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Estimation of Circular Statistics in the Presence
of Measurement Bias

Abdallah Alsammani , William C. Stacey , and Stephen V. Gliske , Member, IEEE

Abstract—Circular statistics and Rayleigh tests are im-
portant tools for analyzing cyclic events. However, current
methods are not robust to significant measurement bias,
especially incomplete or otherwise non-uniform sampling.
One example is studying 24-cyclicity but having data not
recorded uniformly over the full 24-hour cycle. Our objec-
tive is to present a robust method to estimate circular statis-
tics and their statistical significance in the presence of in-
complete or otherwise non-uniform sampling. Our method
is to solve the underlying Fredholm Integral Equation for
the more general problem, estimating probability distri-
butions in the context of imperfect measurements, with
our circular statistics in the presence of incomplete/non-
uniform sampling being one special case. The method is
based on linear parameterizations of the underlying distri-
butions. We simulated the estimation error of our approach
for several toy examples as well as for a real-world ex-
ample: analyzing the 24-hour cyclicity of an electrographic
biomarker of epileptic tissue controlled for states of vigi-
lance. We also evaluated the accuracy of the Rayleigh test
statistic versus the direct simulation of statistical signifi-
cance. Our method shows a very low estimation error. In
the real-world example, the corrected moments had a root
mean square error of < 0.007. In contrast, the Rayleigh
test statistic overestimated the statistical significance and
was thus not reliable. The presented methods thus pro-
vide a robust solution to computing circular moments even
with incomplete or otherwise non-uniform sampling. Since
Rayleigh test statistics cannot be used in this circum-
stance, direct estimation of significance is the preferable
option for estimating statistical significance.
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I. INTRODUCTION

THE analysis of cyclic events is part of the branch of statics
called circular, directional, or spherical statistics. These

statistics are used in biomedical research to analyze events
whose occurrence rate varies with an exogenous cyclic rhythm
or other circular quantity. The most obvious case is circadian
rhythm, including circadian cyclicity of genes [1], [2], hor-
mones [3], blood sugar [4], and behavior [5], [6]. Other uses
cases are broad, spanning from circadian and multiday cycling
of seizures in humans with epilepsy [7], [8], to the response
of human aortic endothelial cells to cyclic fluid flow [9], to
magnetoreception in various species [10].

However, the standard methods of computing circular statis-
tics fail to account for non-uniform and incomplete sampling.
By non-uniform sampling, we refer to limitations of the mea-
surement process in which the sampling from various regions of
the domain is not consistent. Incomplete sampling is a special
case of non-uniform sampling where the measurement process
excludes the region of the measurement domain. For example,
if one only records events during a subset of the 24-hour period
but wants to understand the 24-hour cyclicity of these events,
they will have incomplete and non-uniform sampling. If instead,
one records over the full 24-hour period but records from the
morning hours twice as often as from the afternoon, they will
have complete, but still non-uniform, sampling. Non-uniform
sampling of any type, including incomplete sampling, can bias
the estimation of the cyclicity of these events.

Non-uniformity is a known problem in various fields. For
example, non-uniformity is a serious confound in the analy-
sis of the relationship between cortisol levels and stress [3].
Continuous glucose monitors for diabetes are recommended
to record at least 70% of a 14-day period to “add confi-
dence” [4]. However, depending on the time of day of the
missing data, this non-uniform sampling could drastically alter
the estimated average glucose level. For another example, in
the context of estimating circadian or multidien cycling of
seizures, data are often based on self-reporting. These reports are
known to have inaccuracies, including both misalignment of the
seizure times and missed seizures, especially during night-time
hours.

To give an example directly from our research, we have been
actively involved in the analysis of biomarkers of epilepsy that
occur in intracranial EEG recordings. We analyze multi-day
recordings of hospitalized subjects with epilepsy, and these
subjects have highly irregular sleep patterns. We would like to
assess if the rate of certain biomarkers has 24-hour cyclicity that
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Fig. 1. Example distributions of state of vigilance versus time of day.
Data are shown for an example patient in states of vigilance NREM
(a), REM (b), and awake (c). These distributions are the sampling
distributions when stratifying data by sleep stage. Notice the extreme
non-uniformity, with nearly all REM data coming from hours 0 to 9 and
the majority of awake data coming from hours 9 to 24. The y-scale is set
so that the maximum value is 1.0.

is independent of the sleep stage. This can be accomplished by
pooling data across days, stratifying data by sleep stage, and then
computing the first circular statistic moments. As we then only
analyze data occurring within a given sleep stage, the distribution
of that sleep stage over the 24-hour period (Fig. 1) results in
extremely non-uniform sampling.

Techniques to correct for non-uniform and incomplete sam-
pling are extremely common in high energy physics and are
based on histograms. For example, see [11], [12], [13], [14].
These methods fail for biomedical research due to two factors.
First, we note there can be confounding factors, with their effect
being called masking in some biomedical research communi-
ties [15]. The histogram method requires explicit measurement
of all confounding factors [11], [13], which is generally not
possible in biomedical research. Second, incomplete sampling
can cause the method to fail due to nuances about how the
non-sampled region is treated. In physics, relevant change of
variables mitigates this effect, but such change of variables is
generally not available in biomedical research.

TABLE I
GLOSSARY OF TERMS

The goal of this manuscript is to present a method to mitigate
the effect of incomplete or otherwise non-uniform sampling
when computing circular statistic moments and testing their
statistical significance. We first describe how these goals are
a special case of a more general situation of correcting for
measurement bias, and then present a mathematical derivation
of a solution for the general method. Note, the general approach
applies to a broad range of situations where one seeks to model
data distributions in the presence of non-negligible measure-
ment bias. We then relate the solution to our specific goal of
circular statistic moments and their statistical significance and
end by presenting several simulations which further elucidate
the method.

A brief summary of this unfolding process is as follows. One
first simulates data that would have been uniform were it not for
the incomplete sampling and measurement bias. This leads to a
model of how these imperfections in the measurement process
impact the circular moments. This model can then be effectively
inverted, allowing one to remove those effects from the circadian
moments of the actual experimental data.

Rather than making new terms for various mathematical
entities and technical concepts, we use several terms common
in the high energy physics community. As these terms may
be unfamiliar to many readers, we provide a brief glossary in
Table I.

II. METHODS

A. Motivating Example

We begin with a minimal example in which we introduce the
histogram technique standard in the physics community, show
how it can fail, and introduce our new method. Intuitively, the
histogram method is useful in situations such as high energy
physics where there are many more data points to allow both
small bin sizes and a large number of counts in all bins. However,
data that are more sparse, such as is common in biomedical
research, can lead to too few counts in some histogram bins. This
in turn can make the results either unreliable or can even make it
impossible to solve the equations. Our method avoids this issue
by directly working with coefficients of basis functions. In the
specific case of computing circular moments, these coefficients
are the Fourier moments.
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Fig. 2. Motivating example: histogram approach. (a) Histogram of
seizure counts per time of day for a hypothetical patient. (b) The counts
per bin from (a) can be represented as a vector b. (c) Histogram de-
picting the acceptance. (d) The acceptance is represented as a 2D
smearing matrix. Since all events that are recorded are recorded in the
correct time-bin, the matrix is diagonal. (e) The goal of the standard
method is to estimate the actual counts per bin, represented by the
vector a, which is found by solving b = Sa.

Consider a patient with epilepsy keeping a diary of the times
at which their seizures occur. If we select to divide the day
into 4-hour bins, their data can be represented as a histogram;
see Fig. 2(a). The values per bin form a vector, as shown in
Fig. 2(b). For this example, the patient records this information
perfectly between the hours of 8 AM and midnight. However,
from midnight to 4 AM the patient records no information, and
between 4 AM and 8 AM, they record an average of 50% of
their seizures. In the physics nomenclature, we would state the
acceptance of this measurement process was 0 from midnight
to 4 AM, 0.5 from 4 AM to 8 AM, and 1.0 the remainder of
the day. This data can also be visualized as a histogram; see
Fig. 2(c). The physics approach represents this as a matrix,
where the diagonal captures the acceptance, the probability that
an event gets recorded in the right time bin. The off-diagonal
elements capture bias, specifically the probabilities that events
from one time bin get recorded in another. In our example, when
the patient records times, they always record the correct time,
and so the off-diagonal elements of the matrix are zero. Since this
matrix captures how counts get mixed across bins, it is called
the smearing matrix. The physics approach would then be to
solve the straight-forward linear equation b = Sa, where b is
the vector of the measured counts per bin, S is the smearing
matrix, and a is the vector of corrected counts per bin. Note
however that in our case, the acceptance of 0 from midnight to
4 AM causes the matrix to be non-invertible (in other words,
there is no unique solution to the equation), and thus the method
cannot be directly applied. Some nuanced adjustments to our
choice of binning could alleviate the problem for this example,
but that is not always the case in general.

Our method herein is an alternate approach where we instead
compute Fourier moments of the data and where the smearing
matrix describes how the acceptance (non-uniform sampling)
causes mixing between the Fourier moments rather than be-
tween histogram bins. Such an approach is depicted in Fig. 3.
The matrix is now invertible and we could proceed to solve

Fig. 3. Motivating example: Fourier moment approach. (a) Plot of
each Fourier component of the data in Fig. 2(a). The moments are
the constant, sine, and cosine terms. (b) Fourier moments as a vector.
(c) The actual acceptance. (d) Acceptance is represented as a 2D
smearing matrix of Fourier moments. (e) As in the histogram method
(Fig. 2), the solution is again obtained by solving a linear equation, this
time β = Sα; c.f., (19).

for the corrected moments. While this approach is conceptu-
ally straightforward, the exact details of how to compute the
smearing matrix, in this case, are not obvious, and one could
rightly ask whether such a method is mathematically justified.
Rather than making assumptions about its validity, we seek
to mathematically derive a numerical approach based on first
principles. This derivation ultimately yields this exact approach.

B. Background Information

Before introducing our new methods, we first review Monte
Carlo integration and some details about circular moments. This
allows us to highlight the close relationship between circular
moments, Fourier moments, and the Rayleigh test statistic.
We note that our specific objective is to provide a solution to
estimating circular statistics and their uncertainty in the presence
of non-uniform sampling. Addressing how non-uniformity of
the measurement process influences other statistics used with
circular data is beyond the scope of this paper.

Direct Monte Carlo integration is a common technique for
numeric estimation of integrals [16]. Consider an integral of the
form

I =

∫
dx p(x)g(x), (1)

where the integration domain is a real, multidimensional space,
p(x) is a probability distribution function, and g is a generic
Lebesgue integrable function. Based on the law of the uncon-
scious statistician (LOTUS), the integral is simply the expec-
tation value of g(x) given p(x), i.e., Ep[g(x)]. Given n data
points {x(k)}nk=1 drawn from p(x), the numeric estimate of the
integral is

Î =
1

n

n∑
k=1

g
(
x(k)

)
, (2)

[16].
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The definition of the kth circular moment is

ck = Ep(φ)

[
e−ikφ

]
, (3)

=

∫ π

−π

dφ p(φ) e−ikφ, (4)

where p(φ) is a one-dimensional circular probability distribution
function (PDF) with domain spanning (−π, π]. Note, (4) follows
from (3) due to LOTUS. We also observe from (4) that the
circular moments are identical to the Fourier moments of the
PDF p(φ). Thus, the PDF can be formally written as

p(φ) =
1

2π

∞∑
k=−∞

ck e
ikφ. (5)

Note, normalization of the PDF implies that c0 = 1. Lastly, as
φ is assumed to be real-valued, the k and −k components are
equal, and thus we arrive at

p(φ) =
1

2π

(
1 + 2

∞∑
k=1

ck e
ikφ

)
. (6)

We can apply direct Monte Carlo integration to (4) to obtain
the standard formula for the numeric estimate of the circular
moments. Let {φj}nj=1 be a sample of n data points drawn
from p(φ). Applying direct Monte Carlo integration yields the
following formula as an estimate of ĉk, the numerical estimate
of the true coefficients ck:

ĉk =
1

n

n∑
j=1

e−ikφj . (7)

We note, in practice, it is easier to work with the real-valued
components

âk =
1

n

n∑
j=1

cos(kφj), (8)

b̂k =
1

n

n∑
j=1

sin(kφj), (9)

with ĉk = âk + îbk. Note, if we were to model the PDF as

p(φ) =
1

2π

[
1 +

∞∑
k=1

ak cos(kφ) + bk sin(kφ)

]
, (10)

we then have the relationships

ak = âk + â−k = 2âk, (11)

bk = b̂k + b̂−k = 2b̂k; (12)

note the factor of 2 consistent with (6). Lastly, the Rayleigh
test statistic, often written nR2, is defined as the number of
data points n times the squared magnitude of the first moment
R2 [17],

nR2 = n |c1|2 = n
(
â21 + b̂21

)
. (13)

The statistic 2nR2 follows a χ2-distribution with 2 degrees of
freedom [17].

Thus, we see that the standard formula for circular statistics
are just estimates of the Fourier moments using the method of

direct Monte Carlo integration. The Raleigh test statistic directly
follows from the first moment. In the case of complete sampling
and non-negligible measurement bias, the standard method is
to estimate the Fourier moments using (8)–(9), from which
the Rayleigh test statistic can be derived. In the case of in-
complete or otherwise non-uniform sampling or non-negligible
measurement bias, these Fourier moments cannot be estimated
directly from (8)–(9); instead, more advanced techniques are
needed—the gap directly addressed by this manuscript. We note
that our proposed correction method is more general than just
computing Fourier moments, and so we next present this more
general case. The specific case of Fourier moments is considered
afterward in Section II-C4.

C. The Unfolding Procedure

1) Theoretical Foundations: We are now ready to present the
theoretical basis of our correction method. Consider a general
experiment based on measuring the occurrence of events. For
each event, let certain qualities be measured, represented by
the vector x, for example, the time of day the event occurred.
Consider also the inaccessible vector of true values y. In other
words, if a perfect measurement process and the actual mea-
surement process both measured the exact same circumstance,
the perfect measurement process would yield y and the actual
measurement process would either yield x or fail to record the
event. The difference between y and x reflects the precision and
accuracy of the measurement process. While one can directly
estimate the PDF of the measured values, p(x), the goal is to
estimate the PDF of the true values, p(y), i.e., the values that
would be obtained given a perfect experiment. The relationship
between the true and measured PDFs can be expressed as a
Fredholm integral equation,

p (x) = η

∫
V
dy p (x |y ) p (y) . (14)

where V is the measurement domain with volume V . The condi-
tional probability p (x |y ) captures both measurement bias and
non-uniform (including incomplete) sampling. The factor of η
is present as an overall scale factor to ensure the PDF on the left
is properly normalized in the case of non-uniform sampling. In
the Fredholm equation, (14), we consider that p(x) and p(x|y)
are known quantities and that η and p(y) are unknown. We note
Fredholm integral equations are inherently ill-conditioned [18].
In practice, however, a sufficiently accurate approximation can
often be found, but this accuracy must always be checked; see
Section II-C5.

We next introduce a generic set of N basis functions
{fi(x)}Ni=1. We note {fi(x)}Ni=1 need not be a complete basis of
the entire space of PDF functions (i.e., the space ofL1 integrable
functions), nor is it required that the basis be orthonormal.
It is sufficient that it spans a subset covering the expected
domain of p(x) and p(y) and that the inner product matrix
Fi,j =

∫
dx fi(x)fj(x) be full rank.

Our approach determines first an estimate of η p(y), from
which the estimates of η and p(y) can be derived by noting

η =

∫
V
dy η p (y) . (15)

We look for solutions of η p(y) that can be expressed as a linear
combination of the chosen set of basis functions. Specifically,
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we represent ηp(y) by the vector α with

η p (y) =

N∑
i=1

αi fi(y). (16)

Thus, to estimate p(y), it is sufficient to estimate α. Next, let
matrix S and vector β be defined according to

βi =

∫
dx p (x) fi(x) (17)

Si,j =

∫
dx dy p (x |y) fi(x)fj(y). (18)

The vector β is the parametrization of p(x) in the chosen
basis. The matrix S is a generalization of the histogram-based
smearing matrix [13]. We can then multiply both sides of the
Fredholm integral equation with a basis function fk(x) and
integrate over x, which simplifies to

β = Sα. (19)

Solving for α is then straight-forward linear algebra, with var-
ious applicable techniques discussed in Section II-C3. First,
however, we describe the estimation of S and β and their
covariance.

2) Estimation of the Known Quantities in the Fredholm Equa-
tion: The quantities considered as known in the Fredholm Equa-
tion (14) are p(x) and p(x|y), with parameters in the vector β
and the matrix S. We next estimate this matrix and vector using
direct Monte Carlo integration. Let {x(k)}nk=1 be a set of n
data points drawn from the distribution p(x). Note, these are the
values measured in the experiment. Elements of the vector β are
estimated using Monte Carlo integration,

βi =
1

n

n∑
k=1

fi

(
x(k)

)
, (20)

where {x(k)}nk=1 is the set of n measured data points.
We note that p(x,y) can be expressed as p(x|y) =

p(x,y)/p(y). Thus, using a numeric simulation, one can gen-
erate data according to p(x,y) with a uniform prior, i.e.,
p(y) = 1/V , where V is the volume of the integration domain.
In practice, this typically means starting with a data set of y
drawn uniformly at random over the full measurement domain
V , redacting data points to mimic the effect of incomplete or
otherwise non-uniform sampling, and estimating the measured
value x for each y that was not redacted.

Let {x′(k),y′(k)}mk=1 be a set of m data points drawn from
p(x,y)with uniform p(y). Elements of the matrixS can be then
computed according to

Si,j =
V

m

m∑
k=1

fi

(
x′(k)

)
fj

(
y′(k)

)
. (21)

3) Solving the Fredholm Equation (Unfolding): The process
of solving the Fredholm Equation (14) or numeric approximates
(19) is often called unfolding in the high energy physics commu-
nity (see Table I). Based on (19), the solution for α can formally
be written as

α = S−1β. (22)

In practice, a more stable estimate of alpha can be determined
using methods to solve the linear equation that does not involve

the inverse of S (such as QR decomposition). We note that if the
null-space of S is non-trivial, then α is not unique. In practice,
S tends to be full rank but can have eigenvalues near-zero. The
condition number of the matrix S (ratio of the largest to smallest
eigenvalue) thus directly assesses whether the bias and non-
uniform sampling preclude a unique estimation of α, i.e., p(y).

4) Fourier Basis: To return to the case of circular statistics
and the Rayleigh test, we consider the case of the basis functions
{fk(x)} being Fourier moments. Let N ′ be the maximum order,
and we enumerate the N = 2N ′ + 1 basis functions as

fk (x) =

{
cos (kx) , 0 ≤ k ≤ N ′
sin ((k −N ′)x) , N ′ + 1 ≤ k ≤ N.

(23)

When using this basis for unfolding, (16) implies that η = α0.
The remaining elements of α are proportional to a and b from
(10). To recover the circular statistics, we just need to divide α
by a factor of 2α0 and focus on indices greater than zero. We
define a new α′,

α′
i =

αi

2α0
∀ i = [1, 2, . . . N ]. (24)

We can also transform the circular moments α′ into magnitudes
and phases, e.g.,

|ck| =
√

α′2
k + α′2

k+N ′ =
1

2

√
α2
k + α2

k+N ′

α2
0

, (25)

ϕk = tan−1

(
α′
k+N ′

α′
k

)
= tan−1

(
αk+N ′

αk

)
. (26)

Note, the Fourier moments are 2|ck| (see Section II-B).
Lastly, the Raleigh test statistic can be computed by substi-

tuting the values from (25) into (13). Note, however, that the
Rayleigh test statistic does not account for the measurement
effects captured in p(x|y), and thus it may overestimate the
significance (i.e., underestimate the p-value). See more details
in our fourth simulation, described in Section IV-D.

5) Design Considerations: Given the inherent ill-
conditioned nature of the incomplete sampling and measurement
bias captured inp(x|y) and the matrixS, it is essential that every
analysis using this method assess the stability and accuracy
of the solution given their unique measurement scenario. This
involves two specific tasks. First, the condition number of
the matrix S must be considered. Secondly, simulated data
should be generated with a known true distribution, and then
the moments from the known distribution should be compared
with the reconstructed values. The method should be repeated
for various values of the true distribution as more than one true
distribution could result in the same measured distribution if the
null space of S is approximately non-trivial. In these cases, it is
wise to generate a large amount of data—10 times the among of
actual experimental data is a common rule of thumb—such that
the variance in the estimated parameters from the simulation is
much lower than the variance of the parameters extracted from
the actual experimental data. Specific examples of conducting
these simulations are given in Section IV.

A potentially overlooked aspect of non-uniform or incomplete
sampling is that it can induce correlation in measured variables
even when the true variables are not correlated. This effect is
sometimes called cross-talk. This should be remembered when
reporting results, as all extracted coefficients are correlated. This
correlation also impacts the selection of the basis functions.
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Fig. 4. Flowchart. The major processing steps of the unfolding pro-
cess are provided in this flowchart. Simulated data is used to compute
the smearing matrix S using Monte Carlo integration, (21). The actual
experimental data is used to compute uncorrected moments β, also
using Monte Carlo integration, (20). These values are then used to
compute the corrected moments α using linear algebra since β = Sα,
(19). Lastly, the corrected moments can be converted to phases and
magnitudes using (24), (25) and (26).

For example, if one desires to assess circadian cyclicity, it is
sufficient to estimate the true value of the magnitude of the
first Fourier moment. One might naively select a basis that only
includes the first moment, i.e. a basis of sin(φ) and cos(φ).
However, given the mixing of moments caused by the nontrivial
p(x|y), it is necessary in practice to include the zeroth moment
(which should always be included) as well as potentially higher
moments. Conceptually, this is similar to aliasing, as the higher
moments influence the estimate of the lower moments, although
the cause is completely different. Thus, there is a trade-off in
the choice of basis functions: too few, and the effect of the
mixing between moments will not get accurately unfolded; but
too many, and the condition number of S will increase. Good
design practice is to select enough basis functions to allow
the coefficients (moments) of interest to be reconstructed with
sufficient accuracy, but not to include so many as to significantly
negatively impact the condition number of the smearing matrix
S. The optimal number of basis functions can potentially vary
for each data set considered.

III. CODE AVAILABILITY

Matlab code has been posted to https://github.com/sgliske/
unfolding. We also provide a flowchart of the algorithm in Fig. 4.

IV. EXPERIMENTS AND ANALYSES

Each of the following simulations is based on the scenario
of measuring the circadian oscillation of the occurrence of
some event. For each simulation, we repeated the same gen-
eral process, which involved the following steps. First, we
chose an acceptance to use for the simulation. We note that

in actual experiments, the acceptance is generally a known
quantity, i.e., we know when data are being collected. We
then selected a known true distribution and simulated how data
with that true distribution would appear if measured with the
chosen acceptance. We also applied the unfolding procedure
and compared how well the unfolded parameters matched the
true parameters. The process was then repeated for a variety of
parameters of the true distribution and/or a variety of choices of
acceptance.

A. Simulation 1, First Toy Model

The first simulation is a simplified toy example. For the
acceptance, we simulated that the machine stopped recording
during the last 6 hours of recording, and thus only the data
during the first 18 hours were measured. In other words, the
acceptance was modeled as perfect from 0.00 to 18:00 hours
and exactly zero from 18:00 to 24:00 hours. We then considered
how several different true distributions would appear with this
acceptance and how well the unfolding procedure would work.
We specifically used an amplitude of 0.3 and selected 12 values
for the zenith of the true data distribution, ranging from 1:00 to
23:00 in two-hour steps. The value of 0.3 was chosen arbitrarily.
We also investigated other amplitude values, with qualitatively
similar results, but for the sake of clarity, we present just results
with an amplitude of 0.3. Data were specifically generated using
the rejection method [19]: we first generate data (times of day)
according to the acceptance distribution; we then rejected events
from this set to induce the chosen PDF for the “measured“
events. We used 100,000 events for estimating the smearing
matrix and simulated 100,000 “measured” events. We selected
large numbers to minimize the impact of random fluctuations on
these examples.

From these data, we computed β and S using (20) and (21).
Next, we computed α by solving (19). We then transformed
these values to Fourier moments and phases using (24), (25),
and (26).

Results are shown in Fig. 5. Even though we tested with
true distributions having zeniths across the full 24 h period,
the measured moments always had a zenith between 6:00 and
12:00, consistent with a nadir always being between 18:00 to
24:00, the period when no data was recorded. The unfolding
method recovers the true zenith and amplitude. Over all param-
eters considered, we observed that the root mean square (RMS)
residual between the true and unfolded moments was 0.004,
corresponding to a 1% resolution (0.0004/0.3 = 0.013).

B. Simulation 2, Second Toy Model

In the second simulation, we repeated the identical procedure
as in the first simulation but with a different choice of acceptance.
We modeled that the recording device was started at 18:00
hours, and turned off at 24:00 hours, a recording duration of
30 hours. The acceptance is thus twice as high during 18:00 to
24:00 hours as it is during the rest of the day. See Fig. 6. We
observed that depending on the zenith of the true distribution,
the acceptance can cause the measured data to have circular
moments with amplitudes nearly unchanged (but with a shifted
zenith), Fig. 6(b)–(c), or with amplitudes near zero and a zenith
that is off by 12 hours, Fig. 6(d)–(e). As in simulation 1, the
unfolding procedure recovers the correct parameters with a very
lower error: the residual RMS is again 0.004.

https://github.com/sgliske/unfolding
https://github.com/sgliske/unfolding
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Fig. 5. Results for Simulation 1, First Toy Model. (a) Acceptance. In this simulation, data were recorded uniformly from 0.00 to 18:00 hours, but
no data were recorded from 18:00 to 24:00 hours. (b) Data distribution, example 1. The red dotted line represents what would have been measured
with ideal acceptance, whereas the blue solid line represents what would have been recorded with the acceptance in (a). Data were generated
with an amplitude of 0.3 and a zenith at 3:00 hours. (c) Model fits of the data in (b), i.e. plotting (10) using either moments directly computed from
the data (11) and (12) or moments computed via unfolding (24). While the measured data (blue line) does not match the true model (red dotted
line), the model using the unfolded parameters matches extremely well. (d) Data distribution, example 2. The nadir of the distribution was set to
21:00, centered in the period with no acceptance. (e) The effect is a measured data distribution that is perfectly out of phase, as the data are now
symmetric about 9.00 and 21:00, and there is more data around 9.00 than around 21:00. (f) Results of the full scan over the zenith of the true
distribution. The amplitudes, vertical axis, are based in (25), and the zeniths, horizontal axis, are based on (26). We repeated the process for 12
different values of the zenith of the true distribution, spaced every two hours across the 24 h period. The data from (c) and (e) each generate a
triplet of true, measured, and unfolded points in this figure, with letters next to the specific points corresponding to those panels. The very large
discrepancy between measured values (blue diamonds) and true values (red circles) shows that the non-uniform acceptance causes extreme bias
to the measured circadian moments.

C. Simulation 3: Real World Acceptance

1) Motivation: For our next simulation, we will use ac-
ceptance values from real-world data related to our ongoing
epilepsy research. High frequency oscillations (HFOs) are an
electrographic element observed in intracranial EEG [20]. While
healthy tissue can produce HFOs, they have a higher prevalence
in tissue-instigating seizures [21], [22], [23]. Understanding how
HFO rates vary with time of day and with state of vigilance gives
insight into their pathophysiology and may also help guide the
optimization of their clinical interpretation. However, intracra-
nial EEG monitoring typically involves gaps in the recordings,
for example, if the patient needs to have mapping procedures
or extra imaging. Thus, the sampling across the 24-hour period
is not uniform. Additionally, patients sleep very poorly during
intracranial EEG monitoring, and thus restricting HFO analysis
to specific stages of sleep results in a highly inconsistent and
sporadic sampling of events across the 24-hour daily cycle;
see Fig. 1. The acceptance function for analyzing the 24-hour
cyclicity of HFOs is the probability that an HFO at a given time
would be measured. If we restrict the analysis to just a specific
stage of sleep, the acceptance is then the probability that the
iEEG recording was being taken and that the patient was in the
given stage of sleep. In short, the acceptance for analyzing HFOs
in a given sleep stage is the distribution of when that sleep stage
was recorded. Thus, methods to correct for non-uniform and
incomplete sampling are essential to understand the cyclicity of
HFOs controlled for states of vigilance.

2) Patient Data: At the University of Michigan, we have
acquired a large database of multi-day, intracranial EEG record-
ings, the vast majority of which have had sleep scoring per-
formed by a sleep technician based on the scalp EEG [24]. The
database was gathered under the approval of the local Institu-
tional Review Board (IRB #HUM00073616), and all subjects
in the database have either given their consent (adults) or have
assented to participate (children) with consent being provided
by a parent, guardian, or legally authorized representative. All
subjects meeting the following inclusion criteria as of February
1, 2022, were included in this study: clinical data acquisition
with a sampling rate of 4,096 Hz and sleep scoring completed
for at least 24 hours of data. This resulted in 58 subjects, with the
amount of sleep-scored data ranging from 30.1 to 395.0 hours
(median 167 hours). We divided the state of vigilance into 3
categories: awake, REM, and non-REM (NREM). Only data
from one subject is used in this simulation, Simulation 3, though
data from all subjects are used later in Simulation 4.

3) Experimental Design: We repeated the process used in
simulations 1 and 2 with two minor modifications. First, for the
acceptance, we selected that of when NREM sleep occurred in
an example patient. Note, in actual experiments, the acceptance
is a known, measurable quantity. Second, we increased our
parameter scan for the true data distribution. For each of the 12
zenith values, we also considered 5 different amplitude values,
ranging from 0.1 to 0.5 in steps of 0.1. See Fig. 7. This type
of study is essential when using the unfolding methods because
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Fig. 6. Results for Simulation 2, Second Toy Model. Data are presented in the same way as they were for simulation 1, Fig. 5. (a) Acceptance. (b)
and (d) Data distributions for two examples. (c) and (e) Model fits for two examples. (f) Results for the full scan. The measured data always yield
zeniths within a few hours of 21:00 with widely varying amplitudes, even though the true zeniths span the full 24 h period and the true amplitudes
were always 0.3. In the first example (b)–(c), the amplitude is nearly unchanged but the zenith is shifted from 5:00 to 0:24 hours. In the second
example (d)–(e), the heightened acceptance occurs right at the zenith of the distribution, causing the amplitude of the measured data to be near
zero and the zenith to be off by 12 hours. Unfolding can reconstruct the true values with a small residual.

it informs whether the non-uniformity of sampling allows or
precludes reconstruction of the actual true values.

4) Results: Results for simulation 3 are shown in Fig. 7.
The NREM sleep in this patient mainly occurred during the
hours of 0:00 and 7:00 hours, but the acceptance is highly
non-uniform. As with our first two simulations, we observed
that circadian moments directly computed from the measured
data are extremely inaccurate due to the very non-uniform
acceptance. Again, unfolding can reconstruct the true values
with low error across the full parameter range.

D. Simulation 4: Assessing Statistical Uncertainty

1) Motivation: Our first several simulations have demon-
strated that our unfolding procedure accurately reconstructs the
circular moments. In this last simulation, we seek to assess
whether unfolding has mitigated the influence of imperfect
acceptance on the Rayleigh test results. Recall, the Rayleigh
test is an analytic approach to assess the statistical significance
of circular moments being non-zero, against the null hypothesis
that the moments are zero. Non-uniform acceptance increases
the uncertainty, which is not accounted for in the Rayleigh test
statistic. Therefore, we anticipate that the Rayleigh test statistic
overestimates statistical significance and is thus not applicable in
the case of non-uniform sampling. To assess this, we compared
the Rayleigh test statistic with direct numerical estimation.

2) Simulation Design: The comparison of the Raleigh test
statistic (an analytic method) and direct estimation (a numeric

method) is much simpler in terms of amplitude thresholds rather
than p-values. Recall that for any given level of statistical signifi-
cance (α value) and number of data points, there is a correspond-
ing amplitude that corresponds to that threshold. In other words,
amplitudes above that threshold have p-values greater than α
and allow rejecting the null hypothesis, whereas amplitudes
below that value have p > α and do not allow rejection of
the null hypothesis. Overestimating the p-value is the same as
underestimating the amplitude threshold for significance.

To compute the threshold numerically, we simulated the null
hypothesis 1,000 times for each state of vigilance for each
patient. As with simulation 3, the acceptance was the distribution
of the state of vigilance for each subject, but in this case, we
analyzed all states of vigilance and set the number of events
equal to the number of events (HFOs) recorded during each of
those states of vigilance in each patient. This provides realistic
sample sizes. Among the 1,000 iterations, the 95%-tile of the
distribution of those amplitudes gives a direct, numeric estimate
of the threshold for statistical significance. By design, this ap-
proach includes all the effects of the non-uniform acceptance
for the specific acceptance used in the simulations.

To compute the threshold analytically using the Rayleigh
statistic, we solved (13) for the magnitude of the amplitude. We
then put the value of the inverse χ2 distribution for α = 0.05
and the number of events (the same number of events as for the
numerical estimation) into this equation to yield the threshold.

3) Results: In Fig. 8, we compare the threshold for sig-
nificance at the α = 0.05 level for the Rayleigh test statistic
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Fig. 7. Results for Simulation 3, Real World Acceptance. Data are presented in the same way as they were for simulation 1 and 2, Figs. 5–6.
(a) Acceptance. In this case, the acceptance is the relative amount of NREM sleep over the 24 h period from a multi-day hospital stay of an
example subject, the same data are shown in Fig. 1(a). (b) and (d) Data distributions for two example true distributions. (c) and (e) Model fits for
two examples. Note, the model fits are not strictly positive, which breaks the positivity constraint for PDFs. (f) Results for the full scan. Due to the
density of points, the specific values corresponding to the results in panels (c) and (e) are not indicated. We observe that the acceptance is so
extreme that the measured data always yielded circular moments with zeniths between 1:00 and 5:00 hours and with amplitudes that are much too
large. Unfolding can reconstruct the true values with a small residual: RMS of residual over all true parameters is 0.007.

Fig. 8. Thresholds for distinguishing from the null-hypothesis. (a) The thresholds for the amplitudes of the circular moments being statistically
significant at the α = 0.05 level. The analytic threshold, based on the Rayleigh test statistic, appears as a straight line (black line) when plotted
on a log-log plot. The numeric threshold (blue circles), computed by simulating the null hypothesis, is typically larger than the analytic threshold,
demonstrating that the analytic threshold has overestimated statistical significance. (b) Histogram of the difference between the numeric and analytic
thresholds. We observe that 95% of the differences are less than 0.032, suggesting that the overestimation of statistical significance in this data
set is small but non-negligible. (c) Association between the difference in thresholds and the smearing matrix condition number, a measure of the
non-uniformity of the sampling. The Spearman correlation is 0.84, with p-values below machine precision, meaning that the Rayleigh test statistic
overestimates statistical significance to a greater degree for cases where the sampling is less uniform.

(“analytic method”) versus the simulation (“numeric method”).
As expected, we observed that the thresholds computed by
the simulation are either close to or slightly higher than those
from the Rayleigh test. At first glance, the magnitude of the
difference appears small, but as the circadian moments of the
HFOs have not yet been measured, one cannot conclude whether

the magnitude of the difference is relatively small or not. The
difference between the thresholds from the analytic and numeric
methods is strongly correlated with the condition number of
the smearing matrix (ρ = 0.84, p less than machine precision,
Spearman Correlation Coefficient). Recall the condition number
of the smearing matrix S is an assessment of how strongly
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the non-uniform acceptance is limiting the reconstruction of
the moments. Thus, we observe that the Rayleigh test statistic
overestimates statistical significance in general, with the effect
increasing when the acceptance is further from the ideal.

V. DISCUSSION

We have presented a novel method to correct for non-uniform
(including incomplete) sampling and measurement bias. We
have also shown how these methods apply to the estimation of
circular statistical moments and tests of their significance. We
have applied these methods to simulations involving acceptances
from simplified toy models and real-world data. We find that
without unfolding, non-uniformity in the measurement process
can have a drastic influence on the estimation of circular mo-
ments. Even so, our unfolding methods successfully corrected
for incomplete and non-uniform sampling with high accuracy
even in fairly extreme cases of incomplete and non-uniform
sampling. For example, Simulation 3 includes a complex, real-
world example of very limited acceptance. Note how greatly
different the directly measured moments are from the true values
in Fig. 7(f). Despite these challenges, our method can accurately
recover the true Fourier amplitudes and phases: the unfolded
moments nearly perfectly match the true values in Fig. 7(f).
Given that the method works well in this challenging case, we
expect it to also work well in a wide variety of circumstances,
such as continuous glucose monitoring, circadian fluctuation of
hormones, and cycling of seizures. We thus observe that while
circular statistics and Rayleigh tests are not reliable when there
is significant non-uniform sampling, the methods we present are
highly robust even in the presence of extreme non-uniformity.

The topic of statistical significance requires some discussion.
Recall, the Rayleigh test is designed to check the presence of the
unimodal deviation from the uniform distribution. An alternate
approach is the direct simulation of the statistical significance,
although this method has much higher computational complex-
ity and appears to be used less often. We compared the results
of both of these approaches in Fig. 8. We observe that in the
presence of non-uniform sampling, even when the moments are
corrected, the Rayleigh test is still not robust. By construction,
direct simulation of the statistical significance is still valid. We
also note the existence of other related statistical tests, such as
those that assess whether the entire distribution is uniform [25],
[26]. These do not easily fit within the framework of basis
functions, as, for example, they involve absolute values of the
actual data values [25]. Thus, in the presence of non-uniform
sampling, the only available, rigorous method for assessing
statistical significance is direct simulation, an option we include
with our posted code.

In some cases, it is more relevant to know the confidence
interval around the unfolded moments rather than whether the
null hypothesis can be rejected. This is particularly important
when comparing different experiments to see if the circadian
moments are consistent across the experiments. An alternate
method can be used to estimate these confidence intervals, which
is provided in the Appendix.

An important component of the method is selecting an appro-
priate basis expansion, including the number of basis elements.
In the case of circular statistics, the basis functions are sine
and cosine functions, but which functions are most relevant
should be considered for each use case. For example, some

histogram methods used in high energy physics (e.g., [13]), can
be represented as a special case of our method using a basis of
piecewise constant functions, though spherical harmonics are
more appropriate in some circumstances (e.g., [27]). With any
choice of basis function, the condition number of the smearing
matrix is an essential key to selecting the number of basis
elements.

An alternate approach to unfolding is called synthetic sam-
pling. In that approach, one generates additional experimental
data to replace the data missed by the non-uniform sampling.
This requires a model of what the data would have been during
times data were not measured. In our approach, we generate data
according to a uniform distribution to learn how the non-uniform
sampling impacts the results. If the end goal is to compute
circular moments, both approaches assume that the data can be
well represented by Fourier moments. However, the synthetic
sampling approach has the additional confounding factor of
selecting what model to use for the missing data, which our
approach does not have. While synthetic sampling might be a
sufficient approach for some cases with very little data missing,
our method works in a much broader set of circumstances and
has fewer assumptions.

One challenge that our method does not directly overcome is
related to the concept of aliasing and is ubiquitous to analyses
with incomplete sampling. In all cases, one should simulate data
with all the moments which are expected to be non-zero to ensure
that cross-talk between moments is not unduly influencing the
results. Thus, while no method can fully replace what is lost
by incomplete sampling, careful use of simulated data allows
a rigorous assessment of when the results are expected to be
reliable, thus providing high confidence when appropriate.

One advantage of our unfolding method is the large flexibility
allowed by the choice of basis functions. The examples in this
paper focused on the analysis of circular moments for 24-hour
periods. If one wanted to simultaneously analyze both circadian
and multidien moments, one could increase the number of basis
functions to simultaneously correct the moments for both types
of cyclicity. Additionally, modification of the basis functions to
include other covariate variables allows for directly modeling
how the circular static moments vary with other factors.

Our method overcomes the two noted challenges of the his-
togram method used in physics: confounding factors and non-
invertible smearing matrices. Confounding factors can either be
addressed after unfolding (as opposed to the histogram method
requiring addressing them before unfolding) or explicitly mod-
eled by adjusting the basis functions. Additionally, the use of
basis functions generally avoids the zeros caused by incomplete
sampling; c.f., motivating example.

VI. CONCLUSION

We have developed a novel method to address the problem
of incomplete sampling and measurement bias when computing
circular statistics. In doing so, we have given a full mathematical
derivation from the first principles to establish the rigor and
validity of the method. We have also presented several sim-
ulations which demonstrate the method can correctly recover
the true values even in circumstances with extremely incom-
plete sampling of data. These methods apply to a wide vari-
ety of analyses in basic, translational, and clinical biomedical
research.
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APPENDIX

DERIVATION OF CONFIDENCE INTERVALS

A. Background Information

We note the variance on direct Monte Carlo integration (2) is

σ2
I =

1

n− 1

n∑
k=1

[
g
(
x(k)

)
− Î

]2
(27)

in the case of one basis function [16]. When using multiple basis
functions, we have

Îi = 1

n

n∑
k=1

gi

(
x(k)

)
, (28)

with covariance defined as(
C

̂I
)
i,j

=
1

n− 1

×
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k=1

[
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(
x(k)

)
− Îi

] [
gj

(
x(k)

)
− Îj

]
. (29)

B. The Unfolding Procedure

1) General Basis: The covariance on β, (20) is

(Cβ)i,j =
1

n− 1

n∑
k=1

[
fi

(
x(k)

)
− βi

] [
fj

(
x(k)

)
− βj

]
.

(30)
The covariance of S, (21), is the 4-form

(CS)i,j;i′,j′ =
1

m− 1

m∑
k=1

[
V fi

(
x′(k)

)
fj

(
y′(k)

)
− Si,j

]
×
[
V fi′

(
x′(k)

)
fj′
(
y′(k)

)
− Si′,j′

]
. (31)

Using first-order propagation of covariance, we can estimate
the covariance on α, (22). Formally, it is

Cα = JβCβJ
T
β + JSCSJ

T
S , (32)

with Jacobians defined as

(Jβ)i,j =
∂αi

∂βj
, (33)

(JS)i,j,k =
∂αi

∂Sj,k
. (34)

The first Jacobian Jβ is simply

Jβ = S−1, (35)

based on (22). The second Jacobian JS can be obtained by
implicit differentiation of (19), which we write out in component
form as

βk =

N∑
�=1

Sk,�α�. (36)

We then apply the operator ∂
∂Si,j

to both sides of (36). Noting

the left side ( ∂βk

∂Si,j
) is zero, we have

0 =

N∑
�=1

∂

∂Sj,k
(Sk�α�) , (37)

=

N∑
�=1

(
∂Sk,�

∂Sj,k
α� + Sk,�

∂α�

∂Sj,k

)
, (38)

= δi,kαj +

N∑
�=1

Sk,�
∂α�

∂Si,j
. (39)

Assuming that S is invertible, yields

(JS)i,j,k =
∂αi

∂Sj,k
,

= − (S−1
)
i,j

αk. (40)

Lastly, for convenience we define matrix C ′
S as

(C ′
S)j,j′ =

N∑
k=1

N∑
k′=1

αk (CS)j,k;j′,k′ αk′ . (41)

Substituting (35), 40 and 41 into (32) yields the final equation
for the covariance on α,

Cα = S−1CβS
−T + S−1C ′

SS
−T , (42)

= S−1 (Cβ + C ′
S)S

−T . (43)

2) Fourier Basis: Recall α′ is the normalized version of α,
(24). The Jacobian of this transformation is

(Jα)i,j =
∂α′

i

∂αj
=

⎧⎨⎩
−αi/2α

2
0 j = 0,

1/2α0 i = j,
0 i �= j.

(44)

The final covariance on α′ is then

Cα′ = Jα Cα JT
α , (45)

which can be directly computed from (43) and (44).
Lastly, we can transform the circular moments α′ into magni-

tudes and phases, (25). For notational convenience, we combine
the magnitudes and phases into one vector γ, with

γk =

{|ck|, 1 ≤ k ≤ N ′,
ϕk−N ′ , N ′ + 1 ≤ k ≤ 2N ′. (46)

We again use first-order propagation of covariance, resulting in
the covariance matrix for γ being

Cγ = Jα′Cα′JT
α′ . (47)

The Jacobian matrix for this transformation is

(Jα′)i,j =
∂γi
∂α′

j
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=
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i
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and
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(48)
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