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Abstract—We present PathoOpenGait, a cloud-based
platform for comprehensive gait analysis. Gait assessment
is crucial in neurodegenerative diseases such as Parkin-
son’s and multiple system atrophy, yet current techniques
are neither affordable nor efficient. PathoOpenGait utilizes
2D and 3D data from a binocular 3D camera for monitoring
and analyzing gait parameters. Our algorithms, including
a semi-supervised learning-boosted neural network model
for turn time estimation and deterministic algorithms to
estimate gait parameters, were rigorously validated on an-
notated gait records, demonstrating high precision and
consistency. We further demonstrate PathoOpenGait’s ap-
plicability in clinical settings by analyzing gait trials from
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Parkinson’s patients and healthy controls. PathoOpen-
Gait is the first open-source, cloud-based system for gait
analysis, providing a user-friendly tool for continuous pa-
tient care and monitoring. It offers a cost-effective and
accessible solution for both clinicians and patients, revo-
lutionizing the field of gait assessment. PathoOpenGait is
available at https://pathoopengait.cmdm.tw.

Index Terms—Gait analysis, semi-supervised learning,
deep learning, cloud-based platform, neurodegenerative
diseases.

I. INTRODUCTION

THE assessment of gait is integral to the diagnosis and man-
agement of neurodegenerative diseases, such as Parkin-

son’s disease (PD) and multiple system atrophy (MSA) [1],
[2], [3]. They often result in movement impairments marked by
muscle rigidity, bradykinesia, resting limb tremors, and postural
instability [4], considerably lowering the quality of life [5].
Monitoring gait parameters such as stride length (SL), stride
width (SW), stride time (ST), velocity, and cadence is vital not
only for tracking symptom progression but also for diagnosing
neurodegenerative diseases [1], [6], [7]. Furthermore, assessing
turn time is valuable in detecting freezing of gait, a common
symptom in PD [8].

Nevertheless, current medical protocols rely on nonstandard-
ized and subjective visual assessments [9], [10]. Given the
sporadic and inconsistent nature of gait disruptions, which are
affected by various internal and external elements [11], medical
practitioners often lack the necessary time and resources to
thoroughly examine an individual’s entire gait pattern. This
presents an urgent demand for a systematic tool to support early
detection and prolonged monitoring of gait parameters within
healthcare systems [12].

Numerous technological innovations have been utilized in gait
analysis. Carpet-based systems, such as GaitRite [13], [14], and
3D optical camera-array-based systems, like Vicon [15], [16],
are regarded as gold standards in the technological field [13],
[17]. However, their high costs and extensive space requirements
limit their applicability in clinical and domestic settings [17].
Alternatively, systems based on wearable devices might be
relatively more affordable [12], [18], [19], [20]. However, the
additional equipment an individual must wear can be disruptive,
and the setup is often inconvenient [21]. Moreover, the location
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Fig. 1. PathoOpenGait’s Comprehensive Framework. PathoOpenGait is transforming gait analysis by offering a user-friendly, cloud-based
service, facilitating patients and doctors in recording and uploading gait trial data seamlessly from any location. The platform utilizes 2D videos and
precomputed 3D keypoints to estimate turn time and additional gait parameters. The turn time estimation algorithm encompasses a neural network-
based model and a sliding window-based method. Once the inference process is completed, users can visualize the results on the interactive
dashboard.

where wearable devices are attached can influence estimation
performance [22]. While devices attached to the feet might pro-
vide more effective signals for gait analysis than those attached
to the knees, the former can be more uncomfortable for users
than the latter [20].

The recent evolution of computer vision technology, espe-
cially human pose estimation [23], [24], has enabled the de-
velopment of monocular camera-based systems [25]. Studies
conducted by Kidziński Ł. et al. [26] and Stenum J. et al. [27]
utilized sagittal-plane videos and proposed 2D camera-based
solutions, but these required either multiple cameras to broaden
the viewing field or manual adjustments of a 2D camera by tech-
nicians, making them impractical. To navigate the limitations
present in these sagittal-plane methodologies, 3D human pose
estimation techniques have been employed to augment depth
data in 2D frontal-plane videos [28], [29]. Nevertheless, the
absence of accurate depth information adversely affects the esti-
mation of depth-related gait parameters, such as SL and velocity.
While attempts have been made to leverage infrared-based 3D
cameras like Kinect [30], their capacity to capture accurate depth
information remains insufficient, thereby diminishing perfor-
mance in SL estimation. On the other hand, it’s worth noting
that current visual-based gait analysis methods have not yet
incorporated a turn time estimation algorithm, limiting their
utility in monitoring common symptoms associated with PD [8].

Another challenge arises in the realm of accessibility,
underscoring the necessity for an open-source platform for gait
analysis. Despite the strides made in developing gait analysis
techniques, a notable deficit exists as most research studies
neither offer a comprehensive platform for applying their
proposed algorithms nor release their source code, impeding the
application of these techniques in real clinical settings.
Additionally, the closed-source nature of commercial

platforms [31], [32] not only limits their adoption in clinical
practices but also prevents patients from using them for extended
monitoring at home due to their significant costs.

In this study, we developed an innovative cloud-based plat-
form called PathoOpenGait (Fig. 1), designed to comprehen-
sively monitor and analyze human gait using 2D and 3D data
obtained from a validated binocular 3D camera [33]. Our study
begins by utilizing 2D videos extracted from 3D footage to
estimate the turn time (TT), employing a novel neural network-
based methodology. To enhance the performance of our model,
we introduce a semi-supervised training strategy [34]. More-
over, we employ a deterministic algorithm that relies on the
captured 3D temporal keypoints to determine other essential gait
parameters, including the SL, SW, ST, velocity, and cadence.

We conducted rigorous assessments at two distinct medical
centers to verify our algorithms. Our evaluation encompassed 91
annotated gait records collected from 23 individuals, compris-
ing a diverse group of participants, including healthy controls,
patients diagnosed with PD, and patients with MSA. These
individuals underwent an 8-meter walking test, and our results
demonstrate remarkable precision and consistency between our
system’s estimations and the ground truth values.

Furthermore, a significant step forward is taken by showcas-
ing the real-world applicability of PathoOpenGait in clinical
settings. Using this platform, we collected and statistically an-
alyzed gait trials from a substantial cohort of 109 PD patients
(432 trials) and 122 healthy controls (476 trials). These findings
highlight the capability of our system for extensive and ongoing
gait monitoring.

Notably, our pioneering study invents a 2D video-based al-
gorithm for quantifying turn time. Additionally, we introduce
an open-source, cloud-based system, PathoOpenGait, for gait
examination. This platform empowers patients to conveniently
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record their gait from any location, thus providing an invaluable
tool for continuous patient care and monitoring.

II. METHODS

A. Patient Recruitment Process

Patients diagnosed with Parkinson’s disease (PD) or multiple
system atrophy (MSA) were recruited from two prominent med-
ical centers: the National Taiwan University Hospital (NTUH)
and the National Taiwan University Cancer Center (NTUCC).
These patients were diagnosed by neurologists specializing in
movement disorders. To ensure the study’s validity, all patients
had been regularly followed in the clinic for at least three
years and reported no subjective complaints about poor gait
performance. Participants with severe cardiopulmonary disease
or orthopedic impairments in the spine or limb joints were
excluded from the study.

Several demographic and clinical variables were documented
for each participant, including age, sex, height, Hoehn and Yahr
(H&Y) stage, age of disease onset, disease duration, Mini-
Mental State Examination (MMSE) scores, levodopa equivalent
daily dose (LEDD), and specific characteristics of their gait
presentations.

Healthy controls (HCs) between the ages of 20 and 100 years,
without any neurodegenerative diseases or gait disorders, were
also enrolled in the study. Individuals with conditions that could
interfere with gait, such as vertebral fractures or severe metabolic
diseases, were excluded from the control group.

B. Video Recording of the 8-M Walking Test (8MWT)

All participants included in the study were instructed to
perform a series of walking tasks along a 4-meter line, both
forward and backward, returning to the starting point after
completing each walk. They were specifically instructed to walk
comfortably yet quickly and safely. The entire walking sequence
of 8 meters was recorded using Stereolab’s ZED camera. This
advanced stereo camera can capture high-resolution 3D video
with exceptional spatial accuracy, with deviations of less than
0.5 cm [33]. The recorded video was captured at a resolution of
1080 p, with a frame rate of 30 frames per second.

Each data instance produced by the ZED camera is denoted as
X = {xv,xpc} ∼ X and consists of a 2D video component rep-
resented by xv ∈ RH×W×C×T , where H represents the height,
W represents the width, C denotes the RGB channels, and T
signifies the duration of the video. Additionally, it contains a 3D
point cloud component denoted by xpc ∈ RH×W×Z×T , where
Z represents the depth dimension. The space defined by the ZED
camera output data is represented by X .

C. Establishing Ground Truth for Turn Time and Gait
Parameters

The ground truth values for the turn time measurement in-
volved manual segmentation based on the 2D video. Meanwhile,
the ground truth values for the remaining gait parameters were
established through the employment of a validated 3D optical
system [35], which facilitated the recording of 3D trajectories,

subsequently calibrated in alignment with real-world coordi-
nates. Adhering to the established protocol [35], domain experts
delineated the various gait phases using both the 2D video
and trajectory data, thereby deriving the specific gait parame-
ters. Additionally, these domain experts undertook a secondary
refinement of the ground truth data to ensure the precision.

D. Data Splitting for Training and Testing

From the NTUH data, a maximum of 15 participants were
randomly chosen from each of the HC, PD, and MSA groups.
The data was split into training and testing sets at a 2:1 ratio.
Only the testing set had all gait parameters annotated, while the
training set was annotated solely for turn time. Data from the
NTUCC was fully annotated and set aside as a testing set for
cross-center validation.

E. Gait Parameter Estimation Algorithm Development

First, we employed the ZED camera’s Software Development
Kit (SDK) in combination with OpenPose [36] to extract the
temporal positions of the ankle keypoint in terms of the hori-
zontal (x) and depth (z) coordinates from the 3D point cloud
data xpc. Specifically, we obtained the temporal signals denoted
as xleft, xright, zleft, and zright, which represent the temporal
variations in the horizontal and depth positions of the left and
right ankles, respectively. These signals reside in the space RT ,
where T denotes the video duration. Through our algorithm F ,
we can estimate parameters such as stride length (ŷsl), stride
width (ŷsw), stride time (ŷst), velocity (ŷv), and cadence (ŷc),
all of which are within R. The relation is expressed as follows:

{ŷj} = F
(
xleft,xright, zleft, zright

)
, j ∈ {sl, sw, st, v, c}

(1)
Initially, all four temporal signals undergo a smoothing process
by applying a running median φm with a window size of 5:

x̃k
i =φm(xk

i−2, . . . , x
k
i+2), k ∈{left, right}, i∈ {1, 2, . . . , T}

(2)

z̃ki =φm(zki−2, . . . , z
k
i+2), k ∈ {left, right}, i∈ {1, 2, . . . , T}

(3)

Subsequently, the starting and ending times of the turning phase
are utilized as delimiters to segregate the forward and backward
phases. Specifically, signals before the onset of the turning
phase are classified as the forward phase, while those after the
termination of the turning phase are classified as the backward
phase.

For each phase, we compute the median depth as follows:

z̃mid =
z̃left + z̃right

2
(4)

We then employ z̃mid to delineate the steps. This means that
whenever z̃lefti equals z̃mid

i for a given i ∈ {1, 2, . . . , T}, we
consider these moments as the time points to partition the left
steps, with an analogous process for the right steps.

T left =
{
i : z̃mid

i � z̃lefti , ∀i ∈ {1, 2, . . . , T}
}

(5)

T right = {i : z̃mid
i � z̃righti , ∀i ∈ {1, 2, . . . , T}} (6)
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It is assumed that N left left steps are detected; that is, |T left| =
N left. At time points ti ∈ T left(i ∈ {1, 2, . . . , N left − 1}), we
can calculate the gait parameters as follows:

ŷsl,lefti =
∣∣∣z̃leftti+1

− z̃leftti

∣∣∣ (7)

ŷsw, left
i =

∣∣∣x̃left
ti

− x̃right
ti

∣∣∣ (8)

ŷst,lefti = ti+1 − ti (9)

ŷv,lefti =
ŷsl,lefti

ŷst,lefti

(10)

ŷc,lefti =
1

ŷst,lefti

(11)

These equations can also be applied for the right steps. Our final
outputs are the mean values of the corresponding measures for
both the left and right steps.

F. Handcrafted Turn Time Estimation Algorithm

An intuitive algorithm for estimating turn time can be de-
vised from three temporal signals: x̃left, x̃right, and z̃mid. Turn-
ing typically occurs at the trial’s farthest position. Thus, we
first determine the k1

th percentile of z̃mid as z̃mid
(k1)

. Given the
feet’s width decreases during a turn, we compute the absolute
difference between x̃left and x̃right as:

x̃diff =
∣∣x̃left − x̃right

∣∣ (12)

Next, the k2th percentile of x̃diff is defined as x̃diff
(k2)

. The turning
phase’s timeframes are then identified by:

T turn

=
{
i ∈ {1, 2, . . . , T} |

(
z̃mid
i > z̃mid

(k1)

)
∧
(
x̃diff
i < x̃diff

(k2)

)}
(13)

The turn time ŷtt is obtained as |T turn| via selecting k1 and k2
using annotated data pairs, e.g., the training data.

G. Neural Network-Based Turn Time Estimation
Algorithm

Considering a 2D video xv , a model M can be constructed
to estimate turn time ŷtt as follows:

ŷtt = M(xv),xv ∈ RH×W×C×T , ŷtt ∈ R (14)

However, devising the algorithm above can be challenging due to
the discrepancy in dimensionality between the sparse prediction
and the input size. Consequently, we decompose M into several
steps.

First, a 2D pose estimation model, E2D, is employed to extract
2D keypoints. We select Mask R-CNN in Detectron2 [37] as our
pretrained model. We then utilize a pretrained 3D estimation
model [38], E3D, to augment the keypoint space as follows:

xk = E3D(E2D(xv)),xk ∈ R17×3×T (15)

The transformations performed by these models are defined as
follows:

E2D : RH×W×C×T → R17×2×T (16)

E3D : R17×2×T → R17×3×T (17)

Subsequently, we design a model M′ : R17×3×T → R to esti-
mate the turn time. Despite this simplification, the mapping rela-
tionship remains complex, with potential 23264·T relationships,
considering that a 64-bit floating-point computation is involved.

To simplify the problem further, we transform it into a classi-
fication task. Specifically, for a given frame and its neighboring
frames, we determine whether this frame falls within the turn
time. Considering a time point i with 64 neighboring frames on
each side, the input xk

i now resides in R17×3×129. That is,

xk
i = xk [. . .] [. . .] [i− 64, i− 63, . . . , i+ 64] , i ∈ {1, . . . , T}

(18)
Consequently, our new model M′′ : R17×3×129 → {0, 1} has
only 251×129 relationships, which is a much simpler form for
model design.

Since portraying the change in the keypoints during the turn
time is challenging, we model M′′ as a neural network Dθ that
outputs logits. Namely,Dθ : R17×3×129 → R2. We structure our
function set H as an encoder, consisting of a 3-layer 1D convo-
lutional neural network (CNN), followed by a 3-layer multiple
layer perceptron (MLP). For given labeled pairs (xk

i , y
l
i), we aim

to find Dθ ∈ H that fulfills the following objective:

θ = argmin
θ

Ls (19)

= argmin
θ

Ei∼T

[
yli · log

(
Dθ

(
xk
i

))

+
(
1− yli

)
· log

(
1−Dθ

(
xk
i

)) ]
(20)

Once this step is complete, we can predict whether each time
point corresponds to a turning point. We then apply dilation
φdilate and erosion φerode operations with a kernel size of 10 to
consolidate the results and filter outliers. Finally, the turn time
is determined by the maximum number of consecutive frames
identified as “1”.

ŷli = argmax
(
Dθ

(
xk
i

))
, ∀i ∈ {1, 2, . . . , T} (21)

ŷl =
[
ŷl1, ŷ

l
2, . . ., ŷ

l
T

]
(22)

ŷ′l = φdilate

(
φerode

(
ŷl
))

(23)

ŷtt = max
{
len(S) | S is consecutive 1 in ŷ′l

}
(24)

H. Semi-Supervised Learning for Neural Network-Based
Turn Time Estimation

Implementing the above optimization requires manual, frame-
wise labeling, which is time-consuming and labor-intensive.
We adopt a semi-supervised learning strategy to use unlabeled
videos or 3D temporal keypoints to enhance the model’s per-
formance. Given that most existing algorithms are tailored for
image-based datasets, we must adapt these for our 1D signal
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data. We do this by modifying the FixMatch [39] method and
designing appropriate weak and strong augmentations.

For the labeled data pairs
(
xk
i , y

l
i

)
and unlabeled data

(
xUK
i

)
,

we calculate the cross-entropy loss for paired data directly. For
the unpaired data, we devise a weak-augmentation function
aσ

2

weak ∼ Aweak, which introduces Gaussian noise with a small
standard deviation to the original data:

x̃k
i = aσ

2

weak

(
xk
i

)
= xk

i +N
(
0, σ2

)
, σ2 ∼ U(0.00005, 0.00015) (25)

Here, U signifies a uniform distribution.
For the strong-augmentation function aσ

2,mask
strong ∼ Astrong,

we introduce more Gaussian noise and mask certain data
points:

x̃k
i = aσ

2,mask
strong

(
xk
i

)
=

(
xk
i +N

(
0, σ2

))
·m (26)

σ2 ∼ U(0.0005, 0.0015) (27)

m ∼ {0, 1}17×3×129 (28)

Subsequently, we compute the pseudolabel ypli and the unsuper-
vised loss for unlabeled data:

ypl
i = Dθ

(
Aweak

(
xUK
i

))
(29)

ŷpl
i = argmax

(
ypl
i

)
(30)

Lu = E
i∼T

[
1 ·

(
max

(
ypl
i

)
≥ 1

)

·
(
ŷpl
i · log

(
Dθ

(
Astrong

(
xUK
i

)))

+
(
1− ŷpl

i

)
· log

(
1−Dθ

(
Astrong

(
xUK
i

))))]
(31)

Finally, we employ equal weights for both losses to optimize the
model Dθ.

L = Ls + Lu (32)

This approach balances the contributions of labeled and un-
labeled data to the learning process, enhancing the model’s
performance.

I. Settings for Training the Turn Time Estimation Model

The training process ofDθ was conducted using the stochastic
gradient descent (SGD) optimizer, initialized with a learning
rate of 0.01 and a momentum value of 0.9. A cosine annealing
scheduler was employed to dynamically adjust the learning rate
to enhance the learning process. The scheduler utilized a rate
of 7

16π. The model was trained over 12,000 iterations, with a
batch size of 256. A data instance was randomly sampled from
the entire dataset during each iteration. The model was imple-
mented using PyTorch 1.13.1 with Python 3.9, while training
was performed on an NVIDIA RTX 3090 Ti GPU. The entire
training process was executed within an Ubuntu 20.04 Docker
image environment.

J. Evaluation Metrics

We employed several metrics: mean absolute error (MAE),
mean squared error (MSE), Pearson correlation coefficient
(Corr.), intraclass correlation coefficient (3, 1) (ICC3, 1), and
relative error rate (Err.) to assess our algorithms. MAE and
MSE are useful for identifying outliers, given their distinct error
penalties. Corr., recognized for detecting linear variable rela-
tionships, provides valuable cross-study comparability. ICC3, 1,
essential for evaluating new clinical devices [40], harmonizes
both correlation and agreement between measurements. An
ICC3, 1 value over 0.9 indicates “excellent” reliability, 0.75 to
0.9 is “good”, 0.5 to 0.75 is “moderate”, and below 0.5 is “poor”.
We also presented the relative error rate with its 95% confidence
interval to showcase error dispersion.

K. PathoOpenGait System Design

To facilitate the recording, uploading, access, and analysis
of gait trials by patients and doctors at any time and from any
location, we developed PathoOpenGait as a cloud-based system.
To ensure the security and privacy of patient data, we incorpo-
rated an authentication module. This module allows different
types of users, such as doctors and patients, to have specific
functionalities while preventing potential data breaches.

We introduced a flexible abstract interface to enhance the
system’s flexibility. This interface enables the easy integration of
upgraded models, addition of new algorithms, and incorporation
of different types of data inputs as per user requirements.

The system’s front end was implemented using ReactJS, while
the back end was developed using the Python Flask framework.
The MySQL database was utilized to store the relevant data, and
Python Celery was employed as the scheduler. An Nginx load
balancer was introduced to optimize performance at the system’s
entry point. Furthermore, the entire system was containerized
using Docker, allowing for convenient deployment on any cloud
platform.

L. Demonstration of PathoOpenGait Within a Clinical
Context

To effectively showcase the practical application of
PathoOpenGait in a clinical setting, we conducted further re-
cruitment of additional patients diagnosed with PD and HCs
from the NTUH. The recruited participants underwent an 8-
meter walking test, and the collected gait data were subsequently
uploaded to the PathoOpenGait system for analysis.

Statistical analysis was performed to compare the gait pa-
rameters of the HC and PD groups and among the different
subgroups within the PD population. The Wilcoxon signed-rank
test was adjusted using Holm’s method to compare parameters
of the HC and PD groups. In contrast, the Kruskal–Wallis test
was utilized to compare parameters across multiple groups.

Moreover, we examined the relationships between gait param-
eters and variables such as MMSE scores, LEDD, and disease
duration in the PD group using Spearman’s rank correlation. To
ensure the validity of the comparison, only HCs who were age-
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TABLE I
DATASET COMPOSITION FOR ALGORITHM VALIDATION. THE DATASET USED

FOR ALGORITHM VALIDATION CONSISTED OF A TOTAL OF 91 RECORDS
OBTAINED FROM 23 INDIVIDUALS ASSOCIATED WITH TWO DISTINCT

MEDICAL CENTERS

and height-matched to the patient group were included in the
statistical analysis.

III. RESULTS

A. Dataset Compilation for Algorithm Development and
Verification

The testing dataset comprised 91 records obtained from 23 in-
dividuals associated with two distinct medical centers (Table I).
This dataset contains two subsets: the first subset was collected
from the NTUH, and it consists of 56 records derived from 14
participants. There were 20 records within this subset from 5
healthy controls (HCs), 20 from 5 patients diagnosed with PD,
and 16 from 4 patients diagnosed with MSA. The second subset
encompassing nine individuals who underwent 35 gait trials was
obtained from the NTUCC. Within this subset were 23 records
from 6 HCs and 12 records from 3 patients with PD.

An auxiliary training set from the NTUH was created to
optimize the turn time prediction model. This set comprised 111
records obtained from 30 participants, including 38 records from
10 HCs, 39 from 10 patients with PD, and 34 from 10 patients
with MSA. Furthermore, an unlabeled dataset containing 444
records from 114 individuals, with no additional information,
was included for semi-supervised training. After performing
data preprocessing, the final number of instances available for
training comprised approximately 30,000 labeled data points
and 120,000 unlabeled data points, each in R17×3×129.

All the datasets used in this study were mutually exclusive to
ensure the integrity of the verification results and prevent any
information leakage. This approach ensured that the verification
process was conducted with authenticity.

B. Algorithm Validation

Compared to the ground truth, our algorithm’s validation
results are presented in Table II and Fig. 2(a-l) to provide an
insightful analysis of the algorithm’s performance across the two
exclusive datasets. Notably, the majority of the ICC3, 1 values
fall within the “good” to “excellent” reliability range, with error
rates below 10%, underscoring the effectiveness of our approach.
Yet, a closer examination reveals slight inferiority in SW and turn
time performance.

In particular, a 12% turn time error in the first subset, coupled
with a “moderate” ICC3, 1 in the second, could stem from chal-
lenges annotators face in pinpointing exact action boundaries
(Fig. 2(m)–(n)), introducing minor inconsistencies. On another

note, the second subset’s SW error rate is twice that of the first,
likely due to floor color. The first center’s green floor contrasts
with shoes, whereas the second’s white floor blends, potentially
affecting keypoint stability and causing SW estimation errors.
In response to this finding, we plan to enhance our system’s
robustness to environmental variables in future work.

Further analysis of the Pearson correlation coefficient reveals
that many parameters exhibit coefficients exceeding 0.90, in-
dicative of strong correlations with the ground truth. However,
a few parameters demonstrate coefficients ranging from 0.7 to
0.8. This discrepancy can potentially be attributed to the limited
size of our dataset, as Pearson correlation coefficients tend to
increase with larger datasets. Therefore, we anticipate even
higher correlation coefficients with a more extensive dataset.

C. Ablation Study of the Semi-Supervised Learning
Strategy

The ablation study results of the semi-supervised strategy are
presented in Table III. Remarkably, the utilization of unlabeled
data demonstrates a notable enhancement in the performance
in terms of all evaluated metrics. This improvement is evident
across both datasets, particularly in the second, signaling a
bolstered adaptation of our algorithm and substantiating the
efficacy of our approach in exploiting unlabeled data.

D. Cloud-Based PathoOpenGait System

To align with the clinical context, our PathoOpenGait system
implements a user categorization framework, which classifies
registered users into four distinct categories: administrator, man-
ager, general user, and guest (Fig. 3). The administrator sets
up the service and has full control over account management.
Managers, usually doctors, monitor patients’ gait parameters,
create patient accounts, and upload data for analysis. Patients,
categorized as general users, can upload gait trial records and
view their results. However, they need their doctor’s assistance
to register an account.

To ensure privacy, doctors within the manager category do not
have access to the information of other doctors’ patients. More-
over, even administrators are restricted from viewing individual
data to ensure confidentiality.

The system allows the addition of detailed patient statuses dur-
ing uploads. Patient profiles capture crucial clinical data, such
as diagnosis, MMSE score, and LEDD. A download feature lets
doctors retrieve gait parameters alongside patient information
for deeper analysis.

As the dataset grows and more data become available, it is
reasonable to expect improved model performance through fine-
tuning. We applied an abstracted Python interface called the
Analyzer to facilitate this process, and it enables users to easily
implement and update algorithms or incorporate different data
formats. Without substantial code alterations, new models or
data types are easily integrated, giving doctors choices in gait
parameter analysis models.

Efficiency is key. We have adopted a first-in-first-out schedul-
ing, with user-friendly status updates on data uploads. Load
balancing ensures smooth service, and for security, every
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Fig. 2. Comparison of the Ground Truth and Gait Parameter Estimations. Subplots (a)–(f) correspond to the dataset collected at National
Taiwan University Hospital, depicting the stride length, stride width, stride time, velocity, cadence, and turn time, respectively. Subplots (g)–(l)
represent the National Taiwan University Cancer Center dataset, showing the same gait parameters. Subplots (m)–(n) demonstrate the raw
predicted logits from our turn-time estimation model for one case of PD and one HC, respectively. Notably, the probability gradually increases
and decreases within the boundaries, which makes it challenging for annotators to make precise judgments.
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TABLE II
VALIDATION RESULTS OF THE GAIT PARAMETER ESTIMATION ALGORITHMS. THE TABLE PRESENTS THE VALIDATION RESULTS OF THE ALGORITHMS IN

ESTIMATING VARIOUS GAIT PARAMETERS, INCLUDING STRIDE LENGTH, STRIDE WIDTH, STRIDE TIME, VELOCITY, CADENCE, AND TURN TIME. MOST OF THE
ESTIMATED GAIT PARAMETERS DEMONSTRATE A “GOOD” OR “EXCELLENT” ICC3,1 VALUE WITH A LOW ERROR RATE AND A STRONG CORRELATION WITH

THE GROUND TRUTH. HOWEVER, ONE DATASET’S TURN TIME AND STRIDE WIDTH EXHIBIT A SLIGHTLY HIGHER ERROR RATE OF 10-12%, AND ONE TURN
TIME SHOWS A “MODERATE” ICC3,1 VALUE

TABLE III
PERFORMANCE COMPARISON OF TURN TIME ESTIMATION ALGORITHMS. THE NEURAL NETWORK-BASED ALGORITHM EXHIBITS SUPERIOR PERFORMANCE
COMPARED TO THE HANDCRAFTED ALGORITHM. MOREOVER, UTILIZING A SEMI-SUPERVISED LEARNING STRATEGY FURTHER BOOSTS PERFORMANCE AND

ENHANCES THE MODEL’S ADAPTABILITY ACROSS DATASETS

Fig. 3. User Categories and Functionality in the PathoOpenGait System. PathoOpenGait system classifies users into four categories: guests,
general users, managers, and administrators. The administrator holds complete control over all accounts within the system. On the other hand,
the manager, typically a doctor, possesses the authority to create accounts solely for their patients. Managers can upload videos for their patients,
view the inference results on the dashboard, and access a download button to obtain all estimated gait parameters for further analysis. General
users, typically patients, can upload their data, modify their profiles, and utilize the dashboard to monitor the progression of their disease. Guests,
however, are limited to viewing the demo page without access to additional functionalities.
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TABLE IV
CHARACTERISTICS OF THE PARTICIPANTS. THE P VALUES FOR COMPARING THE AGE, HEIGHT, SEX, AND THE DISTRIBUTION OF GAIT SYMPTOMS AMONG

GROUPS WERE ALL > 0.05

Fig. 4. PathoOpenGait System Design. The system incorporates an
entry point facilitated by the Nginx load balancer module. The front end
is developed using ReactJS, while the back end is implemented using
the Python Flask framework. Python Celery serves as the scheduler,
efficiently dispatching inference jobs with a queuing algorithm achieved
through the atomicity of Redis. Users’ data and inference results are
stored in MySQL, while the videos are stored in the nonvolatile memory
of the host. All components are interconnected through an internal
Docker bridge network, containerized, and easily managed by Kuber-
netes for seamless autoscaling. The system can be deployed on any
cloud service or Linux server, providing implementation flexibility and
versatility.

component resides within Docker containers, safeguarding in-
ternal operations while exposing only the front-end endpoint.

Setting up our PathoOpenGait system is effortless with the
Docker-compose command. It can be seamlessly deployed in
various Linux environments or on commercial cloud platforms
such as Google Cloud Platform and Amazon Web Services,
providing flexibility and scalability (Fig. 4).

E. Demonstration of the PathoOpenGait System

We used the PathoOpenGait system to collect data from
122 patients diagnosed with PD and 124 HCs. A total of 363

gait records for PD patients and 152 records for HCs were
then used for the statistical analysis. To ensure comparability,
a data cleaning process was performed to align age and sex
information. Detailed characteristics of the participants can be
found in Table IV.

Initially, we compared the gait parameters of the PD patients
and HCs, both overall and across different stages of PD. Our
findings revealed that compared to HCs PD patients exhibited
reduced SL (p < 0.001), along with slight increases in SW (p <
0.001) and TT (p < 0.001). To further investigate the minor
differences in ST and cadence, we conducted separate analyses
on patients in stages 1 to 3 of the disease. As anticipated, SL
(p < 0.001) and velocity (p < 0.001) consistently decreased as
the disease progressed among PD patients. However, we only
observed slight increases in ST (p < 0.01) and cadence (p <
0.01) in stage 3.

Furthermore, we performed analyses on subgroups of PD
patients. Individuals who exhibited poor initiation, shuffling, and
freezing showed reduced SL and V (all p < 0.05). Those with
difficulties turning demonstrated decreased ST and increased
cadence (all p < 0.05). In contrast, those with freezing patterns
exhibited increased TT (p < 0.001).

In addition, we explored the relationship between gait pa-
rameters and other variables, such as MMSE scores, LEDD,
and disease duration. We found that increased TT alone may be
associated with lower MMSE scores and longer disease duration
(p < 0.001). Decreased SL and V also indicated lower MMSE
scores (p < 0.001). These strong correlations were observed in
both stage 1 and stage 2 when conducting a stratified analysis
based on the disease stage. A higher LEDD was associated with
increased SW (p < 0.05), while a decline in ST or an increase
in cadence indicated a lower LEDD in stages 1 (p < 0.05) and 2
(p < 0.05). Finally, an increase in SL was associated with longer
disease duration in stage 3 (p < 0.05).
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TABLE V
PERFORMANCE COMPARISON BETWEEN GAIT PARAMETER ESTIMATION TECHNIQUES. A NOTABLE PERFORMANCE DIFFERENCE IS OBSERVED WHEN

WEARABLE DEVICES ARE ATTACHED TO VARIOUS PARTS OF THE BODY. FOR VISUAL-BASED DEVICES, 2D CAMERAS AND INFRARED-BASED 3D CAMERAS
STRUGGLE TO OBTAIN PRECISE DEPTH INFORMATION, NEGATIVELY IMPACTING STRIDE LENGTH AND VELOCITY ESTIMATION

IV. DISCUSSIONS

Over the years, various techniques have been developed for
estimating gait parameters and conducting gait analysis [3],
[41], [42], [43]. These techniques range from traditional carpet-
based methods [14] to more advanced approaches utilizing
3D camera arrays [16], wearable devices [12], and computer
vision-based methods in either 2D or 3D environments [26],
[29]. However, even with advancements in these techniques,
most studies haven’t provided platforms or source code, limiting
clinical application. In this study, we developed and demon-
strated PathoOpenGait, a portable and cloud-based platform for
gait analysis that supports cross-center tracking and long-term
monitoring. Patients can conveniently upload their gait records
from the comfort of their own homes. To our knowledge,
PathoOpenGait is currently the only open-source and flexible
platform available for gait analysis.

With the introduction of our platform, understanding the
functioning and optimal use of our platform is vital. Our al-
gorithms leverage components from pre-trained model weights,
such as the Mask R-CNN, followed by a 3D keypoint augmen-
tation. In scenarios with dark, complex, or occluded scenes,
and non-contrasting floors that lead to inaccurate 2D keypoint
extraction, these errors can propagate to the 3D augmenta-
tion, adversely affecting the final estimation of gait parameters.
Therefore, recording in well-lit, clear settings is essential for
accurate results. Moreover, to minimize errors, such as becoming
undetectable in the video when moving beyond a 4-meter trial
distance, patients must strictly adhere to the trial instructions. To
quantify potential errors, our system evaluates the presence and
reliability of detected keypoints. If our system detects keypoints
with confidence scores below 0.5, as recommended by the
official OpenPose and Detectron2 documentation [36], [44], or
identifies null values, it will prompt users to re-record.

We present a comparison of gait parameter estimation
performance with various methods in Table V. SW, reported by
only one infrared camera study [30] (ICC3,1 = 0.710; Corr. =
0.910), and turn time, noted by a single study using wearables
on the lumbar spine [45] (ICC3,1 = 0.690 to 0.800), are omitted.
Wearable devices, when affixed to the waist or condyles, tend to
exhibit suboptimal performance, particularly in depth-related
gait parameters like SL (ICC3,1 = 0.610) and velocity (Err.
= 26.6%). 2D cameras utilizing frontal view videos may
outperform those with sagittal view; however, the relevant

3D estimation algorithms often fail to precisely capture depth
information, compromising SL performance (Corr. = 0.704).
Additionally, 3D infrared cameras demonstrate limited capacity
in capturing depth information, resulting in an inadequate
estimation of SL (ICC3,1 = 0.670). Conversely, our binocular
camera system, coupled with our proposed algorithms, is capa-
ble of estimating all gait parameters with ICC3,1 values ranging
from “good” to “excellent” reliability (SW of 0.858 and turn time
of 0.791), as observed in a combined analysis of two datasets.

Furthermore, we developed the world’s first turn time esti-
mation algorithm that employs 2D video as its input. While its
“moderate” to “good” ICC3,1 values and 10% to 12% error rates
may seem inferior compared to other gait parameters, our algo-
rithm is still able to pinpoint the freezing of gait symptom in the
PD group (p < 0.001). The slight inferiority is a consequence of
the challenges in determining specific moments within a turn as
part of the turning phase (Fig. 2(m)–(n)). Moreover, individuals’
diverse range of turning patterns, such as stopping before turning
or turning while walking, makes it infeasible to mathematically
model these patterns using handcrafted deterministic algorithms
(Table III). In such cases, neural networks offer an effective
approach, as they can automatically learn and capture these
complex patterns during optimization [46].

However, utilizing neural networks for turn-time estimation
necessitates framewise annotations, which can be laborious and
time-consuming. In this study, we demonstrated the effective-
ness of semi-supervised learning in the context of 1D signals,
showcasing its potential for reducing the labeling burden in gait
analysis research. This is a notable contribution, particularly
considering that most studies applying semi-supervised learning
focus on benchmarking in image applications [39], [47], [48].

Additionally, we showcased the suitability and efficiency
of PathoOpenGait for doctors to conduct gait analysis and
easily compare features across different groups. One of the most
appealing features of PathoOpenGait is its flexibility. Making
PathoOpenGait an open-source platform and providing abstract
interfaces for developers to add plugins allows the entire frame-
work to be easily modified for various applications involving
data uploading and inference. This eliminates the need for reim-
plementing the authentication module and scheduler, which are
typically labor-intensive tasks, thus enabling seamless transfer
to other applications with minimal effort. Our codebase is ready
for deployment in a hospital research setting. For clinical use
beyond studies, users must heed local regulations.
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Despite its merits, our study does have certain limitations.
Although a $449 3D binocular camera is more affordable than
most mobile phones and can be accessible to many users, it
requires an additional device purchase. However, it is still more
cost-effective than carpets or 3D array cameras, and PathoOpen-
Gait is freely available. To mitigate this limitation, our system
retains the capability to estimate turn time using just 2D videos
in mp4 format from a 2D camera. We also offer guidelines for
adapting 3D trajectories from various cameras to our system.
However, users should be cautious, as performance may differ
with cameras beyond our original design. Our future goal is to
improve current 3D estimation algorithms and develop a system
that accurately works with solely 2D videos.

Another limitation involves the linguistic accessibility of
PathoOpenGait’s current interface, which may present difficul-
ties for users who are not adept in English. We encourage users
and developers worldwide to contribute by making pull requests
to the PathoOpenGait GitHub repository and helping translate
the interface into their respective languages.

Finally, for our PathoOpenGait to transition from a study
context to a clinical application, thorough software verification
is crucial [49]. This includes security checks, QA standards,
automated tests, and extensive documentation. As regulatory
standards vary by country [50], achieving universal clinical
readiness is complex. We’ve employed static analysis for se-
curity flaws in our code and plan to add dynamic analysis.
Additionally, we intend to strengthen our code with unit and
integration tests, supported by a detailed QA report.

In conclusion, we introduce PathoOpenGait, as the first open-
source, cloud-based platform for gait analysis, facilitating clin-
ical research and long-term monitoring of patients in any loca-
tion. We demonstrate the efficacy of semi-supervised learning
in enhancing model performance through the case of turn time
estimation. The flexibility and modifiability of PathoOpenGait
empower developers to further improve model performance
or adapt the platform for other applications that support the
advancement of digital medicine.
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