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Abstract—Effectively medication recommendation with
complex multimorbidity conditions is a critical yet chal-
lenging task in healthcare. Most existing works predicted
medications based on longitudinal records, which assumed
the encoding format of intra-visit medical events are serial-
ized and information transmitted patterns of learning lon-
gitudinal sequence data are stable. However, the following
conditions may have been ignored: 1) A more compact en-
coder for intra-relationship in the intra-visit medical event is
urgent; 2) Strategies for learning accurate representations
of the variable longitudinal sequences of patients are differ-
ent. In this article, we proposed a novel Sample-adaptive Hi-
erarchical medicAtion Prediction nEtwork, termed SHAPE,
to tackle the above challenges in the medication recom-
mendation task. Specifically, we design a compact intra-
visit set encoder to encode the relationship in the medical
event for obtaining visit-level representation and then de-
velop an inter-visit longitudinal encoder to learn the patient-
level longitudinal representation efficiently. To endow the
model with the capability of modeling the variable visit
length, we introduce a soft curriculum learning method to
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assign the difficulty of each sample automatically by the
visit length. Extensive experiments on a benchmark dataset
verify the superiority of our model compared with several
state-of-the-art baselines.

Index Terms—Medication recommendation, curriculum
learning, set encoder, electronic health record (EHR) data-
mining.

I. INTRODUCTION

R ECENTLY, massive health data have offered the opportu-
nity to assist clinical decision-making through deep learn-

ing [1], [2], [3], [4], [5], [6]. Effective and safe medication com-
bination recommendation for patients who suffer from multiple
diseases is an essential task in healthcare [7], [8], [9]. There are a
lot of research interests in medication recommendation task [10],
[11], [12], [13], [14], [14], [15], [16], [17], [18]. The intuitive
goal of medication recommendation is to predict medication
sequences for a particular patient based on complex health
conditions. Existing strategies of medication recommendation
can be categorized into two types: 1) Instance-based methods,
which recommend medication sequences only based on the
current hospital visit(e.g., diagnosis, procedure) [19], [20], [21].
The instance-based setting will ignore the temporal dependen-
cies on the patient’s health records. To overcome this issue,
2) Longitudinal-based methods were proposed to leverage the
longitudinal patient records to predict personalized medication.
Most longitudinal methods pursue enhanced representations of
patient health status based on the historical health records(e.g.,
diagnosis, procedure) and use this patient representation to con-
duct medication recommendations [22], [23], [24], [25], [26],
[27], [28], [29].

Despite the significance and value of the methods in the lon-
gitudinal methods, they still suffer from two critical limitations:
1) One problem with existing longitudinal works is that they
neglect the compact intra-relationships between medical events
within each visit. In other words, they ignore the relationship be-
tween the same type of medical codes during a visit. 2) Existing
longitudinal models are static. Namely, all samples go through
the same fixed computation flow. This may be powerless on the
shorter records, which lack historical information.

On the one hand, existing longitudinal methods use the his-
torical code sequences (e.g., medication, diagnosis) within each
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Fig. 1. Histogram of visit counts of MIMIC-III dataset (left) and the
histogram of Jaccard between current medications and historical medi-
cations (right).

Fig. 2. Statistics of (a) Medication overlap rate and (b) Jaccard coeffi-
cients in various visits with different window sizes.

visit to present the complex patient’s health condition, where
medical events are adopted independently and sparsely rep-
resented methods to obtain equal contributions representation
in the current record. Most of them use multi-hot embedding
methods to encode the structured data sequences. However, the
impact of medical events varies for each patient, especially for
patients with multimorbidity. For instance, during a visit, the
health condition differs a lot between a patient diagnosed with
both Chronic systolic heart failure and Septic shock and a patient
diagnosed with both Septic shock and Acute respiratory failure.
Previous methods ignore the compact intra-relationship of these
medical events and the variable importance of each code for the
patient.

On the other hand, such longitudinal patterns rely on historical
health information and are powerless to the short visit that
lacks historical records. As shown in Fig. 1, we conduct the
statistic on the MIMIC-III [30] dataset. We can see that most
visit lengths are short than thrice. For each visit, we calculate
the Jaccard between current medications and past medications.
We can see that a large portion of prescribed medicines are
similar to those recommended before, which means the results
of medication recommendations rely on historical medication
records. Additionally, we conduct fine-grained statistics of the
MIMIC-III dataset, as shown in Fig. 2. We calculate the pro-
portion of medications that have appeared in history and the
Jaccard with various visit windows. We can see that in the
more extended visits, a large portion of drug sequences have
been recommended before. However, the prevalence of short
visit records in real-world clinical scenarios often lacks crucial
historical medication information that could be referenced for
treatment decisions. This phenomenon illustrates that a more
robust strategy that could model the accurate representation of
the variable longitudinal sequences is urgent.

To overcome these challenges, we proposed a novel Sample-
adaptive Hierarchical medicAtion Prediction nEtwork, named
SHAPE, to learn a more accurate representation of patients.
In SHAPE, we develop a hierarchical patient representation
framework. Concretely, we first tailor an intra-visit set encoder to
learn the visit-level representation and then design an inter-visit
longitudinal encoder for learning the patient-level longitudinal
representation. By performing the intra-visit set encoder and
inter-visit longitudinal encoder, collaborative information latent
in longitudinal historical interactions is explicitly hierarchical
encoded. To enhance the ability to represent various lengths of
visit records, we adopt a soft curriculum learning method to
help our SHAPE model learn these data patterns by assigning
the difficulty weight to each sample. The experiments on a public
dataset demonstrate the effectiveness of our proposed model.

The main contributions of this work are three-fold:
� We present a hierarchical encoder mechanism towards

medication recommendation, which could dig for a more
accurate representation from the various records of the
patient. In particular, we first design an intra-visit set
encoder to encode the medical events and obtain visit-level
representation, and then develop an inter-visit longitudinal
encoder for learning the patient-level longitudinal infor-
mation.

� We design an adaptive curriculum learning module for
variable patient visit records, especially for the short ones,
which aims at an adaptive learning strategy over time and
the length of patient records to improve the effectiveness
of medication recommendations.

� Extensive experimental results on the public benchmark
dataset validate the effectiveness and superiority of our
proposed method.

II. RELATED WORK

A. Medication Recommendation

Existing medication recommendation algorithms can be cat-
egorized into instance-based methods and longitudinal ap-
proaches. Instance-based algorithms extract patient information
only from current visits. For example, LEAP [20] extracts patient
representation from the current visit record and decomposes the
medication recommendation into a sequential decision-making
process. Longitudinal-based methods are designed to leverage
temporal dependencies within the patient’s historical informa-
tion. For example, RETAIN [22] uses two-level attention, which
models the longitudinal information based on recurrent neural
networks (RNN). GAMENet [24] uses augmented memory
neural networks to fuse the drug-drug interactions and store
the historical drug record to model the patient representation.
MICRON [25] pays attention to the changes in patient health
records and uses residual-based network inference to update the
sequential representation. COGNet [27] conditional generates
the medication combinations either copied from the historical
drug records or direct generate new drugs. These existing efforts,
however, still suffer from the following limitations. Existing
work ignores that the intra-visit medical events may pay variable
effects on differing the health status of the patient. Most of them
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use multi-hot embedding to encode the medical events in the
current visit and ignore the difference of each medical event
in intra-visit records. In this article, we proposed a hierarchical
architecture to learn the comprehensive patient representation.
We use an intra-visit set encoder to learn a more accurate repre-
sentation of intra-visit medical events and develop an inter-visit
longitudinal encoder to learn longitudinal information about the
patient.

B. Curriculum Learning

The conventional curriculum learning methods formalized
the organized learning process of humans and animals, which
illustrates gradually more complex ones [31]. Alex et al. derived
two distinct indicators (i.e., rate of increase in prediction accu-
racy and rate of increase in network complexity) of the learning
process as the reward signal to maximize learning efficiency
automatically [32]. Guy et al. introduce sorted samples with dif-
ferent scoring functions to assign the learning difficulty of each
instance [33]. Recently, curriculum learning has been applied to
different medical tasks. Basu et al. propose a curriculum inspired
by human visual acuity, which reduces the texture biases for
gallbladder cancer detection [34]. Guo et al. demonstrate the ap-
plication of curriculum learning for drug molecular design [35].
Gu et al. utilized curriculum learning to improve the training
efficiency of molecular graph learning [36]. According to Figs. 1
and 2, we found that the short and new visits samples account
for most of the entire dataset. The conventional longitudinal
methods are hard to fit this pattern because lacking a flexible
ability to model the scenarios where the patients do not have
enough historical medication records and diagnosis information
about their health condition. In this article, we propose a sample-
adapting curriculum learning algorithm to assign the difficulty
of each instance automatically.

III. PROBLEM FORMULATION

A. Electrical Health Records (EHR)

Patient electronic health record (EHR) data contains com-
prehensive medical information about the patient. Formally,
EHR for patient j can be represented as a sequence Xj =
(x1

j , x
2
j , . . . , x

T
j ), where T is the corresponding totally visits

number for patient j. For the single visit xt
j of patient j at the

t−th visit, where t ∈ {1, 2, . . . , T}, we ignore the index j of
the patient to simplify notation. Then, the visit record is rep-
resented as xt = (Dt, P t,M t), where Dt ⊆ {d1, d2, . . . , d|D|}
denotes the set of diagnoses appeared in t-th visit, P t ⊆
{p1, p2, . . . , p|P|} denotes the set of procedures and M t ⊆
{m1,m2, . . . ,m|M|} denotes the set of medications appeared
in t-th visit. |D|, |P| and |M| indicate the cardinality of corre-
sponding element sets.

B. DDI Graph

The medications may interact with other medications when
prescribed, while the adverse drug-drug interactions (DDIs)
graph records this interaction of adverse drug events. The DDI
graph can be denoted as Gd = {V, Ed}, where node set V ∈

{m1,m2, . . . ,m|M|} represent the set of medications. The Ed is
the edge set of known DDIs between a pair of drugs. Adjacency
matrix Ad ∈ R|M|×|M| are defined to the construction of the
graphs. When the Ad[i, j] = 1 means the i-th medication and
j-th one could interact with each other.

C. Medication Recommendation Problem

Given a patient EHR sequence [x1, x2, . . . , xt] and the DDI
graph Gd. For the multi-visit records patient, which includes the
current diagnosis, procedure codes [Dt, P t] and the historical
records [x1, x2, . . . , xt−1]. Note that, for the record of new visit
patients, there are only current diagnosis and procedure codes
[D1, P 1]. The goal is to train a model to effectively recom-
mend multiple medications by generating multi-label output
ŷt ⊆ {m1,m2, . . . ,m|M|} for this patient.

IV. THE SHAPE FRAMEWORK

In this section, we present the technical details of the proposed
SHAPE framework. As illustrated in Fig. 3, our model includes
three components: (1) an intra-visit set encoder that learns the
visit-level representation of the patient from the EHR data. (2)
an inter-visit longitudinal encoder that takes the visit-level
representation as input to learn the longitudinal information of
the patient. (3) an adaptive curriculum learning module that
cooperates with the prediction phase in the training stage to
dynamically assign the difficulty weight of each instance by the
patient visit length to improve the effectiveness of medication
recommendations. Finally, the drug output is obtained from the
sigmoid output representation.

A. Patient Representation

The patient representation aims to learn a dense vector to
represent a comprehensive patient’s status. The physicians rec-
ommend medications based on the current diagnosis and pro-
cedure information during a clinical visit. Furthermore, the
clinician also references the history of diagnosis, procedure,
and medication records when the patient has historical visit
records. Since the SHAPE is proposed for the generic patient,
we use the three codes as the model input in the following, and
the medication codes are always behind the other two medical
events. Note that, for the patient who only once visited with
diagnosis and procedure record, we apply a padding embedding
as the medication input.

1) Code-Level Embedding: For predict the medication of
multi-visit, we use the [Dt, P t,M t−1] as the current input, where
M t−1 is the previous medication record. We design three cor-
respond embedding table Ed ∈ R|D|×dim, Ep ∈ R|P|×dim and
Em ∈ R|M|×dim, where the dim is the dimension of the em-
bedding space. For the t−th visit, the set of medical events
d(t) ∈ Dt, p(t) ∈ P t, and m(t−1) ∈ M t−1 was transfer to the
embedding space.

d(t)e = d(t)Ed (1)

p(t)e = p(t)Ep (2)
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Fig. 3. Framework of our proposed SHAPE. There are three components: (1) Intra-visit Set Encoder captures the intra-relationship of the
code-level medical events and summarizes it to the current visit-level representation. (2) Inter-visit Longitudinal Encoder to model the longitudinal
information of the patient. (3) An Adaptive curriculum learning module automatically assigns each sample’s difficulty according to the patient’s visit
length.

m(t−1)
e = m(t−1)Em (3)

2) Intra-Visit Set Encoder: Unlike the previous works [25],
[26], which use the code embedding representation of the
medical events as the patient representation. We employ the
code-level embedding as the input of the set encoder to learn
the code-level relationship and then integrate the code-level
information into the visit-level representation. Inspired by the
Set-Transformer [37], we employ inducing point methods to
compress medical code representations into a more compact
space for modeling the impact of intra-visit medical events and
introduce the Intra-visit Set Encoder. The set encoder contained
two Induced Set Attention Block (ISAB). In the ISAB, in ad-
dition to the set X ∈ Rm×d, a new trainable parameter vector
I ∈ Rn×d, called inducing points, is introduced to model pair-
wise interactions among the elements in the input set. The ISAB
has the two major sub-layers: Multi-Head Attention (MHA) and
row-wise FeedForward layer (rFF), the functions are defined as:

MHA(Q,K, V ) = [head1, head2, . . . , headh] (4)

headi = Att(QWQ
i ,KWK

i , V WV
i ) (5)

Att(Q,K, V ) = Softmax

(
QK�
√
s

)
V (6)

rFF (X) = Relu(XWrFF + brFF ) (7)

where Q ∈ Rnq×d,K ∈ Rnk×d, V ∈ Rnv×d are the inputs of
attention Att(·), WQ

i ∈ Rd×dq ,WK
i ∈ Rd×dk ,WV

i ∈ Rd×dv ,
and dq = dk = dv = d/h. WrFF ∈ Rd×d and brFF ∈ Rd are
learnable parameters. The [·] means the concatenate operation.
The ISAB is defined as:

ISAB(X) = LN(H + rFF (H)) (8)

H = LN(X +MHA(X,Y, Y )) (9)

Y = LN(Z + rFF (Z)) (10)

Z = LN(I +MHA(I,X,X)) (11)

where LN is layer normalization operation. The set-encoder is
defined as:

SE∗(X) = ISAB(ISAB(X)) (12)

where ∗ ∈ {d, p,m}.
Given the code-level embedding representation, the output of

the diagnosis set encoder is formulated as follows:

S
(t)
d = SEd(d

(t)
e )) (13)

Similar to the diagnosis set encoder, the output of the procedure
set encoder and medication set encoder are formulated asS(t)

p =

SEp(p
(t)
e ), S

(t−1)
m = SEm(m

(t−1)
e ). After obtaining the code-

level set representation of the three medical events, we combine
them to visit-level representation V (t) as the health status of
the patient in the current visit. The visit-level representation is
defined as:

V (t) =
[
V

(t)
d , V (t)

p , V (t−1)
m

]
(14)

where the V
(t)
d , V

(t)
p , V

(t−1)
m is the summation of code-level

representation, and [·] is the concatenate operation.
3) Inter-Visit Longitudinal Encoder: Previous works usually

employ Recurrent Neural Networks (RNN) to model the dy-
namic patient history for learning longitudinal representations of
patients. As the success of the attention mechanism in sequence
task [38], [39], [40], it will be helpful to combine the attention
mechanism and RNN pattern. Inspired by the Block-Recurrent
Transformer (BRT) [41], which applies a transformer layer in a
recurrent fashion along the sequence input. Differing from the
basic BRT, we have followed the GPT [40], added the masked
vector to prevent information leaks while modeling patient lon-
gitudinal visit records, and named Recurrent Attention Block
(RAB). The RAB mainly includes the update stream between
the hidden state vector and the visit-level representation. The
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hidden state vector carries the patient temporal information, and
the visit-level representation updates the information based on
the historical state representation. For the state vector, the update
function is formulated as follows:

Ct+1 = g2(MLP (g1(C
′
t, Ct)), g1(C

′
t, Ct)) (15)

g∗(X,Y ) = X � f + z � i (16)

f = σ(WfY + bf + 1) (17)

i = σ(WiY + bi − 1) (18)

z = tanh(WzY + bz) (19)

whereMLP is multi-layer perceptron,� is the Hadamard prod-
uct, Wf ∈ Rnf×df ,Wi ∈ Rni×di ,Wz ∈ Rnz×dz are trainable
weight matrices, and bf ∈ Rdf , bi ∈ Rdi , bz ∈ Rdz are train-
able bias vectors. The g∗ ∈ {g1, g2} is the gate mechanism. C ′

t

is the combination of masked self-attention on the current hidden
state Ct and the masked cross-attention with the visit-level
representation V (t),

C ′
t = W ′

c([Att(Ct, Ct, Ct), Att(Ct, V
(t), V (t))]) + b′c (20)

where W ′
c ∈ Rn′

c×d′
c and b′c ∈ Rd′

c are learnable parameters.
The update stream of visit-level representation selects the

longitudinal information from the hidden state and visit-level
information from the current visit and is defined as:

V̂ (t) = MLP (V (t)′ + V (t)) + (V (t)′ + V (t)) (21)

whereMLP is a multi-layer perceptron. V (t)′ is the concatenate
of visit-level representation masked self-attention and masked
cross-attention with the current hidden state, where a central
feature is to delegate a considerable portion of the information
update responsibility to the process for generating attention
weights. The formulation is:

V (t)′ = W ′
v([Att(V (t), V (t), V (t)), Att(V (t), Ct, Ct)]) + b′v

(22)
where W ′

v ∈ Rn′
v×d′

v and b′v ∈ Rd′
v are trainable parameters.

4) Adaptive Curriculum Learning Module: This module in-
cludes the prediction layer and the adaptive curriculum manager.
After obtaining the updated patient-level representation V̂ (t), the
final medication representation is generated through an output
layer, which is defined as:

ŷ(t) = σ(WoV̂
(t) + bo) (23)

where σ is sigmoid function, and Wo ∈ Rn′
v×|M|, bo ∈ R|M| are

learnable parameters.
� Supervised Multi-label Classification Loss: The recom-

mendation of medication combinations can be treated as
a multi-label prediction task. We use the binary cross
entropy loss lbce as the multi-label task loss function, and
lbce is defined as:

Lbce = −
vj∑
t

|M|∑
i

m
(t)
i log

(
ŷ
(t)
i

)

+
(
1−m

(t)
i

)
log

(
1− ŷ

(t)
i

)
(24)

where m
(t)
i and ŷ

(t)
i means the medical code at i−th

coordinate at t−th visit.
� Drug-Drug Interaction Loss: The DDI loss is designed to

control the DDI rate of generated medication combina-
tions. Following the previous work [26], formally:

Lddi = −
vj∑
t

|M|∑
i,j

(
Ad �

(
ŷ(t)�ŷ(t)

))
(25)

where � is the Hadamard product.
� Combined Loss Functions: During the training, we noticed

that the accuracy and the DDI rate often increase together,
mainly due to the drug-drug interaction in real-world
clinical scenarios. It is important to balance the multi-label
classification loss and the DDI loss. Finally, we use a
penalty weight α over the DDI loss for training. The final
loss function is defined as:

L = Lbce + αLddi (26)

where α is a pre-defined hyperparameter. By presetting
differentα, our SHAPE model could meet a different level
of DDI requirements (the details of selecting the α are
shown in the DISCUSSION section).

� Adaptive Curriculum Manager: As shown in Fig. 2(a),
although the medication combinations of most long visit
records have been recommended before and are easy to
predict, the short one lacking historical medication infor-
mation is the most frequent situation in real-life clinical
scenarios, which may be hard to predict accurately. To
address this issue, we propose an adaptive curriculum
manager that dynamically assigns complex coefficients to
each patient and adopts the curriculum learning framework
to train our SHAPE model. Specifically, we combine the
visit length of the patient lt into the training schema, where
we modified the coefficient of learning rate with calculate
I+lt
Imax

(i.e., (28)) to adjust the learning rate at the Adam [42]
optimizer. The details of the adaptive curriculum manager
are as follows:

θt = θt−1 − γ̂μt√
ηt + ε

(27)

γ̂ = γ

(
1− I + lt

Imax

)
(28)

μt =
β1μt−1 + (1− β1)gt

1− β1
(29)

ηt =
β2ηt−1 + (1− β2)g

2
t

1− β2
(30)

gt = ∇θft(θt−1) (31)

where ε is a constant added to the denominator to improve
numerical stability, γ is the learning rate, I is the current
training iteration number, lt is the current visit length,
Imax is the pre-defined maximum iteration number, and
μt, ηt is the parameter of the first moment and the second
moment of Adam, β1, β2 is the coefficient of the moment,
the f(θ) is the objective function, and θ are parameters
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TABLE I
DATA STATISTICS

waiting to update, ∇(·) is the derivative operation. The
adaptive curriculum manager is banded with the parameter
update. Eq (28) is the critical step of the optimizer of the
objective. We use the current iteration number and the
current patient visit length to select the learning difficulty
automatically.

B. Inference

The SHAPE is trained end-to-end, and in the inference phase,
the safe drug combination recommendation is generated from
the sigmoid output ŷ(t), where we fix the threshold value as
0.5 to predict the label set. Then, the final predicted medication
combinations correspond to the following:

Ŷ (t) =
{
ŷ
(t)
i |ŷ(t)i > 0.5, 1 ≤ i ≤ |M|

}
(32)

V. EXPERIMENTS

In this section, we introduce the experiment details and con-
duct evaluation experiments to demonstrate the effectiveness of
our SHAPE model.1

A. Dataset

We use the EHR data from the Medical Information Mart for
Intensive Care (MIMIC-III).2 It contains 46,520 patients and
58,976 hospital admissions from 2001 to 2012. We conduct
experiments on a benchmark released by COGNet [27], which is
based on the MIMIC-III dataset for a fair comparison. Following
the COGNet, we selected Top-40 severity DDI types from
TWOSIDES [43], and we converted the drug code into ATC
Third Level codes3 to align with the DDI graph nodes. Finally,
we followed the setting of COGNet and divided the dataset into
training, validation, and test sets by the ratio of 4 : 1 : 1. The
statistics of the post-processed data are reported in Table I.

B. Metrics

We use three efficacy metrics: Jaccard, F1, and Precision-
Recall Area Under Curve (PRAUC) combinations to evaluate
the recommendation efficacy. Additionally, we also showed the
DDI rate, and the number of predicted medications following
the previous works [26], [27].

1[Online]. Available: https://github.com/sherry6247/SHAPE
2[Online]. Available: https://mimic.physionet.org/
3[Online]. Available: https://www.whocc.no/atc/structure_and_principles/

The Jaccard for the patient is calculated as below:

Jaccard =
1

T

T∑
t=1

|M t ∩ Ŷ (t)|
|M t ∪ Ŷ (t)| (33)

where the M (t) is the ground-truth medication set sequence at
t−th visit and the Ŷ (t) is the predicted medication combinations.

The F1 of the patient is calculated as follows:

F1 =
1

T

T∑
t=1

2× Pt ∗Rt

Pt +Rt
(34)

Pi =
|M i ∩ Ŷ (i)|

|Ŷ (i)| (35)

Ri =
|M i ∩ Ŷ (i)|

|M i| (36)

The PRAUC is calculated with the ground truth code’s predicted
probability of each medication code.

PRAUC =
1

T

T∑
t=1

|M|∑
k=1

P (k)t(R(k)t −R(k − 1)t) (37)

where P (k)t, R(k)t are the precision and recall at the cut-off
k−th threshold in the ordered retrieval list.

DDI rate aims to measure the interaction between the rec-
ommended medication combinations, which is calculated as
follows:

DDI =
1

T

T∑
t=1

∑|Ŷ (t)|
i=1

∑|Ŷ (t)|
j=i+1 1{Ad[Ŷ

(t)
i , Ŷ

(t)
j ] = 1}∑|Ŷ (t)|

i=1

∑|Ŷ (t)|
j=i+1 1

(38)

where Ad is the known knowledge of the DDI matrix. Ŷ (t)
i

denoted the i−th recommended medication and 1{·} means to
return 1 when the {·} is true, otherwise, return 0.

C. Baseline

We compare the SHAPE model with the following meth-
ods from different perspectives: conventional machine learning
method, such as Logistic Regression(LR). Instance-based meth-
ods: LEAP [20], 4SDrug [21]. Longitudinal-based methods:
RETAIN [22], DMNC [23], GAMENet [24], MICRON [25],
SafeDrug [26], COGNet [27]. Specifically, LEAP [20] uses
an attention mechanism to encode the diagnosis sequence step
by step. 4SDrug [21] designs an attention-based method to
augment the symptom representation and leverages the DDI
graph to generate the current drug sequence. RETAIN [22]
employs the attention gate mechanism to model the patient
longitudinal information. DMNC [23] proposes a memory net-
work to capture more interaction in the patient EHR record.
GAMNet [24] combines the RNN and graph neural network to
recommend medication combinations. MICRON [25] leverages
a residual-based network to update the patient representation
according to the new feature change. SafeDrug [26] utilizes
drugs’ molecule structures in the medication recommendation.
COGNet [27] proposes a conditional generation model to copy
or predict drugs according to the patient representation.

https://github.com/sherry6247/SHAPE
https://mimic.physionet.org/
https://www.whocc.no/atc/structure_and_principles/
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TABLE II
PERFORMANCE COMPARISON ON THE MIMIC-III DATASET

D. Parameter Setting

Here, we list the implementation details of SHAPE. We set
the hidden dimension as 128 and use the Adam optimizer [42]
with an initial learning rate 1× 10−3 for 50 epochs. We fixed the
random seed as 2023 to ensure the reproducibility of the model.
Our model is implemented by Pytorch 1.7.1 based on Python
3.8.13 and training on two GeForce RTX 3090 GPUs, and an
early-stopping mechanism was utilized. For a fair comparison,
in the testing stage, we follow the previous work CONGNet [27],
which random sample 80% data from test data for a round of
evaluation. We repeat this process 10 times and calculate the
mean and standard deviation as the final result we reported.

E. Result Analysis

As shown in Table II , our proposed model SHAPE outper-
forms all baselines with the higher Jaccard, F1, and AUPRC and
increased by nearly 2% compared to the previous best model.
The conventional LR and the Instance-based methods are poor
as they only consider the patient’s health condition at the current
visit. The performance of RETAIN and DMNC are comparable
because both utilize the RNN architecture to capture the longitu-
dinal information. The GAMENet introduces an additional DDI
graph and fused it with the EHR co-occurrence graph, resulting
in further performance improvement. SafeDrug leverages the
drugs’ molecule structures to improve the performance of med-
ication recommendations. Unlike most longitudinal algorithms,
which focus on the historical record, the MICRON proposes
using the residual network to capture changes in medications.
The COGNet proposes the copy or prediction mechanism to
generate the medication sequence since the statistics show that
most medication codes have been recommended in historical
EHR records. However, it fails to consider the short visit, which
may not be enough historical reference, especially for the newly
and secondly admission patients.

Compared with the baseline methods, our SHAPE model
achieves state-of-the-art performance. On the one hand, it de-
signs an intra-visit set encoder to collect the most informative
medical events of each patient automatically. On the other hand,
we develop an inter-visit longitudinal encoder to capture the
longitudinal pattern, which inherits the merit of RNN and the
attention mechanism. Besides, our adaptive curriculum manager
assigns the difficulty of each sample based on the visit length
accordingly. Hence, our SHAPE performance is better than the
other methods.

We also noticed in Table II that the 4SDrug achieves the
lowest and most charming DDI rate of predicted medication
combinations. However, when considering the results shown
in Fig. 4, the 4SDrug method achieves the lowest DDI rate,
which is likely due to the lower count of predicted medication
codes compared to other methods. Our observations indicate
that the DDI rate tends to increase with the number of predicted
medications. This lower DDI rate phenomenon also appears in
the MICRON model since there are few predicted medications.

Furthermore, we noticed that the MIMIC-III dataset has an
average DDI rate of 0.0875 itself, which means there is a
large number of DDI phenomena in real-world practice. Based
on this fact, our SHAPE also achieves a lower DDI rate and
higher accuracy of medication recommendations, indicating the
effectiveness of our proposed method.

To further validate that our SHAPE model can better model
the short visit and even the new visit problem and recommend
medication effectively, we investigate the performance of vari-
ous visits with different models. As shown in the right picture of
Fig. 1, there are severe long-tail phenomena in the MIMIC-III
dataset, and most patients have less than five times admission
records. We take patients’ first five visit records in the test set
for visualization. We compared SHAPE with the COGNet and
4SDrug since (1) the COGNet achieves the best performance
of the existing methods, and (2) the 4SDrug method uses the
set-orient method to learn the code-level representation and
uses the DDI loss to control the output predicted. As shown
in Fig. 4, our SHAPE model is superior to the COGNet on the
three metrics (i.e., Jaccard, F1, and PRAUC). Especially, our
SHAPE achieves higher performance in the short visit length
and shows an increasing trend. These results may directly show
the power of SHAPE to solve the problem shown in Fig. 1,
in which the short visit records are the critical samples. The
higher accuracy of these samples is helpful for most situations
in real-world clinical practices. On the contrary, the 4SDrug is
always under the COGNet and SHAPE. The reason may be that
the 4SDrug is an instance-based method that ignores temporal
longitudinal information.

VI. DISCUSSION

Upon analyzing the results in Table II, we can conclude
that our proposed model SHAPE achieved the best perfor-
mance compared to the LR and Instance-base and Longitudinal-
base methods. The success of SHAPE is ascribed to the three
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Fig. 4. Performance of different visit lengths with the various models.

TABLE III
ABLATION STUDY FOR DIFFERENT SHAPE MODULES ON MIMIC-III DATASET

modules we proposed (i.e., the Intra-visit Set Encoder (ISE),
the Inter-visit Longitudinal Encoder (ILE), and the Adaptive
Curriculum Learning Module (ACLM)), and it achieved a lower
DDI rate with our proposed combined loss function. To verify
the effectiveness of each module we proposed, we designed the
ablation experiments, SHAPEw/oISE : which remove the intra-
visit set encoder and summarize the code-level to visit-level rep-
resentation directly. SHAPEw/oILE : which uses the recurrent
neural network to replace the inter-visit longitudinal encoder
for learning the longitudinal information. SHAPEw/oACLM :
which means removing the step of (28) and using the basic
Adam optimizer to optimize the SHAPE. SHAPEw/oDDIloss:
which only uses the multi-label classification loss function as
the objective to train the model. We also compared the self-
attention (SA) to investigate the effectiveness of our proposed
compact intra-visit set encoder, SHAPEwSA: which replaces the
set encode as self-attention.

Table III shows the results for the different variants of SHAPE.
As expected, when randomly removing the three modules we
proposed. The performance brought a significant deterioration
to the complete SHAPE model. The results of the DDI rate of
SHAPEw/oDDIloss illustrate the effectiveness of the combina-
tion loss function. Overall, the SHAPE outperforms all variant
models, which means each component is integral to SHAPE.
Compared with the SHAPE, the SHAPEwSA drops performance
on total metrics, demonstrating that a more compacted encoder
is more suitable to model the complex medical event code
sequence.

Moreover, the performance drop of SHAPEw/oACLM can
be observed in Table III, indicating that it is important to consider

Fig. 5. Loss comparison on SHAPE and SHAPEw/oACLM regarding
different numbers of train epochs.

the visit length as the guidance to assign the complex coefficient
in the model of each patient. To explore the impact of the
ACLM module, we conducted experiments to visualize the loss
trajectory between SHAPE and SHAPEw/oACLM . As shown
in Fig. 5, it can be seen that compared to SHAPEw/oACLM ,
SHAPE has a significant decrease in loss and converges quickly.
This demonstrates the vital importance of the ACLM module, as
it can automatically assign difficulty coefficients to each sample
and learn more suitable parameters for various visit records.

Furthermore, to achieve a satisfactory trade-off for the DDI
rate phenomenon in the medication combinations generated by
SHAPE, we explore the hyperparameter α in (26). The details
are also shown in the second half of Table III, according to the
results of Table III, we can conclude that: (1) the DDI rate of
predicted medication combinations is gradually increasing with
the decline of αddi. (2) before the α > 0.05, the performance of
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TABLE IV
EXAMPLE RECOMMENDED MEDICATIONS FOR A GIVEN PATIENT HEALTH CONDITION ON MIMIC-III

Fig. 6. Visualization DDI of the case study. Case 1 is a new admission patient. Case 2 is a secondary admission patient. In a chessboard, the
red square corresponds to the DDI in the ground truth; the green point corresponds there are not appear DDI in the ground truth; the blue circle
corresponds to the DDI in the predicted medications with COGNet, the inverted yellow triangle corresponds to the DDI predicted medications with
4SDrug. The purple cross corresponds to the DDI in the predicted medications with SHAPE. Best viewed in color.

other metrics is suppressed, which indicates the DDI rate and the
accuracy performance of the predicted medication combination
almost linearly decreases with the penalty weight. However,
when the α < 0.05, the performance of SHAPE fluctuated.
Combined with the previously mentioned that the MIMI-III
dataset has a 0.0875 DDI rate itself, which means not the
lowest DDI rate is the superior optimal selection of clinical
practice.

To intuitively demonstrate the advantages of SHAPE over the
two baseline models, we analyze some examples to show the
predicted results. We choose the short or new visit patients to
demonstrate the model effect on harder predicted cases. Due
to space constraints, we use the International Classification of

Disease (ICD) code to represent the diagnosis and procedure
information and the ATC code to represent the medications.
As shown in Table IV, case 1 is a new admission patient,
the doctor prescribed ground truth medication based on the
diagnosis and procedure information of the patient’s current
visit. Case 2 is a secondary admission patient, and we list the
second record in Case 2. In Case 2, the physician combines the
current health condition and the patient’s historical record to
prescribe medication. Overall, the SHAPE performed the best
with 14 correct and 19 correct medications in two cases and
achieved the lowest miss or error in the two cases. Furthermore,
we noticed that in new visit Case 1, the instance-based method
4SDrug also achieves comparable performance with COGNet,
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probably because of the instance-based approach against the
single visit problem.

As shown in Fig. 6, we visualize the DDI status in two cases of
each model, where the symmetric matrix shows the drug-drug
relationship of the combination of medications. The point of
GTnormal means there is no DDI in ground truth medication
combinations, and GTddi means there probably is DDI in the
ground truth medication combinations. The empty rows and
columns mean these codes do not appear in the ground truth
medications. We noticed in Case 1 our SHAPE only generates
two pairs of medication which maybe suffers the drug-drug
interaction, on the contrary, the 4SDrug and COGNet generate
five pairs (i.e., [A01 A, R03A], [A06 A, R01A], [N02 A, B01A],
[B01 A, N02A], [B01 A, R01A]) and eight pairs (i.e., [A01 A,
R03A], [A06 A, R01A], [C07 A, A12B], [C07 A, R01A],
[A12B, C07A], [N02 A, B01A], [B01 A, N02A], [B01 A,
R01A]). In the DDI of Case 2, we find that the DDI phenomenon
in real-life scenarios exceeds ten pairs of medications. Our
SHAPE simultaneously hits most situations similar to the ground
truth medication prescribed by doctors, which hints that SHAPE
can provide a safer way to recommend medication combinations.

There are also several limitations of the current study. Firstly,
we only used diagnosis and procedure information for the side
information to infer the medication and ignored others, such
as vital signs and laboratory test records. Secondly, we only
evaluate the SHAPE model on a public dataset, which also limits
the generalizability of the model.

VII. CONCLUSION

In this article, we proposed a sample adaptive hierarchical
medication prediction network, named SHAPE, to better learn
the accurate representation of the patient. Concretely, we first
present an intra-visit set encoder to capture medical events
relationship from the code-level perspective, which is usually
ignored in most current works. Then, we developed an inter-
visit longitudinal encoder to learn the visit-level longitudinal
representation, which inherits the merits between attention and
the RNN. Additionally, we designed an adaptive curriculum
learning module that references patients’ personalities to au-
tomatically assign each patient’s difficulty for improving the
performance of medication recommendations. Experiment re-
sults on the public benchmark dataset demonstrate that SHAPE
outperforms existing medication recommendation algorithms by
a large margin. We also investigate the performance of short
visits and new visit samples, which shows that the SHAPE
can effectively figure out the medication recommendation with
the short admission of patients. Further ablation study results
also suggest the effectiveness of each module of our proposed
SHAPE.
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