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Abstracit—Despite the remarkable progress in the devel-
opment of predictive models for healthcare, applying these
algorithms on a large scale has been challenging. Algo-
rithms trained on a particular task, based on specific data
formats available in a set of medical records, tend to not
generalize well to other tasks or databases in which the
data fields may differ. To address this challenge, we pro-
pose General Healthcare Predictive Framework (GenHPF),
which is applicable to any EHR with minimal preprocessing
for multiple prediction tasks. GenHPF resolves heterogene-
ity in medical codes and schemas by converting EHRs into
a hierarchical textual representation while incorporating
as many features as possible. To evaluate the efficacy of
GenHPF, we conduct multi-task learning experiments with
single-source and multi-source settings, on three publicly
available EHR datasets with different schemas for 12 clin-
ically meaningful prediction tasks. Our framework signif-
icantly outperforms baseline models that utilize domain
knowledge in multi-source learning, improving average AU-
ROC by 1.2%P in pooled learning and 2.6%P in trans-
fer learning while also showing comparable results when
trained on a single EHR dataset. Furthermore, we demon-
strate that self-supervised pretraining using multi-source
datasets is effective when combined with GenHPF, result-
ing in a 0.6%P AUROC improvement compared to models
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without pretraining. By eliminating the need for preprocess-
ing and feature engineering, we believe that this work offers
a solid framework for multi-task and multi-source learning
that can be leveraged to speed up the scaling and usage of
predictive algorithms in healthcare.

Index Terms—Electronic health records, heterogeneity,
multi-source learning, multi-task learning, natural language
process.

|. INTRODUCTION

ATIENT medical records which are regularly accumulated
P in the form of Electronic Health Records (EHR) have
opened up new opportunities for data-driven models, which can
improve the quality of patient care. With the rapid adoption
of artificial intelligence (Al) in healthcare, healthcare providers
continue to develop models for different applications such as
predicting patient outcomes [1], [2], [3], optimizing effective
hospital operations [4], [5] and diagnosing diseases [6], [7], [8].

Until now, traditional model development methods have been
constrained by their reliance on task-specific feature engineer-
ing, wherein preprocessing techniques are predominantly tai-
lored for individual tasks or applications. For instance, predictive
modeling tasks for patient care or benchmarking, and quality
improvement require this approach. Consequently, each health
system or research institute is compelled to employ its own data
experts to meticulously preprocess medical records to suit spe-
cific tasks. This process can be time-consuming and expensive,
ultimately restricting the range of potential applications [9].

Furthermore, this problem is exacerbated by the increasing
number of tasks that require excessive overheads for the hospi-
tals to develop and the managing of each task-specific model.
Moreover, the increasing number of tasks significantly burdens
hospitals in terms of developing and managing task-specific
models. For example, clinicians may need to simultaneously per-
form various prediction tasks, such as mortality and readmission,
for the same patient. To address this challenge, a comprehensive
framework is required that can be applied to multiple tasks [10]
with minimal preprocessing, thereby minimizing the need for a
meticulous design of input features.

This problem contributes to the inequality in healthcare Al, as
algorithms are developed and used by large (typically academic
data centers) with access to large data and research capabil-
ities. In reality, typical EHR datasets do not follow a single
data format, particularly across geographies and multiple EMR
providers. Each health system could store data according to
its own needs, which consequently requires a level of manual
harmonization.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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Specifically, different EHR systems adopt different medical
code standards (e.g., ICD-9, ICD-10, raw text), and use distinct
database schemas to store patient records [11], [12], [13].! These
discrepancies in medical codes and schemas prevent healthcare
institutions from conducting multi-source learning, such as fine-
tuning a model that has been previously trained on a different
EHR dataset (i.e., transfer learning) or developing a unified
model with data pooled from multiple hospitals (i.e., pooled
learning).

In summary, the major challenges encountered by current
healthcare prediction models are as follows: 1) models are
specifically developed for each prediction task via feature engi-
neering with task-specific domain knowledge, and 2) procuring
a large amount of unified data is difficult, which is a critical
problem for developing the aforementioned general-purpose
multi-task prediction model. The main objective of this study
is to propose a framework that addresses these two challenges.

Related work: Previous healthcare prediction models with
EHR have been focused on increasing the prediction perfor-
mance by utilizing domain knowledge and various architectures
such as recurrent neural networks (RNN) [1], [14], convolutional
neural networks [15], and transformer-based models [16], [17],
[18], [19]. Although each study makes a distinct contribution,
none address the two major aforementioned challenges.

Multi-Task Learning: MIMIC-Extract [20], for example, per-
forms domain-knowledge-based feature engineering, such as
grouping semantically similar concepts into a clinical taxonomy
as data structures that are directly usable in common multi-task
time-series prediction pipelines. Based on hand-crafted features,
McDermott et al. [21] proposed a benchmark for ten health-
care predictive tasks (multi-task learning) and reported their
prediction performances. Because of their specialized nature,
these approaches are designed to work exclusively for specific
datasets, making them inapplicable to multiple EHR datasets
that may vary in diversity and heterogeneity.

An alternative approach, proposed by Rajkomar et al. [22],
involves a framework that incorporates all features of the EHR,
that is, all column values in all the EHR tables. This allows the
same model to be used for four different tasks. However, since
this approach uses Fast Healthcare Interoperability Resources
(FHIR) [23], which is a form of Common Data Model (CDM), to
manually standardize different EHR data into a uniform format,
there is a significant overhead for multi-source learning. This
process of standardizing EHR formats demands considerable
domain knowledge and requires extensive manual efforts, mak-
ing the integration of a large number of datasets into diverse
formats impractical.

Resolving EHR Heterogeneity without manual efforts: To
address the lack of scalability in previous works, AutoMap [24]
conducts medical code mapping via self-supervised learning
using a predefined medical ontology. This study aims to develop
a solution to the current lack of a unified EHR system through
a direct code-to-code mapping of two different medical institu-
tions. However, since AutoMap requires standardized medical
ontology, manual efforts is still necessary.

In another study, DescEmb [25] aimed to overcome the het-
erogeneity of medical codes by utilizing the clinical descriptions

!'To unfold our tackling point conveniently, eICU is considered as EHR, which
is originally collection across hospitals using different EHRs (EPIC, Cerner,
etc.).

linked to each code, thereby partially enabling multi-source
learning. Despite its text-based embedding to avoid the manual
code mapping process, this approach still necessitates domain
experts to conduct EHR system-specific preprocessing to select
compatible and meaningful features from the EHRs. Overcom-
ing schema heterogeneity across different institutions poses a
challenge when selecting universally applicable features with
consistent formats from multiple datasets. None of the afore-
mentioned studies adequately address the dual challenges of
utilizing multi-task models on heterogeneous EHRs.

Self-supervised pretraining in EHR: Self-supervised learn-
ing (SSL), which involves pretraining on large-scale unlabeled
datasets and fine-tuning for prediction tasks, has demonstrated
success in various applications [26], [27], [28] including pre-
dictive models based on EHR [29], [30], [31], [32], [33], [34].
Previous studies on SSL using EHR data have primarily focused
on pretraining and fine-tuning models exclusively for identical
EHR systems, limiting their applicability to other EHR systems.
As the proposed framework resolves EHR heterogeneity, train-
ing it via SSL produces a general-purpose pretrained model that
can be fine-tuned for any task in any EHR system.

This study makes three contributions. To address both chal-
lenges (task-specific model development process and EHR het-
erogeneity) simultaneously, we propose General Healthcare Pre-
dictive Framework (GenHPF) (Fig. 1), which is applicable to
multiple patient record systems. GenHPF resolves heterogeneity
in medical codes and schemas by converting medical records
into a hierarchical textual representation while incorporating as
many features as possible. This framework reflects the common
data structure of medical records, allowing different structures to
be utilized without code and schema harmonization processes.

Second, to demonstrate the efficacy of GenHPF empirically,
we conduct extensive experiments using three publicly avail-
able EHR datasets with different schemas (MIMIC-III, eICU,
MIMIC-1V) for the twelve clinically meaningful prediction
tasks. Our framework achieves comparable or higher prediction
performances on single-domain learning compared with other
frameworks, while consistently outperforming all other frame-
works in terms of pooled learning and transfer learning.

Lastly, we combine several SSL methods with GenHPF,
demonstrating the best practices that provides benefits to
GenHPF as a self-supervised pretraining method with unlabeled
data. This will enable researchers and engineers in this field to
use a pretrained GenHPF as a general-purpose foundation model
for diverse prediction tasks, regardless of the EHR schema. Our
findings provide insights for further research on the multi-source
learning of EHR. Fig. 1 overviews the proposed framework.

[I. METHODOLOGY

A. Structure of Electronic Health Records

This section describes and summarizes the EHR structure
and notations used throughout this paper. In typical EHR data,
each patient P can be represented as a sequence of medical
events [My,..., My], where N is the total number of events
throughout the entire patient visit history. The i-th medical event

of a patient M, can be expressed as a set of event-associated
features {A},... ,ALMil}. Each feature A¥ can be seen as a
tuple of a feature name and its value (n¥, v¥), n¥ € N, vf €V,

where A/ and V are each a set of unique feature names (e.g.,
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Fig. 1.

Conventional approach for building predictive models uses domain-specific knowledge to preprocess data for each hospital (or health

system) and task. In contrast, our proposed framework uses text input features, eliminating the need for preprocessing and feature engineering
specific to each hospital. This allows us to train a unified model for two multi-source learning scenarios: 1) Conventional supervised learning for
multi-task learning and 2) Self-supervised pretraining with unlabeled data. By employing transfer learning, our framework allows each trained model
to conduct transfer learning in any hospital, irrespective of data format differences, thereby ensuring general adaptability across healthcare systems.

{“drug name”, “drug dosage”, ..., }) and feature values (e.g.,
{“vancomycin”, “10.0”, ..., }), respectively.

In addition, each medical event M; has its corresponding
event type e; € £ which denotes the type of the event (e.g., £ =
{“lab test”, “prescription”, ..., }). Lastly, since the recorded
time is also provided with M, we can measure the time interval
t; between M, and M 1.

B. General Healthcare Predictive Framework

In this section, we present GenHPF, a general framework for
EHR-based prediction based on the following three principles,
and describe how to implement each principle: 1) text-based em-
bedding, 2) employing the entire features of EHR, and 3) medical
event aggregation. Fig. 2 depicts the overall architecture.

Text-based embedding: A conventional EHR embedding
method begins by assigning a unique embedding for each ele-
mentin ) via a linear map (i.e., lookup table) fy [17], [21], [22],

[351, [36], so that v¥ can be converted to a vector v¥ € R, typ-
ically followed by pooling multiple feature values (v}, v?, ...)
to obtain m; € R the embedding of M. This conventional
embedding, however, usually requires a different f) for each
medical institution due to the )V heterogeneity, namely each
institution using different V’s. For example, MIMIC-IIT [13],
an open-source EHR data, uses the ICD-9 diagnosis codes
for recording diagnostic information, while eICU [11], another
open-source EHR data, uses in-house diagnosis codes. There-
fore, the conventional embedding is not the most suitable foun-
dation on which to build a general EHR framework.

DescEmb [25] proposed to resolve this problem by suggesting
a text-based embedding, where hospital-specific feature values
are first converted to textual descriptions (e.g., “401.9” — “un-
specified essential hypertension”), then a text encoder paired
with a sub-word tokenizer is used to obtain m; [37]. With

k

i

ZPrevious EHR embedding methods do not typically use the feature name 7.
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Overview of GenHPF. On the top, a patient’s medical events occur over time. Each medical event M; consists of event-related features A%,

including feature names and their values. These features, prepended with event type e;, are converted to corresponding descriptions and tokenized
into a sequence of sub-words. Then, an event encoder f converts the sequence (i.e., event input) into an embedding m;, which is then passed to

the event aggregator g, which then makes a prediction y.

this approach, the model can learn the language of the under-
lying medical text rather than memorize a unique embedding
for each hospital-specific feature value, thereby overcoming
the V heterogeneity as the same text encoder can be used for
all institutions that use the same language. At this point, we
adopted this code-agnostic embedding method and extended it
by utilizing feature names as well as the feature values, which
is s(t(n) 4 t(v)) as the event representation.

We extend the previous approach by applying the text-based
embedding philosophy to event types e; and feature names nf ,
in addition to feature values vf, as follows:

m; = (S(e:), S(n}), S}, ..., S@MD), SEM)

where S is a sub-word tokenizer, and f is an event encoder
that takes a sequence of sub-word tokens and returns m;. Note
that f can be a pretrained language model as in DescEmb, or
a randomly initialized transformer encoder, or even a single-
layer RNN. Although f can be implemented with any sequence
encoder (e.g., a pretrained language model as in DescEmb), we
use 2-layer transformer in this work.

Employing the entire features of EHR: To develop a general
predictive framework, in addition to the V' heterogeneity, we
must consider the schema heterogeneity, namely each medical
institution using a different database schema. When developing
a conventional predictive model, medical domain experts are
typically involved to define M/, C M, a subset of task-specific
features among M, according to each EHR system. This pro-
cess must be carried out repeatedly whenever they encounter a
different EHR schema. Moreover, in multi-source learning, med-
ical domain experts must select and match compatible features
between distinct EHR systems. For instance, in the Lab event
of eICU, the feature named “labResult” should be paired with
the “VALUENUM?” feature in MIMIC-1II's LABEVENTS event.

Assessing database schemas of multiple sources and matching
compatible features, although inevitable in a conventional ap-
proach, is time-consuming and prone to human errors.

Therefore, to leverage multiple heterogeneous EHR sources,
features that share the same meaning must be matched. To
avoid this costly procedure, our framework exploits the entire
features of medical events, effectively resolving the schema
heterogeneity. As described in II-B, the entire set of features
in medical events is embedded into one unified embedding m;,.
Since this approach utilizes all features, feature selection is not
required. Additionally, in multi-source learning, our framework
is not constrained by the features that are present in each schema
since both the name n¥ and the value v} of the feature are used. A
formal comparison of the conventional approach, DescEmb [25]
and our approach for obtaining m; is provided below:

Conventionalapproach. :

m; = pool({ fy(vf) | A} € M}})
DescEmb :

m; = f ({S(vf) | A} € M}})
GenHPF :

m; = f (S(e;), {S(n}),

where pool is typically implemented as a concatenation or sum-
mation of the elements. Note that GenHPF differs from previous
approaches in that it is the only approach to exploit all available
information in a medical event, including the event type, all
event names, and all event values. Therefore, GenHPF provides
a general solution applicable to any EHR system with a different
schema, making it schema-agnostic, without requiring medical
domain knowledge. DescEmb [25] still cannot resolve this since

S(vi) | A € Mi})
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it exploits only the feature value v¥. This approach does not
take into account the need for the model to learn the semantics
of column names, thereby necessitating only the selection of
compatible features.

Medical event aggregation: To leverage the EHR structure
characteristics, where P consists of a sequence of M; and each
M, consists of a set of A¥, we design a hierarchical model
consisting of the event encoder f, and the event aggregator g.

As each M; is converted into m; according to II-B, we can
obtain p € R4, the vector representation of P as follows:

pP= g((mlatl)v (m25t2)7 R (vatN))

where ¢ is an embedding function that takes a sequence of
event embeddings, and t is a timestamp which is applied as
following [38], imposing the weight for attention according to
the time interval between adjacent events. Note that g can be
implemented with any sequence encoder, such as a Transformer
encoder or a single-layer RNN. Then, feeding p through a
softmax layer (sigmoid layer if binary prediction) will give us
the final prediction y.

In addition, p can be obtained by employing a flattened model
architecture rather than a hierarchical one, where sub-word
tokens from all features of all medical events are passed to
the sequence model h at the same time. We confirm that the
hierarchical approach, which reflects the structure of EHR data,
indeed outperforms the flattened approach.

C. Self-Supervised Pretraining

Building upon the premise that self-supervised pretrain-
ing may enhance downstream task performance, the proposed
framework enbales multiple heterogeneous EHRs to be used
during the self-supervised pretraining process. Our investigation
focuses on determining the efficacy of various self-supervised
pretraining approaches when applied to GenHPF. In this study,
we test four well-known SSL methods as follows:

SimCLR [26]: We execute a two-step process of (1) EHR
data augmentation and (2) contrastive pretraining inspired by
SimCLR. For data augmentation, we create a pair of views per
patient by halving the time-series data based on the number
of events and randomly masking the tokens in the events at a
fixed ratio. The contrastive pretraining objective is to maximize
the similarity of the representation vectors created from two
views of the same patient (i.e., positive pair) while minimizing
the similarity of the vectors created from the views of different
patients (i.e., negative pair) in accordance with the SimCLR
settings [26].

Wav2Vec 2.0 [27]: We execute the Wav2Vec 2.0 [27] pretrain-
ing process, which consists of 1) feature encoder output quan-
tization and 2) contrastive learning on mask-selected patient
event timesteps. During the quantization stage, continuous latent
vectors (i.e., event encoder outputs) are quantized via mapping
the vectors to discrete entries of a trainable codebook. Gumbel
softmax is used to map each latent vector to the codebook entries.
During the second stage, a proportion of the latent vectors are
randomly masked before being fed into the event aggregator. For
each mask selected position, the overall pretraining objective
is to maximize the similarity between the event representation
vectors (i.e., event aggregator outputs) and their corresponding
quantized vector, while minimizing the similarity with other
quantized vectors. The loss terms are followed as defined in

Wave2Vec 2.0. We use the event encoder as the feature encoder
instead of the convolutional blocks used in the original study.

MLM and SpanMLM [28], [39]: For MLM pretraining, we
randomly mask a fixed ratio of tokens among the whole patient
event history, and the pretraining objective is to predict the
masked tokens based on bidirectional attention. For SpanMLM
pretraining, we apply event-level random masking, where all
tokens included in the sampled events are masked, which is
intended to learn the context of the EHR time-series event by
learning the event itself rather than simply learning the partial
random masked sub-word of the description. Note that both
MLM and SpanMLM are based on predicting the raw text (i.e.
tokens), which prevents us from using the hierarchical textual
representation (Fig. 4). Therefore we use a flattened textual rep-
resentation for these two methods; the Methods section describes
this representation further.

[Il. EXPERIMENTAL SETTINGS AND DESIGN

A. Datasets

We use three publicly available datasets; MIMIC-III [13],
MIMIC-1V [12], and eICU [11]. The MIMIC-III database con-
sists of clinical data of over 40,000 patients admitted to the
intensive care units (ICU) at the Beth Israel Deaconess Medical
Center. MIMIC-IV is an enhanced version of MIMIC-III that
incorporates additional data sources, including admission date.
The eICU consists of ICU records from multiple US-based hos-
pitals, with 140,000 unique patients. All three datasets contain
patient medical events including lab tests, prescriptions, and
input events (e.g., drug injection), which are processed as inputs
for the experiments. Each event is marked with a timestamp.
We build patient cohorts of patients over the age of 18 years
who remained in an ICU for over 24 hours. To ensure reliable
experiments and analyses, we randomly split each dataset into
training, validation, and test sets in an 8:1:1 ratio.

Minimal preprocessing applicable to any EHR is performed in
three steps. First, we eliminate features whose values consisted
only of integers. This approach ensures that all continuous-
valued features (e.g., lab test results) and textual features (e.g.,
lab test names) are used, while omitting features such as the
patient ID. Second, we split numeric values digit by digit and
assign aunique token to each digit place, amethod known as digit
place embedding which was first introduced in DescEmb [25].
Subsequently, we tokenize all features and prepare them as text
input features using bio-clinical-bert tokenizer [40]. Table I sum-
marizes the general characteristics of the three datasets including
the size and feature dimensions. The embedding method for each
feature is either a categorized feature (code-based embedding)
or is the text itself.

For the pretraining dataset, we prepare an unlabeled dataset,
employing multiple ICUs without an observation window, and
sampled medical events with a maximum length of 150, except
for the test set of the downstream task. For medical sequences
exceeding 150 events, we shift the starting point of sampling by
30 events, thereby altering the sample while maximizing data
inclusion.

B. Prediction Tasks

To fairly evaluate our framework for varous healthcare pre-
dictive tasks, we utilize open-source prediction tasks that can
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Comparison of single domain learning and pooled learning prediction performances. (a) Results of the average AUROC on 12 prediction

tasks. The data sources used for the evaluation are at the top of each graph. The y-axis indicates the AUROC. Each dot represents models (color)
with source datasets used for training (shape) following the legends. Note that “Single” refers to the same data source as the evaluation dataset.
The blue dashed line separates models into conventional embedding models (left- SAnD, Rajkomar) and text-based embedding models (right-
DescEmb, GenHPF). Stars indicate the p-value of the t-test conducted to assess the significance between single-domain prediction and pooled
learning. (b) Results of each prediction task using MIMIC-III as the source dataset.

TABL

El

CHARACTERISTICS OF DATASETS

Statitics MIMIC-IIT elCU MIMIC-1V
No. of Observations 38040 98904 65511
No. of ICU stay 38040 98904 65511
Mean No. of events per sample 102.5 48.5 88.7
Feature selection - (6] - O - (6]
No. of Unique code 10434 6370 6302 5704 9565 5808
No. of Unique subwords text 3321 2793 2678 2451 3512 3112
Mean No. features per event 7.2 4.5 6.7 52 10 4.4
Mean length of subwords text per event 44.6 25.8 51 346 622 247

be applied in an ICU setting. We adopt eight prediction targets
(Mort, LMort, Readm, Los3, Los7, Dx, Fi_ac, and Im_disch),
as described by McDermott et al. [21]. Additionally, to demon-
strate the efficacy of GenHPF in a broader range of tasks, we
formulate four prediction targets for lab values, which serve
as proxy indicators for sepsis or acute kidney injuries [41].
All tasks are based on ICU stays, and the performance is
evaluated using the area under the area under the receiver op-
erating characteristic curve (AUROC). Each task is defined as

follows:
® Mortality (Mort) (binary): A sample is labeled positive
for mortality if the discharge state was “expired” within a

prediction window of 48 hours during the stay. In addition,
for a longer-term prediction mortality prediction, we use
death within 2 weeks (abbreviated as LMort).
Length-of-Stay (LOS) (binary): The length of stay pre-
diction for ICU stays can be categorized into two cases:
determining whether a given stay lasted longer than 3 days
(LOS3), and determining whether it lasted longer than 7
days (LOS7).
® Readmission (Readm) (binary): Given a single ICU stay,
we consider a positive case of an ICU stays followed by
another (readmission) during the same hospital stay.
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Transfer learning results. The source data used for training and target data used for evaluation with zero-shot or few-shot learning are

indicated at the top of each graph. The source dataset is on the left side of the arrow, and the target is on the right. The y-axis indicates the AUROC
and the x-axis is the portion of the target dataset for zero-shot or few-shot learning. Shading around the lines indicates the standard error from five
seed experiments. For comparison with single domain performances, single domain learning performances of GenHPF are marked with the dashed

line.

® Final Acuity (Fi_ac) (multi-class): Predicts the patient’s
discharge location at the end of their hospital stay, includ-
ing patient expiration.

e [mminent Discharge (Im_disch) (multi-class): Predicts
whether the patient will be discharged within a prediction
window of 48 h and if discharged, predicting the discharge
destination.

® Diagnosis (Dx) (multi-label): Predicts all diagnosis (Dx)
codes accumulated during an entire hospital stay. We
group Dx codes into 18 Dx classes using Clinical
Classification Software (CCS) for the ICD-9-CM criteria
[healthcare2016hcup].

® Lab values (multi-class): Four distinct laboratory val-
ues[Creatinine (Crt), Bilirubin (BlIr), Platelets (Plt))] are
categorized into 5 classes, based on their corresponding
ranges. These classes are derived using the thresholds
employed to determine the Sequential Organ Failure As-
sessment (SOFA) scores. White blood cell (Wbc) is cate-
gorized into 3 classes.

Using medical event information from the initial 12 hours
after ICU admission, we apply a 12-hour timegap across all
tasks. timegap, which is designed to exclude any data close to the
prediction time, is implemented to maintain the task challenges
and prevent potential data leakage. Excluding any ICU stays
shorter than 24 h allows for both a 12-h observation window and
a 12-h gap. For diagnosis, we categorize diagnosis labels into 18

distinct classes based on the CCS ontology [42]. We use ICD9 for
MIMIC-III, ICD10 for MIMIC-IV, and text format diagnostic
labels for the eICU. We perform an additional mapping process
for Fi_ac and Im_disch owing to the different labeling sources
across datasets. For the lab value prediction tasks, we adopt
the approach of Gyawali et al. [43], defining them from the
SOFA score, which guides the severity of sepsis from specific lab
values. Hence, each lab value is assigned as a categorical value
based on its corresponding SOFA score. Statistics for prediction
tasks are shown in Tables V, VI, VII.

C. Baselines and Implementation Details

Baselines: As there is no previous work, to our knowledge,
that tackled exactly the same goal as ours, we modified well-
known general-purpose EHR embedding frameworks. By com-
paring GenHPF with baselines, we systematically evaluate the
components that can influence prediction performance in multi-
source learning settings. We analyzed these frameworks based
on two options: feature utilization (selective or utilizing all) and
embedding method (code-based or text-based). In addition, all
models were provided with both n¥ and v* for a fair comparison
with GenHPF.

® SAnD: This uses the conventional embedding, selected
features M, and the flattened architecture, similar in
spirit to SAnD [17]. Note that feature embeddings from
all medical events [M, ..., My] are directly fed to the
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sequence encoder h instead of being pooled to obtain
individual m;.

® Rajkomar: This uses the conventional embedding, entire
features M;, and the hierarchical approach, similar in
spirit to [22] except the CDM standardization. Note that
the feature embeddings from each M, are fed to f to
obtain individual m;, which is then fed to g.

® DescEmb: This uses the text-based embedding, selected
features M/, and the hierarchical approach, similar in
spirit to DescEmb [25].

® AutoMap: This uses the same embedding method and
features as Rajikomar [22]. It trains M by automatically
mapping medical codes using ontology-level alignment
with an unsupervised learning method.

® Muse: This uses the same embedding method and features
as Rajikomar [22]. It trains M, using skip-grams and
aligns the embedding space between bilingual dictionar-
ies.

Model implementation: For a fair comparison, f and g were
both implemented with a randomly initialized 2-layer Trans-
former encoder, and a 4-layer Transformer encoder, making all
models equivalent in terms of the number of trainable parameters
(dy =128, dy, = 128, d,, = 128).3 Although all frameworks
share the same sequence of medical events, the selection of
features and the embedding approach employed can vary across
each frameworks. The selected features M’* followed by De-
scEmb [25].

To maintain the same input information for both hierarchical
and flattened models, we limit the number of events per sam-
ple. Owing to computational resource constraints, the flattened
models are limited to a maximum sequence length of 8192, and
a correspondingly adjusted number of events were used as input
for the hierarchical model, which includes the same events as
the flattened model.

Training details: All experiments are conducted using five
random seeds which are used to initialize the model parameters
and to split the dataset. Their performance is evaluated based on
the area under the receiver operating characteristics (AUROC)
averaged over twelve tasks. We conduct all experiments in a
multi-task learning setting, as our main interest is to develop a
single model that performs multiple tasks using multiple EHR
datasets simultaneously. For multi-source learning, we train the
combined dataset and validate each individual dataset separately.
Early stopping is enforced according to the validation AUROC
for each dataset, and the best model is saved per dataset. Sub-
sequently, each saved model is used to test the corresponding
dataset.

Hyperparameters: We explored various hyperparameters to
determine the optimal for each framework. However, we found
that the impact of these hyperparameters on the results was
not significant. Consequently, we use a unified set of hyper-
parameters for all cases, thereby simplifying the experiment
while maintaining the performance for each model. The final
hyperparameters are a dropout of 0.3, a batch size of 64, and a
learning rate of le-4. For pretraining, we apply token masking

3Note that we modified each baseline from the original frameworks for a fair
comparison (e.g. transformer architecture [16] which is a state-of-the-art model,
is used instead of RNN.)

“4For example, from the prescription event, we chose essential features such as
drug name, drug volume, and unit of measurement among all available features.

with the same fixed ratio to SimCLR, MLM, and SpanMLM, in
which 80% of the randomly chosen token positions are replaced
with the [MASK] token, 10% of the positions are replaced with
a random token, and the remaining 10% of the positions are
unmodified. We apply Wav2Vec settings with 2 codebooks, 320
entries per codebook, a masking ratio of 65%, and a feature
gradient multiplication of 0.1 which slows down the event
encoder gradient update. For the codebook diversity loss weight,
we use 0.1, 0.3, 0.1, 0.5 for MIMIC-III, eICU, MIMIC-1V, and
the pooled domain, respectively.

D. Experimental Design

To assess the efficacy of GenHPF in various aspects, we devel-
oped a series of prediction tasks across four distinct scenarios: 1)
single-domain learning, 2) pooled learning, 3) transfer learning,
and 4) self-supervised learning. For pooled learning and trans-
fer learning, we follow the settings from DescEmb [25]. For
single-domain learning, models are trained and tested on a single
dataset. This part tests GenHPF for single-domain learning al-
though its primary aim is that of multi-source learning. In pooled
learning, it is crucial to utilize data collected from multiple EHR
systems by leveraging the wealth of EHR data for prediction
tasks. Each framework simultaneously is trained on all three
datasets, and evaluated separately on each dataset. We compare
the performance of single-domain learning and pooled learning
to show that training on multiple datasets enhances predictive
performance compared with models trained on a single dataset.

Next, in transfer learning, we aim to show that GenHPF can
be beneficial when trained on a specific dataset and directly
tested on other datasets (zero-shot learning) or when further
trained on limited data (few-shot learning). In practice, a single
deep-learning model is typically trained on a large-scale hospital
dataset and subsequently transferred to individual institutions,
which could enable small hospitals to benefit from models
trained on a large scale. Apart from acquiring large and represen-
tative datasets, this also entails ensuring compatibility between
code and data schemas across different EHR systems, akin to
whatis necessary in pooled learning. In this scenario, each model
is first trained on a source dataset and then directly evaluated on
a sample from the same dataset (i.e., zero-shot) or further trained
(i.e., fine-tune) on a target dataset.

Finally, we investigate which SSL method with unlabeled
data exhibits a performance improvement when fine-tuning the
pretrained model on the prediction task. To demonstrate the
benefit of our approach, we compare three models: 1) arandomly
initialized model trained on a single dataset; 2) a pretrained
model and fine-tuned on a single dataset; 3) a pretrained model
on the multi-source (pooled) dataset and fine-tuned on a single
dataset. Additionally, we assess the impact of pretraining on
different fine-tuned data size settings, namely sample data, and
full data, assuming that a pretrained model can be fine-tuned on
a smaller hospital or a similar-sized hospital.

IV. RESULTS

A. Single-Domain Learning

Fig. 3 shows the single-domain learning results. GenHPF
shows comparable or higher prediction performances, on av-
erage, across the 12 tasks than other frameworks using domain
knowledge (+0.8%P AUROC on average against all frameworks
on all three datasets, Fig. 3(a) circle marks) Appendix A provides
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TABLE Il
SELF-SUPERVISED PRE-TRAINING RESULTS
[ Structure Hierarchical Flatten |
[ FT Source | FT data size | PT Source | Rand.Init [ SimCLR [ Wav2vec | Rand.Init [ MLM [ SpanMLM |
single 07507 0.733% 0.716 0.700
Sample data (10%) | w8 1 0721 g segeino006) o7ges | 0711 0.709 0.701*
H FF S EF
i oo ias 00 | it | 075 om0 | o W U
— Smgle 083 0832 0.805 0,799
Full Data multi-source | 831 0.840%%0.011) 03832 0804 og12e 0801
, single 07687 0737 072 0605
Sample data (10%) | jiocource | 0721 0.771%%%0.008) 0734+ | 0708 705k 6gwex
3 EE3
elCU | Sample data (30%) muislli[-lzsg(l)irce 0.789 8010 41?3 049) %77895 0.773 (()) ng 06775678
single 0.818 0.818 0.801 0.797
Full Data multi-source | 0817 0.820.118) 03818 0.802 0.805 0.796*
singlo 07205 % 0717 0TI 0677
Sample data (10%) | i cource | 0707 g.735%%%0.008) 0.716%% | 009 7000 (688%
] single 0.776%F 0.765 0751 0,744
MIMIC-IV | Sample data (30%) | i cource | 0701 0.782%%(0.009) 0764 0.753 0.757* 0.751
single 0837 0.834 0815 0.808"
Full Data multi-source | O83*  0.842+%(0.014) 0835 0.814 0.817 0.809*

p-value *:<0.1, *#*: <0.05, ***: <0.01

The t-test significance values for the bolded values.

the comparison results of GenHPF with a baseline involving
more feature engineering.

B. Pooled Learning

The results reveal that GenHPF exhibits a significant improve-
ment in pooled learning when trained simultaneously on all three
datasets, outperforming all other frameworks (+1.2%P, Fig. 3(a)
triangles). This highlights the advantages of GenHPF which
utilizes the textual representations of all features. Compared
with single-domain learning results, text-based embedding mod-
els (DescEmb and GenHPF) consistently demonstrate higher
performances when trained on pooled datasets from all three
sources. In contrast, conventional embedding models (SAnD
and Rajkomar) show decreased or unchanged performances for
pooled learning. In addition, for text-based embedding models,
GenHPF outperforms DescEmb in most cases when all three
data sources are pooled together.

C. Transfer Learning

Fig. 4 presents the transfer learning results. To evaluate how
the performance of the frameworks varies with the target dataset
size, we use different proportions of the target dataset: x = 0.0
indicates zero-shot learning, x = 0.5 means fine-tuning with half
of the target dataset, and x = 1.0 is for fine-tuning with the entire
target dataset. For zero-shot learning, the text-based embedding
methods (DescEmb and GenHPF) consistently outperform the
code-based embedding methods (SAnD and Rajikomar) across
all source and target pairs.

GenHPF demonstrate predominantly higher performance
than the other models in most cases (+2.6%P, red line over
other lines). As the sample size of the target dataset decreases,
the strength of GenHPF becomes more apparent (+12.5%P,
performance at x = 0.0). In further fine-tuning on the full dataset
(marked with 1 on the x-axis), the code-based embedding mod-
els perform worse than GenHPF with single-domain learning
performance (dotted line) in most cases. In contrast, GenHPF
exhibits comparable or higher performance than single-domain
learning, except when the model is trained on MIMIC-III and

transferred to the eICU. Next, we introduce two additional base-
lines capable of automatically map different code systems be-
tween two EHR datasets using unsupervised learning. GenHPF
exhibits a higher performance against unsupervised learning
methods for code mapping, as shown in Table I'V.

D. Self-Supervised Pretraining

Table II presents the results. Pretraining sources (PT Srouce)
are in two settings, single(same as the fine-tune dataset) and
multi-source (MIMIC-IIT+eICU+MIMIC-1V). Fine-tune(FT)
data size are varied with the data sampled size (10%, 30%,
full). x indicates p-value from the t-test between the randomly
initialized model and pretrained model results. The highest
performance for each fine-tune source, corresponding to the size
of the fine-tune data, is highlighted in bold, and its p-value is
indicated in parentheses.

The results show that GenHPF coupled with self-supervised
pretraining methods (except SpanMLM) improves the predic-
tion performance in most cases compared to models without
pretraining. Among the pretraining methods, SimCLR consis-
tently outperforms the others, exhibiting the highest prediction
AUROC, for both the sample-data and full-data scenarios. In
particular, SimCLR exhibits an average increase of 0.1%P and
0.6%P in the AUROC:s for the single- and multi-source pretrain-
ing, respectively. The sample data results show that when the
quantity of pretraining data exceeds that of the fine-tuning data
to a larger extent, pretraining significantly affects the predictive
downstream tasks.

V. DISCUSSION

In this work, we addressed the dual challenges of multi-
task prediction models for heterogeneous EHRs by proposing
and investigating GenHPF for single-domain learning, pooled
learning, transfer learning, and self-supervised pretraining. The
results show that GenHPF achieves comparable or higher per-
formances without relying on medical domain knowledge and
by simply using all features as textual descriptions.

In particular, for single domain learning, a comparison be-
tween GenHPF and Rajkomar suggests that assigning unique
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embeddings to all feature names and values is unnecessary,
since treating them as textual descriptions leads to a comparable
performance. Moreover, a comparison between GenHPF and
DescEmb implies that GenHPF can better capture the underlying
semantics of distinct EHR sources than DescEmb utilizing all
available information in a medical event. That is, applying med-
ical domain knowledge to select a subset of meaningful features
does not necessarily lead to a higher performance compared with
simply using all possible features. Overall, the single-domain
learning results show that GenHPF achieves comparable or
higher performances, even without relying on medical-domain
knowledge, by simply using all features as textual descriptions.
The improved AUROC achieved without significant feature
engineering made this evident.

In the pooled learning, both text-based embedding models
(DescEmb and GenHPF) significantly improved the prediction
performance compared with conventional code-based embed-
ding models. This improvement results from the MIMIC and
eICU datasets not sharing codes and from training conventional
code-based embedding models on the pooled dataset expanding
the number of required embeddings for each feature name and
value, thereby preventing the models from leveraging larger
amounts of training data. Conversely, text-based embedding
models can take advantage of the extensive volume of vari-
ous sources since the sub-words of medical descriptions are
common, even among entirely dissimilar EHR systems. Further-
more, even within the text-based embedding models, GenHPF
outperforms DescEmb in most cases, although DescEmb uses
manually selected features from each dataset. This highlights the
advantage of GenHPF because it does not rely on any domain
knowledge but rather uses all features in a textual form regardless
of the EHR schema used.

In transfer learning, we observe a pattern similar to that
in pooled learning; text-based embedding models consistently
outperform code-based embedding methods. GenHPF demon-
strates performances similar to or better than those of DescEmb,
except when transferring from MIMIC-III to MIMIC-IV with
10-30% fine-tuning. Through these experiments, we demon-
strate that GenHPF effectively resolves two challenges (multi-
task learning, multi-source learning). For multi-task learning,
GenHPF outperforms models SAND and DescEmb, which em-
ploy feature selection by utilizing domain knowledge. Regard-
ing multi-source learning, GenHPF demonstrated better perfor-
mance than conventional embedding models such as Rajkomar
and SAnD.

The self-supervised pretraining results show that SimCLR
consistently outperforms the other methods. We conjecture that
SimCLR’s pretraining process effectively facilitates prediction
in downstream tasks by learning patient-level representations,
whereas the other pretraining methods focus on learning either
token-level or event-level representations within the same pa-
tient. Furthermore, the performance improvement of GenHPF
with multi-source pretraining provides insights into the necessity
of pretraining on the pooled heterogeneous EHRs, which we
believe is essential for large-scale EHR modeling.

Implementing GenHPF in a real-world hospital requires ap-
propriate hardware resources, including GPUs connected to
EHR database. Once operational, the framework minimally
preprocesses patient data for various prediction tasks. A key
advantage of GenHPF is that it can be integrated into any EHR
system without requiring specific modifications, thereby signif-
icantly reducing both time and implementation costs. However,

this approach to minimal preprocessing results in a larger input
size, requiring higher computational requirements.

VI. LIMITATION

Although GenHPF demonstrated promising results, it still
has limitations. First, since GenHPF utilizes as many features
as possible from EHR events, computational constraints must
be considered. Therefore, we used a subset of EHR events
(1ab tests, prescriptions, and input events) in this work. Better
performance is expected if we exploit all EHR event types using
more memory-efficient models [45], [46].

Second, as the current framework for multi-source learning
relies on textual representation, it is limited to EHRs that share
the same language. Lastly, we used only tabular data in the EHR;
thus, future studies should consider incorporating additional
modalities (e.g., radiographic images) into the framework.

VII. CONCLUSION

In conclusion, our study illustrates the potential of GenHPF
for various learning scenarios, including single-domain, pooled,
transfer learning, and self-supervised pretraining. The effec-
tiveness of the framework without relying on medical domain
knowledge and its ability to capture the underlying semantics of
distinct EHR sources make it a promising approach for large-
scale EHR modeling in the future. Furthermore, With the advent
of large language models (LLMs) such as Chat-GPT, feeding
text-based EHRs into an LLM via the GenHPF framework (with
its ability to handle any EHR in text form) would allow for
EHR predictions, either by fine-tuning the LLM or using the
in-context learning technique. This would open up a wide set
of applications that could reduce complications and improve
patient care with less reliance on EHR schemas and feature
engineering, such as predicting patient outcomes, intervention,
and personalizing patient care.

APPENDIX A
SUPPLEMENTARY RESULTS
A. Comparison of GenHPF With Benchmark [21]

To provide more credibility, we compare GenHPF with
Benchmark [21], shown in table III. Statistical significance of

TABLE Il
COMPARISON WITH BENCHMARK MODEL (ONLY LAB FEATURES)

Source Benchmark Rajikomar GenHPF (ours)
MIMIC-IIT 0.779 0.786*%(0.031) 0.784%*
elCU 0.783 0.788%* 0.79%*(0.024)

The t-test significance values for the bolded values.

TABLE IV
TRANSFER LEARNING WITH ADDITIONAL BASELINES
Source ->Target AutoMap  MUSE Rajikomar ~ GenHPF
- e ok kR
MIMICIV >acU | O Ogie  osir  oms  oml
- ) Stk EEE
dcUSMMICTY | TR (o omts  ome  om
iy S | Ze e DS 08T 0o

the differences in the AUROC scores is reported and denoted
by * (p-value < 0.1), ** (p-value < 0.05), and *** (p-value
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TABLE V
STATISTICS FOR BINARY CLASSIFICATION TASKS

MIMIC-III eICU MIMIC-IV
Task/Class 0 1 0 I 0 1
mortality 983 1.7 984 1.6 984 1.6
long_term_mortality ~ 91.6 84 928 72 923 7.7
los_3day 658 342 712 288 708 292
los_7day 87.9 12.1 912 88 909 9.1
readmission 94.5 5.5 90 10 92.7 7.3

< 0.01). The best performances for each dataset are in bold.
While Benchmark offers an expert-designed, feature-engineered
prediction pipeline, comparing it with GenHPF allows us to
assess the effectiveness of our method, which operates with-
out domain-specific knowledge. Benchmark originally used all
tables, including lab tests and chart events. Due to the high com-
putational demands from numerous chart events, we limited our
comparison to the lab test table. This ensures a fair comparison,
as both our method and Benchmark share only the lab test event.
GenHPF generally exhibits a higher performance than that of
Benchmark in most prediction tasks.

B. Comparison GenHPF With Unsupervised Learning
Methods in Transfer Learning

AutoMap [24] and Muse [44] use the same model architecture
as Rajikomar [22] but can leverage learned embedding through
the unsupervised pretraining of code features between the source
and target datasets. We use these baselines for fair a compari-
son when transferring code-based embedding models, giving
pretrained embedding, not just randomly initialized. Results are
shown in Table IV. The two unsupervised learning methods
for code-mapping do not exhibit improvement over Rajkomar in
the full dataset performance. This indicates that pretraining with
code-mapping between two sources using different EHR code
schemes does not yield a performance improvement, and the
original paper did not conduct the experiments across different
EHRs. However, GenHPF which utilizes text-based embedding
outperforms the baselines (AutoMap, Muse, and Rajikomar) in
both zero-shot learning and full dataset fine-tuning.

APPENDIX B
STATISTICS FOR PREDICTION TASKS

This section presents the statistics for the prediction tasks. All
numbers represent the composition ratios as percentages.

Binary Classification Tasks Table V The tasks include predict-
ing mortality, long-term mortality, los3, los7, and readmission.
The values represent the percentage of total instances for each
class in the corresponding dataset (MIMIC-III, eICU, MIMIC-
V).

Multi-class Classification Tasks Table VI The tasks include
predicting the final acuity, imminent discharge, and several lab
values (creatinine, bilirubin, platelets, and WBC). For laboratory
values, ‘Null’ denotes ICU samples that involve dialysis. The
loss is not computed for this null class during training phases.
For the final acuity and imminent discharge, samples outside the
predefined classes are marked as "Null’.

TABLE VI
STATISTICS FOR MULTI-CLASS CLASSIFICATION TASKS
Task Class | MIMIC-IIT  eICU  MIMIC-IV

Null 0.0 1.0 0.8

0 51.9 58.5 51.5

1 3.4 3.4 3.7

final_acuity 2 72 5.0 6.0
3 9.6 13.2 11.5

4 12.4 4.6 7.3

5 15.5 13.6 18.6

Null 0.0 0.1 0.5

0 95.4 1.6 1.6

1 0.2 5.5 2.9

imminent_discharge 2 1.7 90.9 93.9
3 0.5 1.6 0.5

4 0.1 0.0 0.0

5 0.1 0.1 0.1

Null 15.7 25.1 14.8

0 59.2 49.8 58.8

creatinine 1 16.1 15.1 16.4
2 6.2 6.5 6.4

3 1.6 1.9 1.9

4 0.1 1.6 1.8
Null 78.5 714 74.0
0 13.2 21.9 16.4

- 1 2.8 33 3.4
bilirubin 5 36 25 41
3 1.0 0.5 1.1

4 0.8 0.3 0.9
Null 1.9 252 1.7
0 61.8 49.4 58.0

1 16.9 15.9 19.1

platelets 5 75 75 36
3 1.7 1.6 22

4 0.3 0.3 0.4

Null 123 247 1.8

whe 0 3.6 45.5 3.9
1 53.5 26.6 55.0
2 31.0 2.6 29.4

TABLE VI

STATISTICS FOR MULTI-LABEL CLASSIFICATION TASK(DX)

class  MIMIC-I  eICU  MIMIC-IV
0 4.79 5.35 4.67
1 4.29 2.27 4.06
2 11.53 10.98 10.40
3 6.33 4.65 6.76
4 6.02 4.48 7.83
5 5.10 6.10 6.14
6 13.62  22.09 11.26
7 8.15 13.73 6.88
8 7.45 5.87 7.23
9 7.37 8.67 6.93
10 0.06 0.16 0.08
11 1.75 0.65 1.51
12 3.73 0.68 4.36
13 0.56 0.02 0.59
14 7.29 6.16 5.72
15 4.68 5.08 6.64
16 7.30 3.05 8.95

Multi-label Classification Tasks Table VII Each row repre-
sents a class label, and the corresponding percentages denote
the proportion of instances assigned to each class in the re-

spective dataset. Class unification across the datasets follows
DescEmb [25].
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