustness of feature representation. We also conduct
an in-depth analysis of the contributions of five different
shapes to site prediction, revealing that shape features can
enhance the prediction of transcription factor DNA binding.

Index Terms—Transcription factor binding sites
prediction, shape feature, convolutional neural network,
fourier transform, attention mechanism.
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I. INTRODUCTION

THE ability of proteins to recognize specific DNA se-
quences plays a fundamental role in the intricate regulatory

networks that govern cellular processes [1], [2], [3], [4], [5].
Transcription factors (TFs) represent a class of DNA-binding
proteins widely present in organisms. They play a crucial role
in the regulation of downstream gene expression by binding
to specific regions of DNA, either enhancing or inhibiting the
activity of downstream genes, and exert significant influence on
cell growth, differentiation, and function. The DNA sequence
sites bound by TFs are referred to as transcription factor binding
sites (TFBSs), which typically range from a few to about 5–20
base pairs (bps), relatively conserved over long-term evolution,
and exhibit a certain degree of sequence specificity [6]. Studies
have shown that mutations in TFs and TFBSs are one of the major
factors in human pathogenesis, with some genomic variations
potentially leading to the development of tumors or genetic
disorders [7], [8], [9]. Consequently, accurately identifying and
locating TFBSs have the potential to support us in understanding
how transcription factors regulate gene expression and provide
important foundations for developing therapeutic methods and
strategies targeting these regulatory mechanisms better. This
holds tremendous importance in the identification and subse-
quent management of cancer [10], [11].

With the advancement in high-throughput sequencing tech-
nologies [12], biologists have integrated chromatin immuno-
precipitation analysis (ChIP) with high-throughput sequencing,
a technique known as ChIP-seq [13], [14], [15], which can
mark the binding relationship between transcription factors and
upstream sequences of genes on the entire genome, this integra-
tion facilitates the construction of gene regulatory networks and
significantly accelerates research on transcription factor binding
sites. Up to now, many sequence-based prediction algorithms
have been developed to identify potential binding sites for var-
ious TFs, with the most common methods being probabilistic
models [16], [17], [18] and machine learning models [19], [20],
[21], [22]. However, these methods highly rely on experimen-
tally obtained data and are limited in their scalability, being
applicable only to specific transcription factors. They also do not
consider the position dependency between nucleotides, which is
an obvious weakness.

In recent years, deep learning (DL) has rapidly developed
and has been widely applied across various domains. Many
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scholars have incorporated DL algorithms into the prediction of
TFBSs [23]. For instance, the DeepBind model [24] utilized a
single-layer convolutional neural network to identify sequence-
specificity in TFBSs within DNA sequences. DanQ [25], on the
other hand, added bidirectional long short-term memory recur-
rent neural network (Bi-LSTM) [26] in this approach is capable
of learning long-range dependencies within sequences. DSAC
[27] adopted a dual-branch model, combining self-attention and
CNNs interactively to fuse local features and global representa-
tions. These models effectively leverage sequence features for
TFBSs prediction.

With the deepening of research on DNA structure recogni-
tion, researchers have come to realize that there are complex
relationships and dependencies between fundamental positions
due to the shape and deformation nature of DNA [28], [29], [30],
[31]. Currently, numerous methods have integrated both DNA
sequence and shape information to predict TFBSs, achieving
more accurate and interpretable prediction results. Examples
of such methods include DLBSS [32], CRPTS [33], D-SSCA
[34], and DeepSTF [35]. However, these approaches do not
fully harness the feature information obtained from sequences
and shapes, and there is still significant potential for improving
predictive performance by enhancing the integration of local and
global information extracted from these sources.

Recently, multi-head attention mechanisms [36], [37],
[38], [39] have found extensive applications across various
domains. They aiding models in concentrating their attention
on relevant information when dealing with complex data
and tasks, consequently enhancing overall performance.
DeepSTF, for the first time, introduced multi-head attention
mechanisms into models for predicting TFBSs and achieved
significant improvements. However, multi-head attention
requires the computation of attention weights multiple times,
its performance relies on the selection of the number of heads
and hyperparameter tuning. Furthermore, each attention head
introduces extra parameters, necessitating more extensive
data for training. Therefore, multi-head attention may not be
well-suited for smaller datasets. Inspired by this, Lee-Thorp
and colleagues proposed the FNet model [40], which substitutes
a standard, non-parametric Fourier transform in place of the
self-attention sub-layers found in multi-head attention. The
FNet model offers outstanding performance in a compact model
while maintaining low memory consumption. Under similar
computational speed and performance budgets, small-scale
FNet models outperform multi-head attention models.

Motivated by these insights, we have developed an approach
that combines convolution with lightweight attention mecha-
nisms, referred to as TBCA. TBCA leverages convolution for
local feature extraction from DNA sequence data and employs
different attention mechanisms for DNA sequence and shape
data. It combines the local features extracted through convolu-
tion with the global context provided by attention mechanisms,
thereby focusing on various aspects of the input data for multi-
scale information fusion. This improves the perception of the
model and ultimately enhances its performance. We employ
self-attention mechanisms for DNA sequence data, allowing

the model to assign different weights to each nucleotide, dy-
namically capturing correlations and dependencies at different
positions in the sequence. For DNA shape data, we utilize
a Fourier-transform-enhanced transformer encoder combined
with channel attention, aiding the model in capturing both local
and global features of DNA shape for a better understanding of
its three-dimensional structure. Furthermore, channel attention
enables the model to dynamically assign weights to different
shape feature channels, facilitating a better capture of key aspects
of shape information. To validate the utility of the proposed
model, we use the same dataset as Zhang et al. [34]. Exper-
imental results demonstrate that TBCA effectively combines
contextual information to integrate DNA sequence and shape
features, bringing about more accurate predictions.

The architecture of TBCA is illustrated in Fig. 1. We con-
ducted a series of experiments on a total of 165 ChIP-seq
datasets. The results indicate that the model proposed in this
paper, TBCA, exhibits superior performance compared to sev-
eral existing methods, particularly demonstrating significant im-
provements on smaller datasets. Furthermore, we delved deeper
into the contributions of individual shape information and the
impact of excluding shape data from the model. Our findings
reveal that models incorporating individual shape features and
the combination of shape features outperform models that do
not incorporate shape information. Thus, the inclusion of shape
information has a positive impact on TFBSs prediction.

II. RELATED WORKS

A. The Significance of DNA Structural Characteristics in
Predicting TFBSs

The structural characteristics of DNA in three-dimensional
space directly influence the binding and function of biological
macromolecules such as proteins and small molecules that inter-
act with it. Recent research has indicated that the specific binding
of proteins to DNA is a result of the protein’s ability to perceive
local changes in DNA shape and electrostatic potential. These lo-
cal variations assist proteins in locating specific binding sites on
DNA, allowing them to base-specific hydrogen bonds, thereby
achieving DNA binding specificity. Some researchers have in-
troduced a novel approach, combining sliding windows with
Monte Carlo (MC) simulations [41], to extract various shape
features based on sequences. These features have been depicted
to significantly influence the capacity of TF-DNA interactions.

DNA shape features encompass six inter-base-pair features,
six intra-base-pair features, and two minor groove features.
Inter-base-pair features elucidate the translational distance and
rotational angles between adjacent base pairs. Specifically, the
six inter-base-pair features comprise ‘Shift’, ‘Slide’, ‘Rise’,
‘Tilt’, ‘Roll’, and ‘HelT’. Intra-base-pair features delineate the
translational distances and rotational angles within individual
base pairs. The six intra-base-pair features encompass ‘Shear’,
‘Stretch’, ‘Stagger’, ‘Buckle’, ‘ProT’, and ‘Opening’. Minor
groove features describe the geometric shape and electrostatic
potential of the minor groove center, which include ‘MGW’
and ‘EP’.
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Fig. 1. Architecture of the TBCA model. (a) Data preprocessing: Conversion of DNA sequences and shape profiles into feature matrices.
(b) Feature Extraction: Capturing multi-scale crucial features from DNA sequences and shapes. (c) Transformation of feature mappings into the
final predictions.

B. Lightweight Attention Model

Attention mechanisms are a widely applied technique in the
field of deep learning. They enable models to dynamically focus
on different portions of input data, facilitating the dynamic cap-
ture of correlations and dependencies at various positions within
sequences, thereby enhancing model performance. Besides that,
channel attention allows models to dynamically assign weights
to different shape feature channels, enabling better capture
of critical shape information. By employing distinct attention
mechanisms, a more comprehensive modeling and analysis of
DNA sequence and shape data can be achieved. This, in turn,
facilitates the extraction of key features relevant to transcription
factor binding within DNA, ultimately leading to improved
predictive performance.

III. MATERIALS AND METHODS

A. Data Preprocessing

ChIP-seq Data: To assess the performance of TBCA, we
employ the same dataset as used by Zhang et al.[34]. In detail,
165 sequence datasets are selected from the Encyclopedia of

DNA Elements (ENCODE) project’s 690 ChIP-seq datasets.
These datasets contain TFBSs information obtained through
ChIP-seq experimental techniques. They encompass 29 TFs
from various cell lines. Each dataset extracts peak regions within
a 101-bp window, annotating each nucleotide within this 101-bp
region as either 0 or 1. Nucleotides labeled “1” are defined
as positive sequences, indicating that they belong to TFBSs.
Negative sequences are labeled “0” and consist of randomly
generated sequences that maintain the dinucleotide frequency
of the positive sequences. The GC content of these negative
sample sequences matches that of the positive samples, and it is
ensured "It is ensured that they are exclusive of any peaks in the
positive data. These 165 datasets encompass a total of 7524836
samples. To facilitate model training and testing, these samples
are divided into a training set (80% of the samples) and a test
set (20% of the samples). The training set included 6019796
samples, while the test set consisted of 1505040 samples. Sup-
plementary Table S1 provides detailed ChIP-seq statistics and
specific counts of positive and negative samples for each dataset.

DNA shape data: We investigate numerous structural charac-
teristics of DNA and select five representative shape features:
Helical Twist (HelT), Minor Groove Width (MGW), Propeller
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Twist (ProT), rolling (Roll), and Electrostatic Potential in the
Minor Groove (EP). These features represent critical aspects
of DNA shape, providing essential information about DNA
structure and function. They play a pivotal role in the process
of identifying and precisely regulating TFBSs. Through these
features, we gain deeper insights into the three-dimensional
structure of DNA molecules and their roles in gene expression
and biological processes, which significantly contributes to re-
search and exploration in the field of life sciences. DNAshapeR
[28] stands as a powerful R/BioConductor package, specifically
designed for the rapid and efficient prediction of DNA shape
features, facilitating in-depth investigations into the structural
characteristics of DNA.

B. The Model Architecture

Fig. 1 illustrates the structure of our proposed TBCA model.
The model consists of three main components: the Data Prepro-
cessing Module, the Feature Extraction Module, and the Output
Module. The Data Preprocessing Module primarily focuses
on preprocessing DNA sequence and shape data, converting
them into corresponding feature matrices.The Feature Extrac-
tion Module is further divided into two main parts: Sequence
Feature Extraction and Shape Feature Extraction. Each part
employs a convolution combined with an attention pattern to
capture multi-scale crucial features from DNA sequences and
shapes. The Output Module is responsible for adaptive model-
ing, facilitating the prediction of TFBSs. Subsequently, we will
provide a detailed explanation of these three major components
in the following sections, in the order presented.

1) Data Preprocessing Module: The TBCA model requires
two-dimensional vectors as input, comprising DNA sequence
data and DNA shape data. For each input DNA sequence, the
sequence information is initially transformed into a feature
matrix S of dimension 1 × 4 × 101 using one-hot encoding,
where A = [1, 0, 0, 0], C = [0, 1, 0, 0], G = [0, 0, 1, 0], and T
= [0, 0, 0, 1]. which can be seen as follows:

S1 = [o1, o2, . . . oi, . . . , o101] (1)

where oi denotes the one-hot vector of the ith nucleotide.
For the DNA shape data, we use the five types of nucleotide

shape data generated by the DNAshapeR package based on
Monte Carlo simulations, which are HelT, MGW, ProT, Roll,
and EP. For each input DNA sequence was transformed into a
5 × 101 feature matrix.

S2 = [m1,m, . . .mi, . . .m101] (2)

where mi denotes the Monte Carlo simulation vector of the ith
nucleotide. The data preprocessing procedure of the model is
displayed in Fig. 1(a).

2) Feature Extraction Module:: For the extraction of se-
quence features, it is primarily composed of the following
modules:

SA Module: Batch normalization is applied to the DNA se-
quence matrix S1 to obtain the data X. This operation helps
balance the distribution of input data, ensuring that the mean
of input sequences is close to zero and the standard deviation

is close to 1. This is beneficial for mitigating issues related to
gradient explosion or vanishing during training and can also
enhance training speed, facilitating faster model convergence.
Subsequently, a ReLU [42] activation function is added to en-
hance the nonlinearity of the model, enabling it to better adapt
to the data patterns. ReLU is a widely-used activation function
in deep learning.

ReLU (X) = max (0,X) (3)

Next, a linear transformation is applied to the preprocessed
input data, resulting in the Query Q ∈ RT×dk , Key K ∈ RT×dk ,
and Value V ∈ RT×dv where T represents the sequence length,
and dk and dv represent the hidden dimensions of the query or
key and value, respectively. The calculations for query, key, and
value are as follows:

Q = WT
Q X (4)

K = WT
K X (5)

V = WT
v X (6)

Where WQ, WK and WV are the learned weight matrices for
the query vector, key vector, and value vector, respectively.
Subsequently, the similarity or correlation between Query and
Key is computed, followed by normalization to obtain the matrix
of attention weights.

Attention (Q,K,V) = softmax

(
QKT

√
dk

)
V (7)

Where
√
dk is the length of the vectors used for scaling

the attention matrix, ensuring stable gradient values during the
training process and preventing gradient vanishing.

LF Module: Convolutional operations are effective in ex-
tracting features from DNA sequence matrices and DNA shape
matrices. By using a sliding window of filters, local features at
different positions can be captured. We initially employ a single-
layer convolutional neural network to extract low-level features
from the input matrix. Subsequently, we apply batch normaliza-
tion to normalize the extracted feature vectors to the range of
0–1, with ReLU serving as the activation function during this
process. Next, a max-pooling layer is used to downsample the
convolutional feature maps to reduce data dimensions, thereby
decreasing model parameters and computational load, while
enhancing model robustness. The max-pooling layer retains the
most significant features and achieves translational invariance,
allowing the model to capture relevant motifs at any position.
Furthermore, we incorporate a dropout layer, which serves as a
regularization technique that randomly sets some neuron outputs
to zero during training, reducing interdependencies between
neurons and preventing overfitting.

Technically, the module of LF operations on sequence feature
maps are as follows:

L1 = Maxpool (BN (ReLU (Conv (P1,Wc, bc)))) (8)

Where Wc signifies the weight matrix of the convolutional
layer, bc represents the bias of the convolutional layer, Conv(∗)
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denotes the convolution process, BN(∗) stands for batch nor-
malization operation, and Maxpool(∗) represents the local max-
pooling operation.

In the first and third stages of feature extraction from the
DNA sequence, two self-attention modules with dropout are
employed. The use of a dropout rate of 0.2 in the first stage
and 0.7 in the third stage effectively mitigates the occurrence of
overfitting.

HF Module: To extract deeper high-level features, the HF
module employs batch normalization and Exponential Linear
Units (ELU) to accelerate neural network training, enhance
network elasticity, and improve robustness. Subsequently, two-
dimensional convolution operations are used to generate more
complex high-level features.

H = Conv (ELU (BN (F))) (9)

In a nutshell, the sequence feature extraction module begins
with the SA module to capture global features of the sequence
data, enhancing the model with an understanding of key informa-
tion. Following this, the LF module conducts two-dimensional
convolution operations and max-pooling to extract local patterns
and structure within the sequence. The convolution operations
help expand the receptive field of the model and extract infor-
mation from different scales of features, while the max-pooling
layer reduces the spatial dimension of features to preserve
the most significant ones. This serves to reduce computational
overhead while retaining crucial information. Subsequently, the
extracted features are processed once again through the SA
module to capture long-range dependencies within the sequence,
extracting deeper essential features. The captured deep-level
features are then passed to the HF module to extract high-level
features weighted by attention for the second time, enhancing
feature representation capabilities. To integrate features at dif-
ferent levels, the high-level features obtained from the second
attention processing are linearly combined with the multi-scale
features obtained through the second convolution processing
using weighted parameters, resulting in a more representative
feature representation. The sequence feature extraction process
is illustrated in the lower part of Fig. 1(b).

Continuing, let me detail the composition of the shape feature
extraction module.

FT Module: This module consists of an improved trans-
former encoder structure. This work draws inspiration from
Fnet’s practical experience and the concept of encoder modules
[43]. Essentially, we replace the self-attention sub-layers in
each transformer encoder layer with Fourier sub-layers. For
the low-level shape feature map L2 obtained after processing
by the LF module, a Fourier transform is initially applied to
convert the input into a frequency domain representation, which
helps capture long-range dependencies of the input features.
Unlike traditional self-attention mechanisms, the FT module has
lower computational overhead due to the absence of parameters.
Simultaneously, we apply a multi-layer perceptron to perform
nonlinear transformations on the frequency domain representa-
tion of L2, which helps capture complex features in the input.
Finally, we merge the output of the Fourier transform module and
the multi-layer perceptron module with the output of the residual

connection and layer normalization modules to produce the final
output of the FT module. The exact computational process is as
follows:

F = LN(FFT (L2) + LN (MLP (L2)) (10)

Where FFT(∗) denotes the Fourier Transform operation,
MLP(∗) represents the Multi-Layer Perceptron operation, and
LN(∗) represents Layer Normalization operation.

CA Module: Subsequently, we further refine the deep-level
feature information of DNA shape data obtained from the FT
module using the Channel Attention (CA) module. First, we
simultaneously employ global average pooling and global max
pooling operations to obtain the overall statistics of the data as
well as the most prominent local information.

Cavg = CAP (H2) (11)

Cmax = CMP(H2) (12)

Where CAP(∗) and CMP(∗) define global average pooling and
global max pooling operations, respectively.

Next, a shared fully connected layer with one hidden layer is
applied to Cavg and Cmax, and the output vectors are integrated
through element-wise summation to generate the attention map.

A = Sigmoid(MLP
(
Cavg,W

(0)
a ,W(1)

a

)

+ MLP
(
Cmax,W

(0)
a ,W(1)

a

)
(13)

Where Sigmoid(∗) indicates the Sigmoid function. W(0)
a and

W
(1)
a represent the weight matrices of the shared multi-layer

perceptron.
Finally, the channel-wise attention map M is multiplied with

the input feature map H2 for adaptive feature refinement. For-
mally, the feature refinement operation is defined as follows:

M = M⊗H2 (14)

Where A stands for the optimized feature mapping. Similarly,
an optimized feature map A is also generated.⊗ defines element-
wise multiplication operation.

To outline the main points, the shape feature extraction pro-
cess commences with the LF convolution module, which initially
captures patterns and structural information across different
scales within shape data. Subsequent pooling layers serve to
reduce feature dimension while retaining the most salient char-
acteristics. Following pooling, the FT attention module allows
the model to further understand the internal relationships and
dependencies within the shape information, enabling better cap-
ture of abstract features in the shape information and weight
assignment to different features. The attention module enhances
the sensitivity of the model to shape information, facilitating the
discrimination of distinct patterns. Consecutively, the HF mod-
ule extracts features that have undergone attention adjustments,
thereby enhancing feature expressiveness and discriminability.
The convolution layers in this module help extract information at
different hierarchical levels, including more abstract features. Fi-
nally, the features are passed through the channel-level attention
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mechanism in the CA module. This mechanism weights the fea-
ture channels to improve the sensitivity of the model to different
feature channels. It aids the model in better comprehending rela-
tionships between channels of shape information, consequently
preserving critical shape features. The shape feature extraction
process is illustrated in the upper portion of Fig. 1(b).

3) Output Module: To fully utilize the features extracted
from sequence and shape data, we treat these two types of
data as separate input channels and concatenate them along the
channel dimension of a convolutional neural network. Later in
the process, the concatenated feature maps undergo adaptive
max-pooling, further enhancing the robustness of the extracted
features. Adaptive max-pooling is an operation that dynamically
adjusts the size and stride of the pooling kernel based on the size
and shape of the input feature maps, ensuring that the size and
shape of the output feature maps remain the same as the input
feature maps. Finally, a Sigmoid function is applied to predict
the features. The output process of the model is illustrated in
Fig. 1(c).

From a technical standpoint, the operations can be described
as follows:

Y = Sigmoid(Linear(Flatten

(AdaptMaxpool (Concat (H1,M))) (15)

C. Hyperparameter Setting

During the implementation of the convolutional module, it
is necessary to determine parameters such as the number of
convolutional layers, kernel size, stride, and the number of
channels. To determine the optimal combination of parameters,
multiple parameter samplings are usually performed, and the
best parameter combination is selected based on experimental
results. In the experiments described in this paper, convolutional
operations are performed on both the DNA sequence and shape
data. For convolution operations on DNA sequence data and
shape data, we employ single-layer convolution, two-layer con-
volution, and three-layer convolution operations, with channel
numbers of 32, 64, and 128. In addition, a kernel size of 4 × 16
(kernel width of 4 and height of 16) is used for sequence data,
while a kernel size of 5 × 16 (kernel width of 5 and height of 16)
is used for shape data. After conducting multiple comparative
experiments, it is determined that a single-layer convolution with
128 channels represented the optimal parameter combination for
the convolutional module.

In our training process, we employ the binary cross-entropy
loss function (BCELoss) [44], which effectively mitigates the
issue of gradient vanishing, ensuring more stable model training.
We also utilize a relatively small batch size of 64 to prevent
overfitting during model training. Furthermore, we employ the
Adam optimizer [45], an adaptive learning rate algorithm that
automatically adjusts the update step size for weights and
bias parameters based on gradient magnitudes. This adaptation
speeds up convergence to optimize the loss function efficiently.
Gradient computations are performed using the backpropagation
algorithm, efficiently computing the gradients of each param-
eter in the neural network concerning the loss function. The

chain rule was applied to propagate gradients to each neuron,
enabling efficient parameter updates. Moreover, we implement
a learning rate with exponential decay, allowing the learning
rate to gradually decrease as training progresses, facilitating
faster convergence to the optimal solution. To determine the
best hyperparameter set, we sample these hyperparameters ten
times and perform a five-fold cross-validation approach on the
training data to select the hyperparameter set corresponding to
the highest average PR-AUC score. The best hyperparameter
set is subsequently applied to train the final model on the entire
training dataset. Each model is trained for a maximum of 15
epochs, and an early stopping strategy was used to prevent
overfitting. Our models are implemented using PyTorch.

D. Performance Evaluation and Comparison

In this article, Accuracy(ACC), ROC-AUC, and PR-AUC are
used to measure the performance of our proposed method. These
metrics are summarized as follows.

ACC is used to measure the proportion of correctly predicted
TFBSs and non-TFBSs among all samples. However, when there
is an imbalance between positive and negative samples, the
model tends to favor the dominant class, ultimately culminating
in poorer performance in predicting the minority class. In such
cases, using ROC-AUC and PR-AUC can be more informative
for conducting a comprehensive evaluation of model perfor-
mance, especially in the identification of minority classes.

ROC-AUC: This metric represents the area under the Receiver
Operating Characteristic curve, which is the area under the curve
of True Positive Rate (TPR) and False Positive Rate (FPR). It
provides a thorough assessment of model performance across
various thresholds, making it particularly suitable for assessing
classification performance, regardless of whether the distribu-
tion of positive and negative samples is balanced.

PR-AUC: This metric represents the area under the Precision-
Recall curve. It focuses more on the recognition performance of
the model for minority classes because it is based on precision
and recall and is often more informative when dealing with
imbalanced data.

IV. EXPERIMENTAL RESULTS

A. Model Ablation

The attention mechanism in the TBCA model improves pre-
dictive performance. This study establishes two sets of variable
models to further understand the value of the attention mecha-
nism.

1) To verify the effectiveness of the improved attention
module, we develop a model, TBCNA, which uses only
two layers of CNN to process feature information. The
average prediction results on the test sets of 165 ChIP-
seq datasets for this model are shown in Table I. For
detailed calculation data, please refer to Supplementary
Table S2. Compared to TBCNA, TBCA shows relative
improvements of 3.2% in ACC, 6.06% in ROC-AUC,
and 5.2% in PR-AUC. Additionally, the data distribu-
tion results of TBCA and its derived variant models on
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Fig. 2. Violin plots of ACC, ROC-AUC, and PR-AUC for TBCA and variant models. The larger the area of a certain region, the higher the probability
distribution around a particular value.

TABLE I
PERFORMANCE COMPARISON

Fig. 3. Impact of different kernel sizes on the average ACC, ROC-AUC,
and PR-AUC of the TBCA model. As the value of k increases, the
performance of the model gradually improves, where k represents the
number of convolutional kernels.

the test sets of 165 ChIP-seq datasets are depicted in
Fig. 2. The results indicate that TBCA exhibits a more
stable data distribution and overall performance. This is
because using traditional convolution and max-pooling
alone has limited capability to extract global features.
They typically focus on the local features of input data

and struggle to capture the overall information of the data.
In contrast, the attention mechanism allows the model to
capture global information and long-range dependencies
in the input data. Combining convolution and attention
mechanisms enables the model to incorporate both local
and global features to some extent. Therefore, adding the
attention mechanism to the model can effectively improve
its predictive performance. Further, the performance of
the TBCA model remains good on datasets of various
sizes, demonstrating that the model structure constructed
in this study has good generalization and robustness.

2) In the processing of DNA shape features, our study
compares the performance of the FFT-enhanced unpa-
rameterized attention model (TBCA) with the combi-
nation of channel attention mechanism and multi-head
attention with channel attention mechanism (TBCTA).
The goal is to gain a better understanding of the advan-
tages of the parameterless attention mechanism within
the model. As displayed in Fig. 2, TBCA exhibits greater
stability and outperforms the variant model, especially
on smaller datasets when compared to TBCTA. At the
same time, under the same dataset and computational
environment, TBCA requires less time for training. De-
tailed computational data can be found in Supplementary
Table S2. A reasonable explanation for this observation
is that multi-head attention involves a relatively larger
number of parameters, potentially demanding more com-
putational resources and data for effective training. In
contrast, the computational complexity of the Fourier
Transform-based layer is independent of sequence length,
making it more suitable for processing various types
of sequences. Additionally, the Fourier Transform-based
layer has lower computational complexity, effectively
reducing the computational costs. This suggests that the
use of the FFT-enhanced parameterless attention model
(TBCA) along with the channel attention mechanism
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Fig. 4. ACC, ROC-AUC and PR-AUC comparison of TBCA and TBCASI on the test set of 165 ChIP-seq datasets.

significantly enhances the ability of the model to capture
DNA shape features, making it a more suitable choice for
the constructed TBCA model.

B. Analysis of the Contribution of DNA Shape

We extend the TBCA model with three sets of experiments
to better understanding of the role of DNA shape information
in predicting TFBSs. For detailed calculation data, please refer
to Supplementary Table S3. Firstly, our study constructs three
model structures by varying the number of convolutional ker-
nels to assess the impact of model complexity on the ability
to capture sequence and shape features. For each experiment,
we evaluated the performance of models using different num-
bers of kernels (32, 64, and 128) in terms of ROC-AUC. The
effect of different kernel sizes on the ACC, ROC-AUC, and
ROC-AUC performance of the model is manifested in Fig. 3.
The experimental results indicate that the model using 128
convolutional kernels performs the best, as it has a larger re-
ceptive field, allowing it to capture a broader range of input
information.

Besides, we develop TBCASI, a model that solely employs
independent DNA sequences as input. The comparative results
of ACC, ROC-AUC and PR-AUC between TBCA and TBCASI
on 165 ChIP-seq dataset test sets are illustrated in Fig. 4. It’s easy
to observe that in most test sets, TBCA outperforms TBCASI
significantly. indicates a positive role of shape information in the
interaction between DNA and transcription factors. Some TF-
BSs may highly dependent on shape information, making DNA
shape data crucial in certain scenarios. However, some TFBSs
might be more dependent on the [24] nucleotide composition of
DNA sequences, in which case sequence information is likely
to be more important. Overall, TBCA demonstrates a noticeable
improvement in ACC, ROC-AUC and PR-AUC, highlighting the
enhancement in TFBSs prediction accuracy due to the addition
of shape information. Therefore, we believe that an appropriate
combination of sequence and shape features can enhance the
predictive capabilities of DL models.

Finally, to further investigate the contribution of each shape
feature to TFBSs prediction, we sequentially exclude one of the

Fig. 5. Contribution distribution of Roll, HelT, MGW, ProT, and EP. The
farther away from the center, the higher the contribution.

Fig. 6. Performance of TBCA on 29 TFs. The further the dots are from
the center in the figure, the better the performance of the TFs.
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Fig. 7. Results comparing the usage of 14 DNA shape features to only 5 shape features across 165 test datasets are depicted in Fig. 7.

five shape features from the input DNA shape data, omitting it
as input to observe changes in the performance of the model.

Fig. 5 illustrates the overall contributions of Roll, HelT,
MGW, ProT, and EP in predictions across 165 datasets. It is
evident that each DNA shape feature plays a positive role in
the prediction results, with MGW and Roll exhibiting superior
performance in TFBSs identification compared to the other three
shape factors. This suggests that TFs with different structures
may exhibit distinct shape recognition preferences when binding
to DNA. In comparison to the TBCA model, the model utilizing
a combination of all five shape features demonstrates the best
performance. In other words, the average positive contribu-
tion of the five shape features surpasses the average negative
contribution, indicating that the shapes can complement one
another, thereby enhancing the predictive capabilities of the
model. Therefore, we can infer that the convolution and attention
model with added shape features is effective and has a positive
impact on TFBSs prediction.

In this study, we conduct a comprehensive analysis of the
performance of the TBCA model, with a particular focus on its
average performance across 29 different TF datasets. The aim
is to gain a deeper understanding of the model’s applicability
and its potential for broad generalization, especially concern-
ing multiple distinct transcription factors. Fig. 6 illustrates the
performance of TBCA across these 29 TFs.

Significant variations in the predictive results are observed
among different TFs, which may be attributed to the spe-
cific binding specificity of each TF to nucleotides in DNA
sequences, thus affecting their predictive outcomes. Further-
more, the differences in the quantity and quality of ChIP-
seq experimental data available for various TFs can influ-
ence the accuracy of TFBSs predictions, with more extensive
and high-quality data typically leading to improved predictive
performance.

To investigate the impactof existing binding specificity mod-
els using nine additional DNA shape features (Rise, Shift, Slide,
Tilt, Buckle, Opening, Shear, Stagger, Stretch), we develop
TBCASS. We explore the performance of models utilizing 14
DNA shape features compared to those employing only five,
conducting experiments on 165 test datasets. As illustrated in
Fig. 7, models incorporating more shape features demonstrated

slightly lower performance for 165 test datasets. Additionally,
we analyze the predictive outcomes for each transcription factor
using the 14 shape features. For most TFs, models integrating
multiple shape features exhibited slight improvements in per-
formance compared to TBCA. However, for smaller datasets of
TFs, such as EZH2, TBCASS demonstrate poorer performance.
Comprehensive computational details can be found in Supple-
mentary Table S4. While integrating more DNA shape features
might offer comprehensive insights, it could potentially augment
model complexity, lengthen training times, and introduce noise
or unnecessary intricacies. Therefore, leveraging a smaller yet
more representative and predictive set of features may prove
more effective.

C. Performance Comparison and Analysis

To further assess the performance of TBCA, we compare it
with seven state-of-the-art TFBSs prediction methods. These
seven methods can be categorized into two groups: (i) stan-
dalone sequence-based deep learning methods, such as Deep-
Bind, DanQ, and DSAC, and (ii) deep learning methods that
combine sequence and shape information, such as DLBSS,
CRPTS, D-SSCA, and DeepSTF. To ensure a fair compari-
son, we carefully optimized the aforementioned methods and
computed the average ACC, ROC-AUC, and PR-AUC on 165
datasets. The comparative results are presented in Fig. 8. De-
tailed computation data can be found in Supplementary Table S5.
TBCA outperforms all competing methods in terms of average
ACC, ROC-AUC, and PR-AUC, with a particularly noticeable
improvement on smaller datasets. indicating the robustness of
TBCA. Table I summarizes the average ACC, ROC-AUC, and
PR-AUC results for our model and all competing methods across
the 165 datasets.

Compared to DeepBind, DanQ, and DSAC models that uti-
lize sequence information alone, TBCA exhibits significant
improvement, as illustrated in Fig. 8. This performance enhance-
ment may be attributed to the fact that the proposed model
simultaneously considers both sequence and shape features.
These two types of features are complementary, with sequence
information better capturing base sequence patterns and shape
information being more adept at capturing the three-dimensional
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Fig. 8. Box plots comparing the ACC, ROC-AUC, and PR-AUC of TBCA with seven state-of-the-art methods on the test sets of 165 ChIP-seq
datasets. The central orange line within the box represents the median, while the ends of the box represent the upper and lower quartiles. The lines
extending to the highest and lowest observed values in the boxplot depict the upper and lower limits of the dataset, while dots signify outliers.

structure and spatial distribution characteristics of bases. This
complementary advantage optimizes the predictive capabilities
of the model for transcription factor binding sites. Hence, we
believe that the appropriate combination of sequence and shape
features can improve the predictive ability of deep learning
models.

Compared to DLBSS, CRPTS, and D-SSCA models that
incorporate both sequence and shape information, TBCA also
shows obvious improvement, as depicted in Fig. 8. However,
it is noticeable that models with a simple addition of LSTM
perform worse than those using attention mechanisms. This
is primarily due to the fact that LSTM often require a large
amount of data for training to harness their potential advantages.
With smaller datasets, LSTMs may tend to overfit, leading
to decreased performance. Self-attention mechanisms, when
combined with unparameterized attention along with channel
attention, can better capture global dependencies, dynamically
focus on various regions of the input data, and consequently,
capture multi-scale features more effectively. This contributes
to improved model generalization across different scales and
complexities of data.

V. DISCUSSION

We propose a novel convolution and attention-based frame-
work named TBCA, which combines DNA sequence infor-
mation and shape features for predicting TFBSs. The results
indicate that the convolution with lightweight attention modules
used in TBCA outperforms several common TFBSs predic-
tion methods on a validated set of 165 datasets, especially
excelling in scenarios with smaller data volumes. However, due
to differences in data sizes among the 165 ChIP-seq sequence
datasets from ENCODE, the performance of the model may be
limited when training on datasets with fewer samples, resulting

in reducing performance in such cases. Therefore, TBCA em-
ploys a convolution combined with an unparameterized attention
mechanism to better capture global dependencies, focusing on
multiple aspects of input sequences and enhancing the ability to
capture multiscale features, ultimately improving the general-
ization of the model to data of varying scales and complexities.

Furthermore, we conduct individual analyses of each shape
feature. The performance of combined DNA shape features
showed only slight improvement compared to using individual
DNA shape features, which suggests that TFs with different
structures may exhibit distinct shape recognition preferences
when binding to DNA. Moreover, integrating more DNA shape
features can offer a more comprehensive set of information.
However, they may also increase the complexity of the model
and the training time.

We believe that advanced deep learning techniques com-
bined with attention mechanisms for the in-depth analy-
sis of sequence and shape motifs will assist in inferring
gene expression regulation relationships, enabling more pre-
cise modeling of complex regulatory systems in the human
genome. We hope that TBCA serves as a valuable tool for
researchers in the genomics field, helping them gain a better
understanding of the mechanisms governing gene expression
regulation.
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