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Abstract—Feature importance methods promise to pro-
vide a ranking of features according to importance for a
given classification task. A wide range of methods exist
but their rankings often disagree and they are inherently
difficult to evaluate due to a lack of ground truth beyond
synthetic datasets. In this work, we put feature impor-
tance methods to the test on real-world data in the do-
main of cardiology, where we try to distinguish three spe-
cific pathologies from healthy subjects based on ECG fea-
tures comparing to features used in cardiologists’ decision
rules as ground truth. We found that the SHAP and LIME
methods and Chi-squared test all worked well together
with the native Random forest and Logistic regression fea-
ture rankings. Some methods gave inconsistent results,
which included the Maximum Relevance Minimum Redun-
dancy and Neighbourhood Component Analysis methods.
The permutation-based methods generally performed quite
poorly. A surprising result was found in the case of left bun-
dle branch block, where T-wave morphology features were
consistently identified as being important for diagnosis, but
are not used by clinicians.

Index Terms—Electrocardiogram, feature importance
ranking, cardiologist, atrioventricular block, right branch
bundle block, left branch bundle block.
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I. INTRODUCTION

A TRAINED cardiologist can diagnose over 150 different
conditions from a 12-lead electrocardiogram (ECG) [1].

Such diagnoses are made on the basis of a multitude of ECG
features which consist mainly of time intervals between certain
fiducial points on the ECG, amplitudes of prominent features
or morphology of ECG segments. For each pathology, the rele-
vant criteria for specific features are well documented [1], [2],
although there may be minor differences between one reference
source and another.

On the other hand, there are numerous algorithms available
for determining a ranking of features by importance for a given
classification task [3]. However, if several algorithms are used,
then it is often found that they give significantly different feature
importance rankings and it is not apparent which ranking is
best or whether one particular ranking is better than another.
Therefore, we did a comparison of feature importance rankings
generated by a number of different algorithms with the corre-
sponding features that a cardiologist uses for diagnosis. This has
the advantage of having a set of important features which has
been gleaned from clinical experience over many years for the
diagnosis of each condition which can be compared with the
feature rankings of the algorithms.

Another possibility with this study is that the feature impor-
tance algorithms could identify features that are important for
the diagnosis of a condition which are not normally considered
to be important by cardiologists.

We have chosen three pathologies to study, namely first degree
atrioventricular block (1st degree AV block), complete right
bundle branch block (RBBB) and complete left bundle branch
block (LBBB). A diagnosis of these conditions by cardiologists
involves 1, 7 and 14 features respectively and so are progres-
sively more complex, starting with the simplest possible case.
In addition, all three pathologies are commonly encountered in
the general population and are well-represented in the PTB-XL
dataset underlying our study.

For this study, we restrict attention to the simplest case of a
binary classification that seeks to distinguish healthy subjects vs.
a specific pathology. Of course in practice, a cardiologist has to
identify a condition (or multiple conditions) out of many possible
conditions, which is a much more complicated task. On the other
hand, it is quite conceivable that a simple binary classification of
healthy vs. a specific pathology could be successfully achieved
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by using only a reduced subset of the complete list of diagnostic
conditions. However, we consider it appropriate to study the
simplest case first. A study of multiclass feature importance
algorithms with all four of the above classes has been undertaken
as a separate study [4].

We are considering the features used by cardiologists for diag-
nosis to be the gold standard against which we compare various
algorithms. However, it should be noted that different sources
for ECG diagnosis often give slightly different conditions for the
diagnosis of a specific pathology. This may be because textbooks
give sufficient conditions for diagnosis, rather than an exhaustive
list of all changes associated with a pathology. We have used
EKG-Kurs für Isabel [5] as it gives simple, itemised conditions
for each pathology. More comprehensive texts are available but
we chose this one based on its simplicity and clarity.

An alternative approach to identifying important parts of the
ECG signal for diagnosis of a particular condition is to use
explainable AI (XAI) methods applied to models operating on
the raw signal [6], [7]. We present a detailed comparison between
both approaches in the Discussion Section.

We believe that while feature importance methods are well-
established, their application and systematic evaluation in cardi-
ology has not been covered in the literature. Our work addresses
this gap by:

� using feature importance methods to rank ECG features
based on their ability to discriminate specific cardiac
pathologies from healthy patients. By juxtaposing these
with cardiologists’ clinical decision rules, we shed light
on the alignment (or lack thereof) between computational
methods and real-world clinical practice.

� providing a comprehensive comparison of these methods,
which is rare in the existing literature, especially in the
field of cardiology. Such a comprehensive comparison
provides cardiology practitioners with a guide to help them
determine which methods are most reliable and applicable
in specific clinical settings.

� uncovering new insights from feature importances. No-
tably, our study reveals a surprising finding: Certain fea-
tures of T-wave morphology consistently emerge as criti-
cal for the diagnosis of LBBB, in contrast to prevailing
clinical practice, which relies predominantly on QRS-
complex-related features for this diagnosis.

It is worth stressing that this work does not line up in the
approaches which try to enhance decision support systems with
XAI side information. Rather than directly advocating for the
integration of XAI into diagnostic tools, this study serves as a
critical evaluation of feature importance methods, particularly
for tabular classifiers, and underscores the potential of XAI to
be used in knowledge discovery.

II. MATERIALS AND METHODS

A. ECG Signals

The ECG signals that were used for this study were taken
from the PTB-XL dataset [8], [9], which is publicly available on
PhysioNet [10]. In particular, for each of the three pathologies

considered (1st degree AV block, RBBB, LBBB), we extracted
all the records that were labelled with only the specific pathology.

B. ECG Features

For extracting features from an ECG, we used the University
of Glasgow 12-lead ECG analysis algorithm which has been
developed over many years by a team at the University of
Glasgow [11]. This software can derive more than 772 global
and lead-dependent ECG features from a 10-second 12-lead
ECG signal. (All the features derived by the Glasgow software
for the PTB-XL dataset are available in the PTB-XL+ feature
dataset [10], [12].) From this large collection of features, we
selected 117 which a cardiologist would typically assess when
considering a diagnosis that are given in Appendix A. The
selection of features may be subject to discussion, and some
might advocate for the inclusion of different features. However,
it is important to note that there is not a universally agreed upon
set of features. These features were derived for all of the ECG
records in each of the pathology classes. The small number of
records that contained missing values due to issues with feature
extraction were deleted to obtain a final dataset without missing
values. Features were also drawn from an equal number of
healthy patients’ records, chosen at random. If any records had
missing values, they were replaced by other records sampled at
random. With this approach, a balanced dataset containing no
missing values was created for each pathology.

Each feature was scaled to have a mean of zero and a vari-
ance of one to give a standardized dataset, which was required
for certain algorithms (Logistic regression) or is known to be
beneficial for others (Deep networks).

The final datasets contained a total of 1,592 records for 1st
degree AV block, 1,074 records for RBBB and 1,072 records
for LBBB, with half being for healthy subjects and half for the
specific pathology in each case.

C. Pathologies

The ECG is the difference in electrical potential measurable
between two different electrodes attached to the body surface
and captures the electrical activity due to de- and repolarization
of cardiomyocytes in the heart. In the healthy case, electrical
activity is spontaneously initiated in the pacemaker cells at the
sinoatrial node in the right atrium. After spreading throughout
the atrial myocardial tissue and causing the P wave in the
ECG, the excitation is delayed at the atrioventricular node. The
electrical activation is then conducted via the bundle of His,
which branches into a right bundle as well as an anterior and a
posterior left bundle before it reaches the Purkinje fibers. These
activate the ventricular myocardium from the apex to the base
and lead to the QRS complex in the ECG. Finally, the T wave in
the ECG arises due to repolarization of the ventricular myocytes.

We now consider each of our chosen pathologies in detail.
1) Atrioventricular Block: In patients with atrioventricular

block, the excitation conduction between atria and ventricles is
impaired. In 1st degree AV block, which is studied in this work,
the conduction is markedly delayed and leads to PR intervals
>200 ms in the ECG. However, all atrial impulses are still
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TABLE I
FEATURES THAT CORRELATE WITH THE IMPORTANT FEATURES FOR RBBB,

BUT NOT INCLUDING OTHER IMPORTANT FEATURES, TOGETHER WITH THEIR
CORRELATION COEFFICIENTS

transferred to the ventricles and every P wave is followed by
a QRS complex as opposed to second or third degree AV-block
that is associated with skipped beats or independent excitation
of atria and ventricles respectively [5]. Thus, there is only one
feature which is used for the diagnosis of 1st degree AV block:

� PR interval
We checked for other features that correlate (with absolute

Pearson correlation coefficient ≥ 0.7) with the PR interval, as
such features may be expected to occur high up the ranking.
However, there were none and so this is the simplest possible
case.

2) Right Bundle Branch Block: Complete right bundle
branch block is characterized by a marked delay or block in
conduction in the right bundle branch. In this case, the right
ventricles are activated via impulses conducted through the
left bundle branches reaching the right ventricle through the
ventricular myocardial tissue. As this takes longer than the phys-
iological activation through the three fascicles, this reflects in a
widened QRS complex of >120 ms in the ECG. Furthermore,
a terminal R’ peak is visible in lead V1 and a notched S wave
occurs in leads I, aVL and V6 [5]. Thus, the 7 features that are
relevant for diagnosis of right bundle branch block are:

� QRS duration
� R amplitude in lead V1
� R’ amplitude in lead V1
� S amplitude in leads I, aVL, V1 and V6

We call these 7 features the important features for RBBB.
We checked for features that correlate (with absolute Pearson
correlation coefficient≥ 0.7) with one of these 7 features. There
were 3 such features, not including the important features above,
which are given in Table I .

3) Left Bundle Branch Block: Analogously to right bundle
branch block described above, complete left bundle branch block
describes the condition of a blockage in the electrical conduction
in the left bundle branch. As the left bundle branches into an
anterior and a posterior fascicle, the term complete left bundle
branch block refers to a conduction block before the bifurcation.
In the ECG, the delayed activation of the left ventricle reflects
in a widened QRS complex of >120 ms, deep Q waves in lead
V1 and a notched or monophasic QRS morphology in the lateral
leads I, aVL, V5 and V6 [5]. Thus, there are 14 features that are
involved in the diagnosis of left bundle branch block:

� QRS duration

TABLE II
FEATURES THAT CORRELATE WITH THE IMPORTANT FEATURES FOR LBBB,

BUT NOT INCLUDING OTHER IMPORTANT FEATURES, TOGETHER WITH THEIR
CORRELATION COEFFICIENTS

� Q amplitude in lead V1
� R amplitude in leads I, aVL, V5 and V6
� R’ amplitude in leads I, aVL, V5 and V6
� S amplitude in leads I, aVL, V5 and V6

We call these 14 features the important features for LBBB.
We checked for features that correlate (with absolute Pearson
correlation coefficient ≥ 0.7) with one of these 14 features,
excluding the important features listed above. Table II lists the
28 features identified through this analysis.

D. Feature Importance Algorithms

We can broadly categorize the feature importance algo-
rithms investigated in this work as model-dependent and model-
independent methods.

1) Model-Dependent Feature Importance Methods:
� Random forests, Boosted decision trees, Logistic re-

gression and Deep neural networks with permuta-
tion/SHAP/LIME feature importance: In terms of mod-
els, we consider Random forests, Boosted decision trees,
Logistic regression and Deep neural networks. The hy-
perparameters used are summarized in Table III. They
correspond to the default parameters, except for the deep
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TABLE III
HYPERPARAMETERS FOR THE MACHINE LEARNING MODELS USED

neural network, where we started with a very deep network
(10 layers) and removed layers as long as there was no
noticeable drop in performance. The training data con-
sisted of records from the PTB-XL stratified folds 1–9 and
the test data were records drawn from fold 10 [8]. These
models were then combined with established attribution
methods LIME [13], SHAP [14] and permutation feature
importance [15]. LIME involves training an interpretable,
local surrogate model to approximate the model behaviour
near the sample of interest. SHAP is an efficient imple-
mentation of the game-theoretic Shapley value approach.
LIME and SHAP are local attribution methods which
return attribution scores per sample, and we therefore
ranked the features on the mean of the absolute attribution
values across the test set. As a third class of feature
importance algorithms, we considered permutation feature
importance, a global attribution method which quantifies
feature importance via the decrease in model performance
upon replacing a feature column of interest by a permuted
copy of itself.

� Random forests: For a random forest model, the impor-
tance of features can be determined by how much they
decrease Gini impurity when averaged over all the trees in
the forest. It is known that these feature importance values
can be misleading for high cardinality features. However,
permutation feature importance (see below) can mitigate
this to some extent [16].

� Logistic regression: The importance of features in a logis-
tic regression model can be determined by the exponential
of the weight associated with each feature [3].

� Gaussian processes: In Gaussian Process binary classi-
fication, the probability of class membership conditioned
on an observed feature vector x is modelled as σ(f)where
σ is a sigmoid function, such as the logistic function, and
a Gaussian Process model GP(0, k(x, x′)) is used as a
prior distribution for the latent variable f [17]. Using a
squared exponential covariance kernel for k(x, x′) with
diagonal covariance matrix, each feature xi is associated
with its own length-scale parameter li. A small value for li
implies the feature varies over short-length scales and so is
important for the classification. Consequently, sorting the
length-scale parameters provides a ranking of the features.

In our implementations, we employed Gaussian Process
regression, designating +1 for the positive class and −1
for the negative class, and using the sigmoid function
to infer hard predictions. For inference, specifically for
approximating the integral in the posterior, we adopted
Laplace’s method. We refer to the code repository for
further implementation details. [18]

2) Model-Independent Feature Importance Methods: In ad-
dition to model-dependent methods, we also include methods
that solely rely on the data distribution without making use
of a trained predictor on the dataset. In the feature selection
literature [19], [20], [21], these methods are often referred to
as filter methods. More specifically, we consider the following
methods:

� Chi-square test: The Chi-square test is a statistical hy-
pothesis test that is valid to perform when the test statistic
is chi-squared distributed under the null hypothesis. Each
feature is tested individually for independence of the re-
sponse. A small p-value is associated with a feature that
has dependence on the response, and so is important. Thus,
features are ranked by − log(pi), where i is the index of
the features [22].

� Maximum Relevance - Minimum Redundancy (MRMR):
The MRMR method reduces redundant features while
keeping the relevant features for the model, where re-
dundancy and relevance are quantified in terms of mu-
tual information. It is known that many essential features
are correlated and redundant and so the MRMR method
selects features taking into account the relevance for pre-
dicting the outcome variable and the redundancy within
the selected features [23], [24].

� Neighbourhood Component Analysis (NCA): The NCA
method selects features by maximizing the prediction
accuracy of classification algorithms. The concept of this
method is similar to the k-nearest neighbours classification
method, only in the NCA method, the reference point is
selected randomly not to be the nearest neighbour for the
new point [25].

� ReliefF: ReliefF calculates a feature score for each feature
depending on feature value differences for neighbours
which have the same or a different class, which can then be
used to rank the features. The ReliefF method estimates the
attribute qualities based on how well they can distinguish
between instances near them. This method was initially
designed to apply to binary classification problems with
discrete or numerical features [26].

� Modified ROC AUC: The receiver operating characteristic
(ROC) curve consists of a plot of the false positive rate
against the true positive rate as a threshold is moved across
the distributions for the two classes. The area under the
curve (ROC AUC) is a standardised measure of the degree
of separation of the two distributions and varies from 0.5
(no discrimination) to 1 (perfect discrimination) [27].
We note that the positive class has to be specified and that if
this is changed from one class to the other, the ROC AUC
values range from 0.5 (no discrimination) to 0 (perfect
discrimination). Thus, we define ModifiedROCAUC =
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max(ROC AUC, 1- ROC AUC). This ensures that all val-
ues are in the range of 0.5 to 1.
A feature ranking can be generated for a binary classifica-
tion problem by generating a distribution for each of the
two classes for each feature individually and then finding
the Modified ROC AUC for all of these distributions. The
features are then ranked by their Modified ROC AUC value
from highest to lowest, which ranks the features according
to their ability to discriminate the two classes individually.
We also note that the ROCAUC values aid with inter-
pretation of the features, as ROCAUC > 0.5 implies
that the feature increases due to the pathology whereas
ROC AUC < 0.5 means that the feature decreases due to
the pathology.
To ensure transparency and reproducibility, the implemen-
tations of all methods and models that were used in this
study have been made publicly accessible at [18].

E. Scoring Algorithm

When comparing a feature ranking generated by one of the al-
gorithms with the important feature set for diagnosis of a specific
pathology, we define a score that enables a simple comparison
between different methods, assuming that all features in the set
of important features for diagnosis have equal importance. As
a first step, we choose a value of n, which is the number of top
features in each ranking that will be considered. We then take
a weighted average based on the ranking of each of the top n
features that is contained in the important set, where the first
feature has a weighting of n, the second a weighting of n− 1
and so on, so that the nth feature has a weighting of 1. This
weighted average is then normalised to give a score between 0
and 100 (by dividing by n(n+ 1)/2/100), which we round to
the nearest integer.

With this scoring system, an important feature in position 1
of the ranking contributes 200/(n+ 1) to the score, whereas an
important feature in positionn only contributes 200/(n(n+ 1))
to the score. For example, taking n = 5 and assuming that a
ranking has the first, second and fourth features in the important
set gives a score of (5 + 4 + 2)/15× 100 ≈ 73.

We also consider the ranking of features that are least able
to discriminate between the two classes, which can be defined
by the features with the lowest modified ROC AUC values.
In particular, we consider the two features with the lowest
modified ROC AUC values which, for the three pathologies,
are as follows:

� 1st degree AV block: S amplitude, lead I (modified ROC
AUC=0.5006); S amplitude, lead V2 (modified ROC
AUC=0.5006)

� RBBB: R’ amplitude, lead V6 (modified ROC
AUC=0.5028); R’ amplitude, lead I (modified ROC
AUC=0.5037)

� LBBB: R amplitude, lead I (modified ROC
AUC=0.5002); R’ amplitude, lead V6 (modified ROC
AUC=0.5009)

We refer to these as the non-discriminating features.

TABLE IV
ACCURACY OF THE MACHINE LEARNING MODELS ON THE TEST DATA FOR

EACH DISTINGUISHING EACH PATHOLOGY FROM AN EQUALLY SIZED SET OF
NORMAL SAMPLES

Fig. 1. Histogram of the PR interval for the records labelled as healthy
and 1st degree AV block. The red line is at 200 ms, which is the threshold
for diagnosis of 1st degree AV block.

III. RESULTS

We consider results of the feature importance ranking algo-
rithms applied to the feature table for each pathology in turn.
The model-dependent methods first require training of a ma-
chine learning model for the binary classification problem. The
accuracy of the five machine learning models for each pathology
on the test data are shown in Table IV. Clearly, these are all very
high. For this reason, we refrain from further hyperparameter
tuning.

A. Atrioventricular Block

First degree AV block is defined by the PR interval being
greater than 200 ms [1]. Thus, there is a single important feature
for diagnosis in this case, namely the PR interval. We therefore
expect this feature to occur high up in the rankings.

For the data we are using, the distributions for the PR interval
for the records labelled as Normal and 1st degree AV block are
shown in Fig. 1. Clearly, not all of the 1st degree AV block
records satisfy the diagnostic criterion of exceeding 200 ms.
In fact, the PR interval for 236 out of 796 records labelled as
1st degree AV block does not exceed 200 ms, with the smallest
value being 26 ms (which is non-physiological). Conversely,
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TABLE V
RANKING OF THE PR INTERVAL AND THE NON-DISCRIMINATING FEATURES

WHEN CONSIDERING NORMAL AND 1ST DEGREE AV BLOCK SIGNALS

there are 23 out of 796 records labelled as Normal that have PR
interval exceeding 200 ms, with the largest value being 242 ms.
Presumably in both cases this is because the Glasgow algorithm
identifies the PR interval as shorter/longer than that identified
by the cardiologists who labelled the signals.

As an aside, if we tried to classify 1st degree AV block
using the Glasgow computed PR intervals, then the Modified
ROC AUC for this classification is 0.9384 and the optimal
threshold for diagnosis is 184 ms, which is considerably lower
than the conventional 200 ms threshold. With this threshold,
the accuracy of the classification is 88.13%. Presumably this
reduced threshold is a result of the difference between the PR
interval lengths determined by the cardiologists and the Glasgow
software.

The ranking of the PR interval by each algorithm is shown in
Table V. These results show that all the algorithms we considered
ranked the PR interval as the most important feature.

We also considered the ranking for each method of the non-
discriminating features, which both have Modified ROC AUC
values very close to 0.5. These are shown in the final column of
Table V. We note that they are by definition the last two features
in the Modified ROC AUC ranking. We observe that some
methods exhibit relatively high rankings for non-discriminating
features. For instance, the second non-discriminating feature is
ranked 13th for Random forest (Permutation), 19th for Random
forest (SHAP), and 23th for Random forest. In contrast, the
Logistic regression, Gaussian processes and Chi square test all
rank the same feature above 90.

We then found the top 5 features for each of the methods to
see if there is any commonality between them. The frequency
of features in the top 5 is shown in Table VI which, as expected,
includes the PR interval as the most common. When averaging

TABLE VI
MOST COMMON FEATURES IN THE TOP 5 FOR 1ST DEGREE AV BLOCK FOR

ALL 20 METHODS AND THEIR MODIFIED ROC AUC AND
ROC AUC VALUES

the rankings across all runs, two methods had their top 5 features
matching those in Table VI, which were Random forest and
Random forest (SHAP), while Random forest (LIME), XGB
(SHAP) and Chi-square test all had 4 out of these 5 in their
top 5. On the other hand, Random forest (permutation), Logis-
tic regression (LIME), Deep networks (Permutation), Gaussian
processes and NCA only had the PR interval of those listed in
Table VI in their top 5 features.

The ROC AUC values in Table VI indicate the direction of
change of a feature with the pathology as described in Sec-
tion II-D. Clearly, in this case, the PR interval increases with
1st degree AV block, which is consistent with the cardiologists’
diagnosis.

The QRS duration generally increases with 1st degree AV
block. The mean QRS duration for normal subjects is 92 ms
which increases to 113 ms for 1st degree AV block subjects.
This is consistent with evidence of conduction slowing distal to
the AV node in patients with known 1st degree AV block.

The T+ amplitude in leads I and V6 decreases on average in
patients with 1st degree AV block according to these results. The
physiological cause for these decreases is not clear.

Finally, the T morphology measure in lead I decreases with
1st degree AV block, but this is an integer value representing
different cases. Analysis of this feature shows that 99% of the
values for the Normal category are +1, indicating a single upright
T wave. However, for the 1st degree AV block records, only 52%
have a value of +1, with almost all the others having a value
of either −1 or −2 in equal proportions. Thus, it seems that
in approximately half the cases of 1st degree AV block, the T
wave is inverted or biphasic with negative leading component.
A possible explanation for this is that for 1st degree AV block
subjects, the PR interval is longer resulting in a longer diastolic
interval. If the action potential duration increases more in some
regions than others for longer diastolic intervals (restitution),
this could cause morphology changes in the T wave.

B. Right Bundle Branch Block

For RBBB, there are 7 important features and a further 3
features that correlate with at least one of these, as listed in
Table I. Using the scoring algorithm described in Section II-E,
we found the score for each method using the top 5 features
of each ranking only. In Table VII, scores for each method
comparing the top 5 features with both the important features
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TABLE VII
RIGHT BUNDLE BRANCH BLOCK TOP 5 SCORES FOR THE DIFFERENT

FEATURE IMPORTANCE RANKINGS USING THE IMPORTANT FEATURES ONLY
OR THE IMPORTANT FEATURES TOGETHER WITH FEATURES THAT

CORRELATE WITH THEM

and the important and correlating features are given. The best
performing method is Logistic regression, while Random forest
(SHAP and LIME), Random forest, Logistic regression (SHAP
and LIME), Deep networks (SHAP), Chi-square test and Mod-
ified ROC AUC all have scores over 70. It is striking that
only XGB (Permutation), Deep networks (LIME) and Gaussian
processes have an increased score when including the correlating
features. The worst performing methods are Random forest
(permutation), XGB (LIME), Deep networks (permutation and
LIME), MRMR and NCA.

We then considered the ranking for each method of the
non-discriminating features which are again shown in the final
column of Table VII. We note that these feature rankings are
rather low for Random Forest (SHAP and LIME), Random
forest, XGB (SHAP and LIME), Logistic regression (SHAP and
LIME), Deep networks (LIME), Chi-square test, NCA and Reli-
efF so all the SHAP and LIME methods do very well. However,
these feature rankings are high for Random forest (Permutation),
XGB (Permutation), Deep networks (Permutation), Gaussian
processes and MRMR so all the Permutation methods perform
poorly for these features. Deep networks (Permutation) even
ranks one of the non-discriminant features as the most important
one.

We again considered the top 5 features for each method,
with the 5 most frequent shown in Table VIII. We note that
4 of these are important features. However, the S amplitude in
lead V2 is not, but has a very high Modified ROC AUC value,
ranking sixth in the ROC AUC ranking. Given that leads V1 and
V2 are proximate on the body, it is not unexpected that the S
amplitude in lead V2 is significant, mirroring the importance of
the S amplitude in lead V1. The correlation coefficient between

the two is reasonably high at 0.6707. The ROC AUC value
suggests that the S amplitude in lead V1 increases with RBBB,
resulting in a less pronounced S wave (as the S wave amplitudes
are negative). All these features have a very high Modified
ROC AUC value, which indicates good separation of the two
distributions for these features, except for R’ amplitude in
lead V1.

Again, when averaging the rankings across all runs, three
methods had all of their top 5 features in Table VIII, namely Lo-
gistic regression, Logistic regression (LIME) and Deep networks
(SHAP) while Random forest (LIME and SHAP), Random
Forest, Logistic regression (SHAP), XGB (SHAP), Chi-square
test and Modified ROC AUC all had 4 of their top 5 features
in Table VIII. The worst performing methods were Logistic
regression (Permutation), Deep networks (permutation), and
MRMR which had only one feature in Table VIII in their top 5.

The ROC AUC values in Table VIII show that QRS duration
increases with RBBB, which is consistent with one of the
diagnosis conditions that the width of the QRS complex should
be >120 ms. The S amplitude in leads V1 and V2 increases with
RBBB, resulting in shallower S waves since the S amplitude is
negative, while the S amplitude in lead I decreases with RBBB,
resulting in a deeper S wave. The R’ amplitude in lead V1
increases with RBBB.

C. Left Bundle Branch Block

For LBBB, there are 14 important features and an additional
28 correlating features, as listed in Table II. The scoring algo-
rithm described in Section II-E gives the scores as shown in
Table IX, again using only the top 5 features. The scores for
the important features only are generally quite low. However,
when the correlating features are included, most methods show
a significant improvement, which is not surprising as there
are 28 additional correlating features, although much of the
improvement in scores is due to the three T morphology features
(see Table X).

Using only the important features, the best performing method
is Gaussian processes, while Logistic regression (permutation)
and Deep networks (permutation) both have a score of 0. When
the correlating features are included, the Chi-square test has
a perfect score of 100. Random Forest (SHAP and LIME),
Random Forest, XGB (SHAP) and ReliefF all have high scores
above 90. In contrast, Logistic regression (permutation) still
has a zero score while Deep networks (permutation) has an
increased, but still poor, score of 5.

The rankings of the non-discriminating features were gener-
ally low, with Chi-square test and NCA performing particularly
well. Gaussian processes emerges as the only method that gives,
with a ranking of 2, a particular high ranking to one of the
non-discriminating features. In contrast, all the SHAP and LIME
methods ranked this feature greater than 100, except for XGB
(SHAP) which ranked it as 99, so these methods all performed
well.

The frequency of features in the top 5 for all methods is
shown in Table X. We note that three of these are correlating
features, which may explain the big increase in scores when the
correlating features are included. Again, all of these 5 features
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TABLE VIII
MOST COMMON FEATURES IN THE TOP 5 FOR RBBB FOR ALL 20 METHODS AND THEIR MODIFIED ROC AUC AND ROC AUC VALUES

TABLE IX
LEFT BUNDLE BRANCH BLOCK TOP 5 SCORES FOR THE DIFFERENT

FEATURE IMPORTANCE RANKINGS USING THE IMPORTANT FEATURES ONLY
OR THE IMPORTANT FEATURES TOGETHER WITH FEATURES THAT

CORRELATE WITH THEM

have a very high Modified ROC AUC value, indicating good
separation of the two distributions for these features. We note
that the three methods that did not have QRS duration in their
top 5 features were Logistic regression (permutation) and Deep
networks (permutation and LIME).

No method had all the top 5 features matching those in Table X
but Random Forest (SHAP) had 4 out of its top 5 that matched
with Table X. On the other hand, XGB (LIME) and NCA had
only one of the features in Table X in their top 5, which was the
QRS duration.

The ROC AUC values show that the QRS duration increases
with LBBB, which is consistent with the condition that the
width of the QRS complex should be >120 ms. The diagnosis
of LBBB involves only changes in the QRS complex but the
two T morphology features in Table X are not associated with
the QRS complex. However, we have already noted that they
correlate strongly with the QRS duration.

The T morphology features for leads I and V6 decrease with
LBBB. Analysis of these features shows that 99% of the values
for the Normal class are +1 for both morphology features. For
the LBBB records, 72% are −1 and 24% are −2 for the T
morphology in lead I, and 69% are −1 and 24% are −2 for the
T morphology in lead V6, both of which represent a significant
shift from a single upright wave to either a single inverted wave
or a biphasic wave with leading negative component.

The R amplitude in leads V3 and V4 are not important features
for the diagnosis of LBBB, but this amplitude in leads V5 and V6
are important features. As leads V3 and V4 are very close to lead
V5, it is not too surprising that these feature are common in the
top 5 features for some methods. Interestingly, the R amplitude
in leads V5 and V6 are not in the top 5 features for any method,
so leads V3 and V4 seem to be more important than leads V5
and V6.

IV. COMPARISON WITH THE MULTICLASS CASE

We have considered feature importance ranking in the context
of a binary classification of normal vs. a single pathology for
three different pathologies, namely 1st degree AV block, RBBB
and LBBB. This is the simplest possible case, but is not very
realistic since cardiologists have to positively diagnose one (or
more) conditions from a long list of possible conditions. It is
also conceivable that a simple binary classification of normal
vs. a specific pathology could be achieved with high accuracy
using only a subset of the complete list of diagnostic conditions.
Thus, as a next step, we considered feature importance ranking
for a multiclass classification involving normal, 1st degree AV
block, RBBB and LBBB records in [4]. The feature importance
rankings were found for the one vs. all binary classifications as
the aim is to positively diagnose one condition (since the data
were single label) which implies a negative classification for the
other classes.

The accuracies of the models were not reported in [4] but all
four methods had an accuracy exceeding 95% for the multiclass
classification. Also, the results for the model dependent methods
are not directly comparable since the data were not normalised
in [4] as they were in this study. In particular, the poor perfor-
mance of Deep networks for the ranking of the PR interval for
the 1st degree AV block case is almost certainly due to this lack
of normalisation.

We now compare the feature rankings of the binary and
multiclass cases.
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TABLE X
MOST COMMON FEATURES IN THE TOP 5 FOR LBBB FOR ALL 20 METHODS AND THEIR MODIFIED ROC AUC AND ROC AUC VALUES

A. First Degree AV Block

The ranking of the PR interval was very similar in the binary
and multiclass cases. In the binary case, all methods ranked the
PR interval as most important. In the multiclass case, the PR
interval was not the top feature for Logistic regression (SHAP
and LIME), Deep networks (SHAP and LIME) and Gaussian
processes. The poor results for Logistic regression and Deep
networks are probably due to the fact that the data were not
normalised.

The most common features in the top 5 had three features
in common, namely the PR interval, QRS duration and T+
amplitude in lead I. The other features listed in Table VI are the
T+ amplitude in lead V6 and T morphology in lead I whereas the
other features for the multiclass case were the ST slope in leads
I and V1 which are quite different features for the two cases.

B. RBBB

We first note that the correlating features for RBBB were
different for the binary and multiclass cases, with 3 correlating
features in the binary case (which are listed in Table I) and
5 correlating features for the multiclass case. The scores for
the important and correlating features for the multiclass case
are greater than the corresponding scores for the binary case
for many methods, although a notable exception is Logistic
regression (SHAP and LIME) which both had a score of zero
in the multiclass case and were among the best scores in the
binary case! We also note that in the multiclass case, the scores
for the important and correlating features were 100 for four
methods, namely Random forest, Random forest (permutation)
and XGB (SHAP and LIME). The scores for MRMR and NCA
were very low for the binary case, but improved significantly
for the multiclass case, for which they had the second best score
(important features only).

In this case, the most common features in the top 5 in the
binary and multiclass cases have 4 features in common and so
there is good agreement here.

C. LBBB

In this case, there are 28 correlating features in the binary case
(which are given in Table II) but only 17 correlating features for
the multiclass case. The scores for the important features only
and for the important plus correlating features for the multiclass
case were almost all less than the corresponding scores for the
binary case.

The most common features in the top 5 only had no features in
common in this case. The multiclass case includes the ST slope
in three leads whereas the binary case includes the T morphology
in two leads.

V. DISCUSSION

The results of the different feature ranking algorithms for the
three pathologies that we have considered have some inconsis-
tencies, although some general trends can be observed. For 1st
degree AV block, all methods ranked the one important feature
first. For RBBB, Logistic regression had the highest scores but
scored quite poorly for LBBB. For LBBB, a score of 100 when
including correlating features was obtained by Chi-square test,
while Random forest (SHAP and LIME), Random forest, XGB
(SHAP) and ReliefF achieved high scores, almost reaching the
perfect score. ReliefF performed poorly for LBBB (important
features only) but had reasonable performance for RBBB.

If the scores for RBBB and LBBB are added together, then for
the important features only, Logistic regression has the highest
score, closely followed by Gaussian processes and Chi-square
test. At the other end, Deep networks (permutation) has the
lowest combined score. Adding the scores for RBBB and LBBB
for the important and correlating features, then the top score is
obtained by Chi-square test. It is closely followed by Random
Forest, Random forest (SHAP and LIME) and Deep networks
(SHAP). Meanwhile, the lowest combined score was obtained
for Logistic regression (permutation) together with Deep net-
works (permutation).

When comparing the various methods combined with SHAP,
LIME and permutation options, the permutation variations were
consistently the worst. SHAP and LIME both produce compara-
bly favourable outcomes, with SHAP exhibiting a slight overall
advantage. However, the Random forest result for LBBB includ-
ing correlating features was better than Random forest (SHAP
and LIME) and Logistic regression results were significantly
better than Logistic regression (SHAP and LIME) for RBBB.
So the native feature importance rankings for Random forest and
Logistic regression sometimes do well without the addition of
other methods on top.

All of the SHAP (except in combination with Deep Nets) and
LIME methods together with the Chi-square test and Random
forest all ranked the non-discriminating features quite far down
the rankings for RBBB and LBBB.

As mentioned in the introduction, attribution methods applied
to models operating on raw ECG data provide a complementary
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approach for knowledge discovery. However, a direct compar-
ison of feature importance methods with the XAI attribution
methods from [6] and [7] is not straightforward due to fundamen-
tal differences between both approaches. Feature importance
methods typically focus on abstracted or constructed features,
such as the ECG features in our research. While attribution
methods can work with such derived features, as seen with
SHAP in our work, their most compelling use case is with deep
learning models that work on raw data. Attribution methods
highlight the critical parts of the ECG that are relevant for
predicting specific pathologies. However, even when results are
aggregated across large groups of patients, as in [7], linking these
relevant regions to the diagnostic concepts recognised by human
cardiologists remains a challenge. While identifying aspects
such as peak amplitudes from an attribution map might be
straightforward, identifying intervals can be elusive. In contrast,
feature importance methods provide a unified perspective by
scoring individual ECG features. Given the strong differences
in methodology, it can be difficult to draw parallels between
the two. This complexity is compounded by the fact that the
underlying models for each method are inherently different and
may not agree on which features are considered important.

Therefore, it seems more appropriate to contrast the feature
importance methods used for ECG features in this work with
the concept-based explainability methods in [7], namely Test-
ing with Concept Activation Vectors (TCAV) [28]. As TCAV
concepts are derived from ECG features or their aggregated
combinations, they are more closely aligned with the conceptual
domain of feature importance methods. Explainable AI methods
were used in [7] to investigate concepts that are most relevant for
the diagnosis of a number of conditions, including (complete)
LBBB. In particular, TCAV was used to evaluate the importance
of the concept “QRS complex exceeds 120 ms” in the diagnosis
of LBBB. Their results showed a statistically significant and
strong correlation with this concept. This is consistent with
our observations, where the QRS length feature was ranked
highly. Despite the differences in the models and methods used -
with [7] using convolutional neural networks on raw data - both
studies consistently underlined the importance of QRS duration
in LBBB prediction, in line with standard cardiologist guide-
lines. The synergy between different XAI/feature importance
methods and model architectures deserves further investigation
and represents an interesting avenue for future research.

VI. CONCLUSION

In this comparison of feature ranking algorithms with the ex-
pert knowledge of cardiologists for three different pathologies,
we have shown that generally speaking, the SHAP and LIME
methods all give good agreement with the important features
used by cardiologists, together with the native Random forest
and Logistic regression feature rankings. For the model indepen-
dent methods, Chi-square test generally performed well. Some
methods gave inconsistent results, including MRMR and NCA.
The permutation methods generally performed quite poorly.

It is interesting that the top ranked features for many methods
include some unimportant or correlating features rather than

important features only. Notably, the T wave morphology fea-
tures, which are conventionally not considered by clinicians,
were consistently marked as significant for the diagnosis of left
bundle branch block.

The code for obtaining the feature importance rankings de-
scribed in this work was made publicly available [18].

APPENDIX A
ECG FEATURES

The 117 features from the Glasgow 12-lead ECG analysis
algorithm [11] that we identified as ones that cardiologists would
typically consider when making a diagnosis mainly consist of
features derived for all 12 leads, which are as follows:

� Peak-to-peak amplitude
� Q amplitude
� R amplitude
� S amplitude
� R’ amplitude (amplitude of a second R peak)
� T+ amplitude (maximum height of the T wave)
� P morphology
� T morphology
� ST slope

The morphology parameters are integers representing four
cases, namely:

� A biphasic wave with leading positive component (+2)
� A single upright wave (+1)
� A single inverted wave (−1)
� A biphasic wave with leading negative component (−2)

In addition, a number of measurements derived from all 12
leads were used as follows:

� QRS frontal axis
� Average RR interval
� Heart rate variability
� Overall ST duration
� Overall PR interval
� QTc (Framingham)
� Overall P duration
� Overall QRS duration
� Overall T duration
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