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The Latent Doctor Model for Modeling
Inter-Observer Variability

Jasper Linmans , Emiel Hoogeboom, Jeroen van der Laak , and Geert Litjens

Abstract—Many inherently ambiguous tasks in medical
imaging suffer from inter-observer variability, resulting in a
reference standard defined by a distribution of labels with
high variance. Training only on a consensus or majority
vote label, as is common in medical imaging, discards valu-
able information on uncertainty amongst a panel of experts.
In this work, we propose to train on the full label distribution
to predict the uncertainty within a panel of experts and
the most likely ground-truth label. To do so, we propose
a new stochastic classification framework based on the
conditional variational auto-encoder, which we refer to as
the Latent Doctor Model (LDM). In an extensive comparative
analysis, we compare the LDM with a model trained on the
majority vote label and other methods capable of learning
a distribution of labels. We show that the LDM is able to
reproduce the reference-standard distribution significantly
better than the majority vote baseline. Compared to the
other baseline methods, we demonstrate that the LDM per-
forms best at modeling the label distribution and its corre-
sponding uncertainty in two prostate tumor grading tasks.
Furthermore, we show competitive performance of the LDM
with the more computationally demanding deep ensembles
on a tumor budding classification task.
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I. INTRODUCTION

MANY diagnostic tasks in medical imaging suffer from
high levels of inter-observer variability. For instance, tu-

mor grading in prostate biopsies following the Gleason grading
standard [1] involves inherent ambiguities, such as tumors whose
histology is on the border between Gleason patterns [2], [3], [4].
Especially for complex cases, even experienced pathologists
do not show good inter-observer agreement [2], [3], [4], [5].
Disagreement between experts results in a distribution of labels,
complicating training and evaluation of conventional deep learn-
ing methods because a reliable reference standard is lacking.

Recent work on applying deep learning to automate prostate
tumor detection mitigates these issues by evaluating on a con-
sensus reference standard based on multiple rounds of re-
grading [6], [7]. A more basic yet popular approach deter-
mines the reference standard based on simple majority voting.
However, reducing the distribution of labels to a single ground
truth discards any information about the disagreement amongst
the panel of experts, which could indicate the difficulty of
the case [5]. Therefore, modeling the full label distribution of
experts might be equally important as modeling the most likely
label. When trained correctly, the spread of the predicted distri-
bution can be used as a surrogate for inter-observer variability.
If the spread of the predicted distribution correlates with the
inter-observer variability between experts, highly ambiguous
cases can be discriminated from more straightforward cases
based on the model output. After training, the most ambiguous
cases could then be flagged and removed from an automated
diagnostic pipeline, followed by further diagnostic tests or expert
supervision.

The main goal of this work is to effectively predict the
distribution of labels of a panel of experts instead of just the
most likely label. To do so, we introduce a stochastic classifica-
tion framework that provides multiple classification hypotheses
for ambiguous images using a single classifier. The proposed
framework combines a conditional variational auto-encoder
(CVAE) [8] with a DeepSet encoder [9] that can capture annota-
tor variability in a low-dimensional latent space. After training,
we evaluate the ability to replicate the reference-standard label
distribution and the corresponding disagreement between ex-
perts on different classification tasks in medical imaging.

A body of work with different approaches towards dealing
with inter-observer variability in deep learning exists. A recent
review evaluates relevant methods in medical imaging [10]. This
includes a method used in chest X-rays based on label smoothing
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Fig. 1. Graphical representation of a dataset relevant for this work with the objective of learning a distribution of labels, and the steps involved
during inference of the proposed Latent Doctor Model (LDM). We assume each case in the test set to be labeled by multiple doctors. The collection
of one-hot labels can be illustrated with a histogram, referred to as the ground truth label distribution. During inference, the classifier of the LDM
fθ(y|x, z) is conditioned on samples from the prior Gaussian distribution, resulting in a stochastic classifier to model the predictive distribution
pθ(y|x). We adopt a pre-trained feature extractor h(x) and a fully connected layer uθ(z) to upsample z, before feeding the data to the classifier.
Inference for the Conditional LDM is similar, but the standard Gaussian prior is replaced with a learnable conditional prior distribution pθ(z|x).

to prevent overconfident predictions on training samples that
contain mislabeled data [11]. Prior work on noisy labels captures
the label noise of individual annotators [12]. However, their
method assumes that the label noise is independent from the
input image [12]. In contrast, our proposed method and corre-
sponding baseline models are conditioned on the input image
to capture more complex relationships. Related work improves
classification accuracy by re-weighting the loss function for data
samples with likely incorrect labels in both chest X-rays [13]
and whole-slide digital pathology images [14]. However, these
methods consider a setting of noisy labels, assuming some of the
annotations to be incorrect, and focus on correcting annotations
to train on cleaner data or model the trustworthiness of anno-
tators. In contrast to our work, these works see inter-observer
variability as a factor that needs to be reduced instead of an ad-
ditional source of information relevant to modeling the inherent
ambiguities of certain diagnostic tasks.

Directly modeling the distribution of labels in the context
of classification remains relatively unexplored, especially in
medical imaging. The works most similar to ours, model a
distribution of segmentation masks in thoracic CT, lung CT,
and prostate MR data [15], [16], [17]. To do so, they propose a
probabilistic framework based on a combination of the CVAE
and a U-Net architecture [18] to successfully model a diverse set
of plausible segmentation masks in medical imaging. In essence,
our proposed stochastic classification framework belongs to the
same family as this probabilistic U-Net [15], but then for the
context of classification.

The main contributions of this work are: (1) We develop a
novel stochastic classification framework based on a CVAE with
a DeepSet encoder and a stochastic classifier to model a distri-
bution of class labels. We refer to the proposed framework as the
Latent Doctor Model (LDM). (2) We propose the LDM with a
prior based on a simple Gaussian with zero mean and unit vari-
ance, as well as a conditional model (CLDM), where the prior is
modeled by a neural network conditioned on the input image. (3)
We propose to compare against deep ensembles and a method
based on knowledge distillation and quantitatively compare the
results on three datasets in medical imaging. In contrast to the
work which is most similar to ours [15], we compare against
a more diverse ensemble baseline with members trained on
individual experts instead of a regularly trained ensemble based
on random initialization [19]. (4) Demonstrating the importance
of modeling the full label distribution, we show that the different
methods can reproduce the reference-standard distribution and

its corresponding inter-observer variability significantly better
than the majority vote baseline. Specifically, we show that the
LDM is best at capturing the label distribution in two of the three
datasets.

II. PRELIMINARIES AND PROBLEM STATEMENT

Throughout this work, we consider a classification setting
with labels provided by multiple doctors d ∈ {1, 2, . . . , D}.
Let a dataset be noted as Dtrain = {(xn,yn)}Nn=1, where xn

represents one of N data points and yn the label distribution
determined by the set of annotations available for the n’th data
point. Here, yn is a normalized vector of individual annotations
ydn; representing the histogram of class counts. We refer to this
distribution of labels as the reference-standard or the ground-
truth distribution. See Fig. 1 for a graphical depiction of such
a dataset. Throughout the experiments, we will consider two
types of ground-truth label distributions: the dense label scenario
in which each image is annotated by every doctor d such that
Dtrain = {(xn, y

1
n, . . . , y

D
n )}Nn=1, as well as the limited label

scenario where each image is annotated by only one, or a subset
of doctors.

The task is to learn a classifier f(x), which takes in an image
and predicts the label distribution fory. In this work, we present a
novel stochastic classification framework based on a conditional
variational auto-encoder (CVAE) [8], to model the probability
distribution of labels given an image, enabling a one-to-many
mapping.

A. The Conditional Variational Auto-Encoder

Recent work on variational auto-encoders [20] presents the
conditional variational auto-encoder [8], to approximate a distri-
bution pθ(y|x). The conditional generative process is as follows:
for a given observation x, z is drawn from a prior distribution
pθ(z|x) and the distribution of y is conditioned on both the
input and the latent vector. The resulting predictive distribution
is defined as:

pθ(y|x) =
∫
z

pθ(y|x, z)pθ(z|x)dz. (1)

In a classification or segmentation setting, z ∈ R
m defines a

continuous latent variable capturing annotator variability such
that pθ(y|x, z) captures multiple plausible classification hy-
potheses. Due to the intractable posterior distribution p(z|x,y),
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the predictive distribution pθ(y|x) can not be optimized di-
rectly. Instead, the predictive distribution can be optimized
through the evidence lower bound (ELBO), similarly as for the
VAE [20]:

log pθ(y|x)

= Eqφ(z|x,y)

[
log

pθ(y, z|x)
qφ(z|x,y)

]
+DKL (qφ(z|x,y)‖p(z|x,y))

≥ Eqφ(z|x,y) [log pθ(y|x, z)]−DKL (qφ(z|x,y)‖pθ(z|x))
(2)

where qφ(z|x,y) is the variational posterior parametrized by
variational parameters φ. The second right-hand side term
of the ELBO defines the Kullback-Leibler divergence be-
tween the prior pθ(z|x) and the variational posterior distri-
bution qφ(z|x,y), which is sometimes combined with the
first term as a weighted sum with a weighting factor β, as
proposed by [21].

Both the prior distribution pθ(z|x) as well as the approximate
posterior qφ(z|x,y) are modeled using Gaussian distributions
with a diagonal covariance matrix whose parameters are the
output of a neural network. As a result, the CVAE uses three
trainable networks [15], [16], including the classification net-
work for pθ(y|x, z), while the VAE only uses two. However,
as argued by the original authors [8], the conditioning of z
can be easily relaxed to make the latent variables statistically
independent of input variables such that pθ(z|x) = p(z), with
p(z) a standard Gaussian distribution. When presenting the
CVAE used for classification in the next section, we first start
with using p(z), a standard Gaussian prior distribution. After-
wards, we will define a conditional variant of our method by
re-introduce the conditioning of the prior distribution on the
input.

B. Lacking Information in the Context of Classification

CVAEs have been successfully applied to produce a diverse
set of plausible predictions in the context of segmentation in
medical imaging [15], [16]. By combining the CVAE with a
U-Net architecture [18], the probabilistic U-Net is capable of
modeling a distribution of segmentation masks y. To do so,
an encoder network, representing the approximate posterior
qφ(z|x,y), is required to capture annotator variability in the
latent space. Here, the high-dimensionality of a ground truth
segmentation mask y enables the encoding of small variations
between annotators. In contrast, the application of CVAE in the
context of classification is impeded by the low-dimensionality
of a single class label to model the approximate posterior
qφ(z|x, y). Specifically, a single (one-hot) class label y only
contains a limited amount of information for the encoder to
capture annotator variability.

To overcome the problem related to the amount of information
available, we propose to train an encoder using a collection
of image-label pairs, in contrast to a single data point, as is
the case in the probabilistic U-Net. Doing so, our approach
is fundamentally different from the probabilistic U-Net in that
we adopt a CVAE to learn a regularised latent representation
of doctors to model a univariate variable y. In contrast, the
probabilistic U-Net learns a joint distribution of all pixels in
a segmentation map to model a consistent interpretation of a
whole image.

III. THE LATENT DOCTOR MODEL

We introduce the Latent Doctor Model (LDM), a probabilistic
classification model based on the CVAE, that is capable of effi-
ciently producing multiple plausible classification hypotheses.
Here, a latent space encodes the possible label variants.

To do so, we introduce a setSd with image-label pairs sampled
from the train set. Without changing the train set itself, we define
Sd to contain M individual samples (xm, ydm), such that Sd ∼
Dtrain(Sd). Using a standard Gaussian prior p(z), we rewrite
the lower bound of the CVAE (2) into:

log pθ(y|x,Sd) ≥ Eqφ(z|Sd) [log pθ(y|x, z)]
−DKL

(
qφ(z|Sd)

∥∥p(z)) (3)

where the posterior qφ(z|Sd) is conditioned on the collection of
image-label pairs. Similar to the probabilistic U-Net, we model
the posterior qφ(z|Sd) with a neural network which maps the
input to a position μpost(Sd), with some variance σpost(Sd).
Optimizing the lower bound (3), therefore minimizing the KL
divergence between the posterior qφ(z|Sd) and the prior p(z),
will result in:

EDtrain(Sd)[qφ(z|Sd)] ≈ p(z). (4)

In other words, sampling from the prior distribution will re-
semble sampling from the trained posterior distribution and as
a result, Sd is only required during training. Instead, during
inference, we sample z directly from the standard Gaussian prior
p(z), as is normal for the (C)VAE framework [8], [20], to model
the predictive distribution:

p(y|x) = Ep(z)p(y|x, z) (5)

which can be approximated using some finite number of samples
from the prior p(z). See Fig. 1 for the steps involved during
inference.

A. Training Objective of the LDM

Optimizing (3) based on training data points (xn, y
d
n), will

require a classifier pθ(y|x, z) to predict the class label for anno-
tatord, conditioned on a samplez from the posterior distribution.
To enable the encoder qφ(z|Sd) to capture annotator specific
variability in this posterior distribution, we restrict Sd to only
contain image-label pairs with labels from a shared doctor d.
Specifically, we define Sd to be the set:

Sdn = {(xm, ydm) | m ∈ Id,m �= n} (6)

of size M , with Id the set of indices for which the d’th doctor
provided a ground-truth label ydm.

In other words, Sdn contains randomly sampled image-label
pairs from the training set with labels from the d’th doctor,
excluding the n’th data point. The constraint m �= n, prevents
the latent embedding from simply forwarding the ground-truth
label ydn to the classifier during training. While sharing doctor
index d between all labels in Sdn, enables qφ(z|Sd) to capture
doctor specific annotation variations. We refer to Sdn as the
support set for the image-label pair (xn, y

d
n). To optimize (3),

we define the following training objective for a single datapoint:

L(x, y,Sd, θ, φ) = Eqφ(z|Sd) [log pθ(y|x, z)]
− βDKL

(
qφ(z|Sd)

∥∥p(z)) (7)
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Fig. 2. Graphical representation of the training phase of the proposed (Conditional) Latent Doctor Model (LDM). In plain terms, we are asking a
classifier fθ(y|x, z) to predict what label a specific doctor d would have assigned to each case in the training set. To help the network make this
decision, we provide examples of how the doctor scored other images in the support set Sd. As illustrated, each entry within a mini-batch consists
of an image, the associated label from a random doctor d and a corresponding support set. As a result, a single classifier is trained to map an input
image to the ground-truth label of multiple doctors D. Here, the DeepSet summarizes the entire support set in a single vector νn, using a shared
function gφ with inputs from a feature extractor h(x) and embedded labels eφ(y). The posterior distribution is modeled by a simple feed forward
network using νn as input. Samples from the posterior distribution (upsampled by a fully connected layer uθ(z)) are used as input to the classifier
along with a feature representations of the input h(x). The top-right panel shows the training procedure of the CLDM, where the standard Gaussian
prior is replaced with a learnable conditional prior distribution pθ(z|x) using an additional prior network. To minimize the KL divergence between
the prior and the posterior distribution, the image feature h(x) is also fed to the posterior distribution. Loss terms are indicated in green.

with the corresponding training objective for the entire dataset
defined as L(θ, φ) = Ex,y,d,Sd∼Dtrain

[L(x, y,Sd, θ, φ)]. Here,
for each entry in a mini-batch, we first sample an image-label
pair with a label from a random doctor index d. We then use
index d to sample a support set Sd from the train set to define
the approximate posterior distribution qφ(z|Sd). See Fig. 2 for
an illustration of a mini-batch and an overview for the steps
involved during training. Similar to the probablistic U-Net, we
combine the KL divergence term with the first term as a weighted
sum with a weighting factor β [21].

B. The Conditional LDM

Similar to the probabilistic U-Net, we can condition the
latent space of the LDM on the input image x in an effort to
increase the model complexity of the latent space. Here the
standard Gaussian prior distribution is replaced with a learned
conditional distributionpθ(z|x), as discussed in section II-A. We
refer to this method as the Conditional LDM (CLDM). This is
done by introducing a prior network, in addition to the encoder
and the classifier, that learns to map an input x to a position
μprior(x), with some variance σprior(x), similar to [15], [16].
The corresponding lower bound of the CLDM is as follows:

log pθ(y|x,Sd) ≥ Eqφ(z|Sd) [log pθ(y|x, z)]
−DKL

(
qφ(z|Sd,x)

∥∥pθ(z|x)) (8)

where both the posterior qφ(z|Sd,x) and the prior pθ(z|x) are
conditioned on the input x. See Fig. 2 for a graphical represen-
tation of the different networks defining both the LDM and the
CLDM.

C. DeepSet Encoder

In contrast to the encoder of a regular CVAE, the encoder of
the LDM encodes information from a set of data points. The
structure of the set is random and does not need to be learned,
instead the encoder should be invariant to permutations. To this
end, we leverage DeepSets [9] to build permutation invariant
representations of the support set Sd. Here, each image x ∈ R

I

and corresponding one-hot label y ∈ R
C in the set, are trans-

formed into some representation using a shared function. The
resulting output vectors are then aggregated by simply taking the
average, resulting in a single vector representation of the entire
set:

νn =
1

M

M∑
m=1

gφ(xm, ydm). (9)

Here gφ(xm, ydm) defines the representation of the m’th image-
label pair in the support set Sd.

This definition allows for any arbitrary shared function and
may be defined by the user. Throughout this work, we model
gφ(xm, ydm) with a simple feed-forward network, which takes
in a concatenation of a lower dimensional feature representation
h(x) and a learned embedding eφ(y). For completeness, we
define the feature extractor as: h : RI → R

F , and the learned
embedding as eφ : RC → R

F to map both inputs to a vector
of similar length. As a result, we define the shared function
as gφ : RF × R

F → R
H . See section IV-F for implementation

details for each module, and Fig. 2 for an illustration of the
DeepSet encoder framework used throughout this work.
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The output vector νn of the DeepSet model is then fed to a
feed-forward neural network to produce the parameters of the
approximate posterior distribution for the LDM:

qφ(z|Sd) = N (z | μpost(νn),σpost(νn)). (10)

The approximate posterior distribution for the CLDM is similar,
but also conditioned on the input x. Here, the parameters of
the posterior distribution are defined as μpost(νn, h(x)) and
σpost(νn, h(x)). See Fig. 2 for an illustration. Note that, al-
though we use DeepSet encoders throughout this work, the
framework of the LDM is flexible towards other invariant func-
tions on Sd as well.

D. Stochastic Classification

The classifier pθ(y|x, z) is modeled by a neural network
which maps an input image and a sample from the posterior
distribution z ∈ R

E , to a vector of sizeC, defined by the amount
of classes in the dataset, such that:

ypred = fθ(xn, z). (11)

Again, this definition allows for any arbitrary function and
may be defined by the user. Throughout this work, we model
fθ(xn, z) with a simple feed-forward network, which takes in
a concatenation of a lower dimensional feature representation
h(x) and an upsampled latent vector uθ(z). Here, we reuse the
feature extractor h(x) from the DeepSet encoder, and we define
the upsampling layer as uθ : RE → R

F . The resulting classifier
is defined by fθ : RF × R

F → R
C . See Fig. 2 for an illustration

of the steps involved in training the DeepSet encoder and the
stochastic classifier end-to-end.

The output ypred represents the vector of probabilities of the
categorical distributionCat(y|p = ypred), which is standard for
a classifier. During training, the log-likelihood of this categorical
distribution is optimized through regular training using cross-
entropy loss. Furthermore, the KL Divergence term of (7) can
be optimized directly based on a closed form solution, since the
posterior and the prior are modelled by Gaussian distributions
in both the LDM and the CLDM. Both loss terms are indicated
in green in Fig. 2.

Throughout this work, we use β = 1e−3 and a latent space
with 6 dimensions to optimize (7) and its equivalent for the
CLDM. During training, we sample support sets of size 16 or 32
to train the encoder. See section IV-F for further implementation
details per experiment.

E. Inference

After training, the label distribution of the panel of experts
can be modeled using multiple forward passes through the clas-
sifier pθ(y|x, z), conditioned on random samples z, following
(5). When trained correctly, different locations in the latent
space encode different label variants (see section III-A), such
that multiple forward passes through the network result in a
distribution of predictions (11). To do so, z can be sampled
directly from the prior distribution, eliminating the need for a
support set Sd during inference, following (4). In other words,
we can simply sample from a standard Gaussian distribution
p(z) for the LDM during inference. We refer back to Fig. 1
for an overview of the steps involved during inference. Note
that we reuse the output of the feature extractor h(x), when
drawing samples from pθ(y|x, z), following (11). As a result,

Algorithm 1: The Latent Doctor Model. We Use N ∈
[16, 32], β = 1e−3, and K = 64 Throughout The Experi-
ments.

// Training phase
θ, φ← Initialize parameters
repeat
for each entry in mini-batch of size N do
xn ← Sample random image from Dtrain;
d← Sample doctor index from available annotations;
ydn ← Assign label from doctor d;
Sdn ← Sample support set, with labels from doctor d;
νn ← Forward pass Sdn through DeepSet;
zn ∼ N (z | μpost(νn), σpost(νn)) // Encoding;
ypred
n ← fθ(xn, zn) // Classification;

end for
Perform stochastic gradient descent using mini-batch to
update parameters θ and φ:
∇θ,φ

1
NΣN

n=1 logCat(ydn|ypred
n ) + βDKL(qφ(z|Sdn)‖p(z))

until convergence of parameters (θ, φ)
// Inference phase
x∗ ← Unseen image;
x∗feat. ← h(x∗)
for K steps do
zk ∼ p(z)

ypred
k ← fθ(x

∗
feat., zk)

end for
ypred = 1

K

∑K
k=1 y

pred
k // Predictive distribution;

only the forward pass through the upsamling layer uθ and the
feed-forward network fθ need to be recomputed several times.
This results in a computationally efficient way to sample K
predictions from the LDM to model the predictive distribution.
Throughout this work, we use K = 64. See Algorithm 1 for a
summary of the steps involved in training and inference.

IV. EXPERIMENTAL SETUP

We evaluate performance on three datasets, each with an-
notations provided by multiple annotators. This section first
describes the datasets and corresponding training objectives
(sections IV-A through IV-D). Afterward, the baseline meth-
ods (IV-E), implementation details (IV-F), and the evaluation
metrics for correlating the disagreement between experts and
the predictive disagreement (IV-G) will be described. All data
used throughout this work has been part of prior publications.
Here, most data was obtained from open source archives: IV-A,
IV-B. For the material that was obtained in our hospital (IV-B
and IV-D), the need for informed consent was waived by the
local ethics review board (2016–2275).

A. Gleason Grading on Gleason2019

First, we use the publicly available training dataset from the
Gleason2019 challenge [22], [23]. Detailed pixel-level annota-
tions are provided by six pathologists on 244 prostate tissue
micro-array (TMA) cores, based on four classes: benign and
cancerous with Gleason patterns 3, 4, and 5. On average, every
pathologist provides annotations for a subset of 197 cores,
corresponding to the limited label scenario.
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In this work, we follow the training and evaluation pipeline as
proposed by [10], and train on patches with labels corresponding
to the annotations of the central pixel. For each core, we extract
20 patches of size 279× 279 randomly, and follow a 5-fold
cross-validation framework. Each time, we train and tune a
model on 80% of the TMA cores and their labels from the
six pathologists, and then evaluate on the remaining 20% of
the cores. During inference, we evaluate on the distribution of
labels from the six pathologists and their consensus, modeled
by the Simultaneous Truth and Performance Level Estimation
(STAPLE) [24], as suggested by [10]. To improve robustness,
we repeat each fold three times, resulting in a total of 15
independent train runs. We calculate and report the mean and
standard deviation values for each performance metric across all
15 runs. Specifically, we measure the unweighted Cohen’s kappa
coefficient with the consensus label to enable comparisons with
earlier work. Furthermore, we report the accuracy scores for
distinguishing cancerous (Gleason patterns 3–5) from benign
tissue, and separating high-grade (Gleason patterns 4 and 5)
from low-grade (Gleason pattern 3) cancer, as reported by [10].

B. Slide-Level ISUP Grading

The second dataset we evaluate on, consists of 100 whole-
slide images (WSIs) of prostate biopsies taken from the test set
of [6]. Here, each WSI is annotated on a slide-level using the
ISUP grading system which stratifies ratio’s of Gleason patterns
into five types, from 1 (low risk) to 5 (high risk) [25]. In total, the
set of 100 WSIs are all annotated by 20 pathologists from 14 in-
dependent labs and ten countries, based on six classes (including
the benign class). Similar to the training pipeline of the previous
experiment, we repeat the training setup for 5 different folds.
Each time, we train and tune models on approximately 80% of
the set of WSIs and their labels from the 20 pathologists, and then
evaluate on the remaining set of WSIs. Specifically, to deal with
class imbalances we define each test set as a random subset of
18 WSIs, balanced across the six classes. Different from regular
cross-validation, the resulting test sets can have overlapping data
points.

For this task, we leverage techniques of weakly-supervised
learning to summarize patch-level features into slide-level rep-
resentations. Considering that Gleason patterns define morpho-
logical properties of epithelium tissue in particular, we train and
evaluate only on patches extracted from the epithelial tissue.
To do so, we first evaluate the epithelium segmentation model
of [6], on all WSIs in the dataset. To artificially increase the
amount of data points, as a way of data augmentation, we train
on a randomly sampled subset of 128 epithelium patches of size
279× 279 at a pixel spacing of 0.96μm. During inference, we
aggregate the predictions across all five folds and report the
results on the total set of 90 predictions. To improve robust-
ness, we repeat this process three times, and report the mean
and standard deviation values for each metric across the three
repetitions. To evaluate grading accuracy, we report the Cohen’s
kappa coefficient with a linear weighting.

To analyze the performance on ISUP grading in a limited
label scenario, we repeat the experiment while removing some
of the annotations in each training set. To do so, at the start of
training we select a random subset of five annotations per WSI
(fixed during training and the same for each method), effectively
reducing the amount of annotations per doctor but not the total

number of annotators. During inference, we evaluate on the test
set using the full label distribution of 20 annotators.

C. Leveraging Pre-Trained Gleason Feature Extractors

To improve performance, for both the Gleason2019 and the
ISUP grading tasks, we pre-train a Gleason pattern classifier on
data from the PANDA challenge [26]. This feature extractor
network h(x) is previously introduced in section III-C, see
Fig. 1, and Fig. 2. Specifically, we train a lightweight DenseNet
architecture [27], as specified in [28], on 5060 WSIs and select
patches in a 2:3 normal to tumor ratio of size 279× 279 at a
pixel spacing of 0.96μm.

For the Gleason2019 dataset and before training, we finetune
the pre-trained backbone model for each fold individually, using
the TMA cores from the corresponding training sets and the
consensus labels defined by the STAPLE method. Since the
ISUP grading dataset originates from the same medical center as
the set of 5060 WSIs, no finetuning is required. In both experi-
ments, the pre-trained models are used to extract feature vectors
of size 240 from the penultimate layer. We’ve experimented
with training from scratch during preliminary analysis, for both
tasks, but found that leveraging pre-trained models resulted in
improved performance on the validation set. Additionally, the
use of pre-trained feature extractors reduced the computational
requirements by an order of magnitude. This allowed us to train
computationally demanding ensemble baselines and repeat the
experiments multiple times to estimate confidence intervals.

D. 3 k Buds

The third and final dataset that we use is in this work, is the
3000 bud study from [29]. Here, from a pool of 63 cytokeratin
stained WSIs containing colorectal cancer cases with tumor bud-
ding, 3000 tumor bud candidates were selected. Each candidate
bud is categorized by seven (of a total of nine) pathologists at a
patch level as: either a tumor bud, a poorly differentiated cluster
(PDC) or neither. In contrast to the previous two datasets, these
labels are more categorical in nature. As such, modeling doctor
specific annotation characteristics might be more difficult.

We split the 3000 buds in a train, valid, and test dataset on a
slide-level and selected a random subset of 8 slides for both the
validation and test splits. The remaining 47 slides were used for
training. The resulting train, valid, and test datasets consisted of
2130, 152, and 718 bud candidates with patches extracted at a
pixel spacing of 0.48μm of size 279× 279. During evaluation,
we report the Cohen’s kappa coefficient (with a linear weighting)
with the consensus label.

E. Baseline Methods

To compare the LDM with a regularly trained network, we
include a baseline model trained on the majority vote label in
each experiment.

1) Histogram of Doctors: Additionally, we train a model
using the full label distribution. Here, the goal is to “distill”
the knowledge from the panel of experts into a single model,
similar to related work [30], [31], which transfers knowledge
from a cumbersome teacher model to a smaller model. Since we
train on the full histogram of doctor labels, we refer to this as
the Histogram of Doctors (HoD) method. Without changing the
majority vote model, we apply the cross-entropy loss using the
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normalized reference-standard distribution y:

H(ypred,y) =
C∑

c=1

yc log y
pred
c (12)

with C the number of classes, ypred the predicted distribution,
and y the reference-standard label distribution. In contrast, in
the case of the majority vote method, y is simply defined by a
one-hot vector and the sum over C reduces to a single term.

2) Ensemble (Train One CNN Per Doctor): Finally, to model
the set of annotators explicitly, we also include deep ensem-
bles [19]. Here, each member of the ensemble is trained using the
annotations and corresponding data points of a single annotator.
During inference, the predictions of all individual members are
averaged following:

ypred =
1

D

D∑
d=1

ypred
d (13)

with ypred
d the prediction of each individual member. Compared

to the LDM, this method requires significantly more computa-
tional resources to train and evaluate D individual members.
For example, the cross-validation setup described previously,
requires training and evaluating a total of 90 and 300 ensemble
members in the Gleason2019 and ISUP grading experiments
respectively.

We would like to emphasize that this ensemble is different
from the originally proposed deep ensemble [19]. Here, we
specifically try to capture the ground truth distribution of la-
bels by training on all doctors individually, instead of training
multiple randomly initialized ensemble members on the same
majority vote label.

F. Implementation Details

This section summarizes the relevant details used to train and
evaluate the different methods in each experiment.

1) Gleason Grading: Leveraging the pre-trained Gleason
feature extractors h(x), the training objective reduces to map-
ping feature vectors of size 240 to a class label. To this end, we
implement the different classifiers pθ(y|x) with a feed-forward
neural network, consisting of three fully connected layers, re-
ducing the amount of features with a factor of 0.5 at each layer.
We use BatchNorm layers and ReLU non-linearities before and
after each fully connected layer, and apply dropout (p = 0.5)
after the second layer. We do not change this architecture for the
classifier pθ(y|x, z), used in the LDM. However, we do increase
the input dimensions to match the size of the image feature
concatenated with a (upsampled) sample from the latent space
uθ(z). Here the upsampling layeruθ is simply defined by a single
fully connected layer, mapping the six dimensional latent vector
to a vector of size 240. To train the DeepSet encoder qφ(z|Sd),
we repeat this architecture to define the shared DeepSet function
gφ, from (9). We define the size of the support set as 32 patches.
The resulting DeepSet output νn is then used as input to a
fully connected layer with two output nodes, representing the
mean and standard deviation values of the posterior distribution,
following (10). The CLDM extends the LDM by adding a
prior network which mimics the three-layer fully connected
architecture, with only two output nodes: representing the mean
and standard deviation values of the prior network, similar to
(10). Finally, the CLDM also concatenates the feature vector

h(x) with νn before feeding it to the posterior network, see
Fig. 2.

2) ISUP Grading: To train the different ISUP classifiers and
classify on a WSI-level (instead of a patch-level: Gleason grad-
ing), we add an additional attention layer to summarize a set
of input features h(x), using the framework of attention-based
Multiple Instance Learning (MIL) [32]. Specifically, we con-
sider each WSI datapoint as a bag of 128 features h(x) of
size 240, and use an attention layer to calculate its weighted
average. The resulting vector of size 240 is then used for further
processing, with the rest of the architecture identical to the
previous experiment. To optimize the (C)LDM, we use a support
set of size 16.

3) Tumor Budding: Last, we repeat the setup from the Glea-
son2019 experiment for the tumor budding dataset. Here we use
a DenseNet backbone architecture, identical to the one used in
the Gleason feature extractor (IV-C), to transform each input
patch to a feature vector h(x) of size 240, used as input for
further processing by each classifier. Similarly, we use a support
set of size 32 during training of the (C)LDM.

G. Evaluation Metrics

To enable comparison with prior work on these datasets, we
evaluate the classification accuracy with task specific metrics,
see sections IV-A through IV-D. More importantly, we also
evaluate each method on the ability to capture the entire ground-
truth label distribution and the corresponding inter-observer
variability, using the following metrics.

1) Kl-Divergence: Using the Kullback-Leibler divergence
DKL(y‖ypred) with y the ground-truth label distribution and
ypred the predicted distribution, we directly compare the two.
Here, a lower value indicates a higher similarity between two
distributions, with 0 the value corresponding to identity.

2) Spearman’s Correlation Coefficient: To evaluate uncer-
tainty, we measure the entropy of the predictive distribution, as is
common in the uncertainty estimation literature. By evaluating
Spearman’s correlation coefficient between the entropy of the
prediction and the entropy of the ground-truth distribution, we
can measure how informative the predictive uncertainty is for
the uncertainty of the panel of experts.

3) ROC Analysis: Finally, we perform ROC analysis to eval-
uate the ability to discriminate between the least uncertain and
most uncertain cases, based on the predictive entropy. To do so,
we threshold the entropy of the panel of experts based on the
median value, unless stated otherwise.

V. RESULTS

Table I reports the results for the Gleason2019 experiment,
including the best performing model from [10], based on An-
notator Confusion Estimation from [12] which aims to model
the reliability of each expert in a setting of noisy labels. The
unweighted Cohen’s kappa values between the set of annotators
are also included [22], [23]. We observe that all methods perform
on par with the best results of [10] in terms of Gleason grading
performance, although the different methods did not outperform
the majority vote baseline.

More importantly, when evaluating the task of modeling the
reference-standard label distribution, all methods demonstrate
KL divergence values slightly lower than the majority vote
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TABLE I
TARGET TASK PERFORMANCE ON THE GLEASON2019 GRADING DATASET

Fig. 3. Scatter plots, visualizing correlation between the entropy of the predictive distribution and the entropy of the ground-truth label distribution.

baseline (0.46 - 0.47 vs. 0.52). In other words, the predicted dis-
tributions are more similar to the ground-truth label distribution,
with the CLDM demonstrating the highest similarity. A similar
performance gap is found when evaluating the Spearman’s cor-
relation between the entropy values of the prediction and the
ground-truth distribution, and the AUC value for discriminating
between cases above or below the mean entropy value of the
panel of pathologists. With a median ground-truth entropy of
zero, we decided to set the threshold at the mean value instead.
However, both these metrics only show moderate levels of
correlation between the entropy of the predictive distribution
and the ground truth distribution (Spearman’s values up to 0.25).
Note, although variations in performance within each fold were
small, larger variations beween the folds resulted in the relatively
high standard deviation values.

Table II reports the main results for the ISUP grading experi-
ments: both the dense and the simulated limited label scenario.
We start by looking at the grading performance of each method in
both scenarios, reported by the Cohen’s kappa coefficients. The
histogram of doctors method reports the highest kappa scores
for the grading task in both settings. We observe that training
on the noisy majority vote label, based on only five observers in
the limited label scenario, results in a significant drop in ISUP
grading performance. Here, training on the full label distribution
(HoD) helps to mitigates issues related to label noise in the
limited label scenario. We see a similar performance gap when
comparing classification accuracy in the limited label scenario
between the majority vote baseline and the HoD method with
accuracy values of 54.81 and 64.07 respectively. In both settings,
differences in classification performance between the different
methods show similar trends compared to the Cohen’s kappa
coefficients. However, in the dense label scenario the majority
vote method reaches the highest classification accuracy of 69.26,
followed by the HoD method with an accuracy of 67.41.

Afterwards, we evaluate the more important task of model-
ing the full ground-truth distribution of labels. Regarding the

similarities between the ground-truth label distribution and the
predictive distributions, measured by the KL divergence term,
we observe that our proposed method demonstrates the highest
similarity. Furthermore, the LDM and CLDM seem the least
affected by limiting the amount of annotations in the training
set, with similar KL divergence values in both scenarios and a
larger performance gap with other methods in the limited label
scenario.

Fig. 3 plots the entropy of the predictive distribution against
the entropy of the 20 pathologists, for each point in the test set
in the dense label scenario. Here, the median entropy of the
panel of pathologists is highlighted for reference. We observe
that the LDM and the CLDM show the highest correlation, with
Spearman’s coefficients up to 0.728 for the dense label scenario
(Table II). Furthermore, when measuring the ability to discrim-
inate between WSIs above and below the median entropy of the
panel of experts, using ROC analysis based on the entropy of the
prediction, the LDM and CLDM demonstrate the highest AUC
values (81.10 - 86.42). Again, the performance differences with
the other methods seem highest under the limited label scenario.
To verify the statistical significance of the observed performance
differences, we calculate the p-value using a permutation test
based on 10 k samples. Limited in statistical power, by the
size of the dataset, we don’t observe a significant difference in
performance by the LDM with all baseline methods. However,
all methods significantly outperform the majority vote method
on all uncertainty estimation metrics (p < 0.05), except for the
AUC value of the ensemble in the dense label scenario.

Fig. 4 shows predictions for three random test cases. We
observe that the majority vote method often under estimates
uncertainty, with predictions resembling one-hot vectors. In
contrast, the other methods show more “soft” predictions. When
looking at a random set of individual predictions, represented
by the lighter colored histograms, the deep ensembles method
demonstrate the most diverse set of predictions compared to the
LDM and the CLDM.
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TABLE II
TARGET TASK PERFORMANCE ON THE ISUP GRADING DATASET, FOR BOTH DENSE AND LIMITED LABEL SCENARIOS

Fig. 4. Predictive distributions for three random cases from the ISUP grading test set, to illustrate the similarities with the ground truth distribution.
For methods involving a distribution of predictions (the ensemble, LDM and CLDM), the mean prediction is shown (dark color), as well as five
random individual predictions (lighter color). For each individual prediction, the predicted class (argmax) is highlighted with an asterisk.

To analyze the influence of z on the classifier pθ(y|x, z),
we also evaluate a LDM trained with a latent space of two
dimensions, see Fig. 5. By taking different samples of z, cor-
responding to different positions in the 2D latent space, we
observe the impact of the latent vector on the predicted class
labels. Here, each color corresponds to a different class label. We
observe that the resulting distribution of predicted class labels
closely resembles the distribution of ground-truth annotations,
demonstrating the ability of a single trained model to capture a
diverse and realistic distribution of labels.

Finally, we evaluate the ability to filter out difficult cases at
various uncertainty thresholds, and compute the grading perfor-
mance on the remaining test set (see Fig. 6). By removing the
top τ percent of cases, with τ ∈ [0, 1], we observe an improved
grading performance for all methods. We observe that the deep
ensembles and HoD methods benefit most by removing only a
small subset of the test set (with τ < 0.2). Combined with the
uncertainty estimation results from Table II, this could suggest
an optimal workflow where ambiguous cases are flagged by a
LDM, followed by ISUP grading using a superior classifier like
an ensemble.

The main findings from the previous two experiments are cor-
roborated in the results on the task of tumor budding classifica-
tion, reported in Table III. See Fig. 7 for predictive distributions
for three random samples from the test set. For consistency,
we report Cohen’s Kappa coefficients in Table III, however, we
see similar performance differences when evaluating classifi-
cation accuracy. Specifically, the CLDM achieves the highest
accuracy of 82.54, closely followed by the other methods with
the majority vote baseline reaching an accuracy of 82.03. We
observe that all methods outperform the majority vote method
on all uncertainty related metrics. These results demonstrate that
training on the full label distribution instead of the majority
vote, seems imperative to improve the similarities between the

TABLE III
TARGET TASK PERFORMANCE ON THE BUDDING DATASET

ground-truth and the predicted distribution, without impacting
the performance on the classification task. When evaluating the
Spearman’s correlation coefficient, we observe moderate levels
of correlation between the predictive entropy and the entropy
of the panel of pathologists (0.476 - 0.556). Similarly, ROC
analysis based on the median entropy of annotators results in
moderate AUC values (75.47 - 78.36). However, by performing
ROC analysis to evaluate the ability to detect cases for which
no majority vote was found among at least three out of the
seven annotations, we observe high AUC values (93.1 - 94.3) for
all methods trained using the full label distribution. With AUC
values of: 78.61, 93.23, 94.27, 93.08, 94.17, corresponding to
the same order of methods reported in Table III. In contrast to
the previous two experiments, the LDM does not outperform
the other methods. Instead, the deep ensemble, where each
member is trained on the labels from one of the nine pathologists,
outperforms the other methods slightly on all metrics except
classification accuracy.

Finally, we include a performance sensitivity analysis for
the LDM using the following hyper-parameters: the size of the
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Fig. 5. Visualization of the latent space (LDM), and its influence on classification results for the ISUP grading task. Evaluating the classifier
p(y|x, z), using 18× 18 samples z from the 2D latent space for six random WSIs (one per ISUP grade) from the test set. Contours corresponding to
the distance, in standard deviations, to the origin for the standard Gaussian distribution are included. Colors represent the predicted class (argmax)
for each forward pass, demonstrating a more diverse set of predictions for cases where annotators disagree more.

TABLE IV
SENSITIVITY ANALYSIS WHEN REPEATING THE ISUP GRADING EXPERIMENT

FOR THE DENSE LABEL SCENARIO USING DIFFERENT HYPERPARAMETER
SETTING

support set, the amount of samples taken during inference K,
and the dimension of the latent space. We do so by changing one
parameter at a time and repeating the ISUP grading experiment
for the dense label scenario. Table IV reports the results. We
observe the biggest drop in performance when using a support set
of size one, or with k=1. Explained by the limited information
captured within the latent space in these scenarios. As the num-
ber of latent dimensions increases, the quality of the uncertainty
estimates appears to improve. However, most improvements
fall within each other’s standard deviation ranges. Furthermore,
the most significant performance gain compared to baseline
models is already achieved by the LDM based on a single latent
dimension. Overall these results demonstrate robustness to small
changes within the most important set of hyper-parameters.
Lastly, we repeat the ISUP grading experiment using a different
backbone model h(x), based on a ResNet50 architecture. We
observe that the ISUP grading performance (0.719 - 0.732)

Fig. 6. ISUP grading performance at various thresholds, by removing
the top τ percent of cases with the highest predictive entropy, and
evaluate on the remaining test set. Each method is evaluated using
ROC analysis for the task of separating low (grade 0-2) from high ISUP
grades (3-5) (top), and the Cohen’s kappa coefficients (bottom) at each
threshold.

degrades significantly compared to the reported results based on
the DenseNet backbone (up to 0.819). Although the target task
performance is not the main focus, these results indicate that the
different methods may not have been trained properly. Further
optimization might necessitate a distinct set of hyperparameters
for the alternative image backbone, which is considered beyond
the scope of the current work. This could apply to either the
training of the pre-trained backbone model or each specific
downstream method.

VI. DISCUSSION AND CONCLUSION

Ambiguities are prevalent in many medical imaging tasks,
and even experienced doctors demonstrate high-inter observer
variability for the most challenging cases [3], [5]. We aim to
model the full label distribution of a panel of experts, to capture
the disagreement between a set of experts.

Throughout extensive experiments on three datasets, we show
that we can increase the similarities between the predictive and
the ground-truth label distributions by training on the full label
distribution instead of the majority vote label. More importantly,
we demonstrate that the predictive uncertainty can be used as
a surrogate value for the inter-observer variability of a panel of
experts by correlating entropy values between both distributions.
Furthermore, we show that the different classifiers demonstrate
improved tumor grading performance when removing the most
uncertain cases in the ISUP grading task. These results suggest
that the predictive uncertainty of these methods can be used to
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Fig. 7. Predictive distributions for three random cases from the budding test set, to illustrate the similarities with the ground truth distribution. For
methods involving a distribution of predictions (the ensemble, LDM and CLDM), the mean prediction is shown (dark color), as well as five random
individual predictions (lighter color). For each individual prediction, the predicted class (argmax) is highlighted with an astrix.

flag complex cases for further analysis in an automated clinical
diagnosis workflow.

We observe that the proposed LDM outperforms the other
methods on two prostate tumor grading datasets regarding the
metrics used to evaluate the similarities between the ground-
truth label distribution and the predictive distribution. The per-
formance gap is most significant when evaluating ISUP grading
on a whole-slide image level in both the dense and the limited
label scenarios. Here, we observe that the predictive uncertainty
of the LDM correlates the most with the entropy of the label
distribution determined by 20 pathologists.

A similar performance gap between the LDM and the majority
vote method is found on the tumor budding dataset. However, the
LDM and the CLDM are outperformed by the deep ensembles
method based on nine independently trained networks. Here, we
note that the budding task is different in nature due to the labels
being categorical: the object is either a bud, a PDC or something
different, instead of ordinal such as ISUP grading (with increas-
ing tumor grades labelled zero through 5). These results indicate
that the LDM performs especially well in capturing annotator
variability on ordinal classification tasks, such as grading. Future
work is required to confirm these findings on other datasets, with
varying annotation densities in different limited label scenarios.

Throughout the experiments, conditioning the latent space
on the input image (CLDM) only slightly impacts performance
compared to the unconditioned model (LDM), either positively
or negatively, depending on the experiment. These results are in
line with the equivalent probabilistic U-Net [15], which showed
negligible differences between the conditional and uncondi-
tional prior latent space. The current settings for the DeepSet
encoder showed to work well throughout all experiments and
the performance sensitivity analysis demonstrated the LDM to
be robust towards small changes.

When comparing the diversity of predictions, the ensemble
demonstrates the highest diversity compared to the (C)LDM.
However, when analyzing the 2D latent space of the LDM, we
saw that the LDM leads to a diverse and realistic set of classifi-
cation predictions. Furthermore, ensembles require significantly
more computational resources to train and evaluate one network
per doctor in the training set, which does not scale well to
larger datasets like the ISUP grading dataset. The total of 300
individual ensemble members required a computational budget
of around 50 GPU hours. In contrast, although the individual
training cycle of the LDM takes longer, the total computational
budget required summed up to just 30 hours. During inference,
differences in computational requirements are negligible and
well under a minute per patient. Here, the LDM is able to
capture annotator variability in a single model and can even
outperform the deep ensembles method in uncertainty estima-
tion. Furthermore, it could potentially give valuable insight into

annotator behaviour by analyzing structures in the continuous
latent space. The related probabilistic U-Net demonstrates more
consistent improvements on deep ensembles in [15]. However,
they compare with a regularly trained ensemble based on random
initializations [19]. For a fair comparison, we train the ensemble
to model the full label distribution by training on individual
annotators.

Although the different methods performed on par with previ-
ously reported results in classification accuracy on the Gleason
grading experiment [10], correlations between the predictive
uncertainty and entropy of the ground-truth label distributions
are lower compared to the other experiments. This could be due
to only moderate levels of agreement between the annotators,
with Cohen’s kappa coefficients between 0.40 and 0.60 [22],
[23], making this task especially difficult.

Interestingly, the histogram of doctors baseline shows con-
sistent improvements on the majority vote method on both
classification accuracy and the ability to model the full label
distribution. By simply using soft targets during training, the
HoD approach is a cheap alternative to obtain robust estimates
of uncertainty without a trade-off in classification performance.
However, this approach will not provide more insights into
individual annotator behavior, such as the individual outputs by
the LDM and the deep ensembles.

All in all, this work demonstrates that the LDM and re-
lated methods are able to model a distribution of labels. We
demonstrated that the predictive uncertainty is informative for
the accuracy of the prediction and the disagreement between a
panel of experts. We believe that future work in medical imaging
should benefit from all available annotations.
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