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Abstract—Large AI models, or foundation models, are
models recently emerging with massive scales both
parameter-wise and data-wise, the magnitudes of which
can reach beyond billions. Once pretrained, large AI mod-
els demonstrate impressive performance in various down-
stream tasks. A prime example is ChatGPT, whose capa-
bility has compelled people’s imagination about the far-
reaching influence that large AI models can have and
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their potential to transform different domains of our lives.
In health informatics, the advent of large AI models has
brought new paradigms for the design of methodologies.
The scale of multi-modal data in the biomedical and health
domain has been ever-expanding especially since the com-
munity embraced the era of deep learning, which provides
the ground to develop, validate, and advance large AI mod-
els for breakthroughs in health-related areas. This article
presents a comprehensive review of large AI models, from
background to their applications. We identify seven key
sectors in which large AI models are applicable and might
have substantial influence, including: 1) bioinformatics; 2)
medical diagnosis; 3) medical imaging; 4) medical informat-
ics; 5) medical education; 6) public health; and 7) medical
robotics. We examine their challenges, followed by a crit-
ical discussion about potential future directions and pit-
falls of large AI models in transforming the field of health
informatics.

Index Terms—Artificial intelligence, bioinformatics,
biomedicine, deep learning, foundation model, health
informatics, healthcare, medical imaging.

I. INTRODUCTION

THE introduction of ChatGPT [1] has triggered a new
wave of development and deployment of Large AI Models

(LAMs) recently. As shown in Fig. 1, ChatGPT and the phe-
nomenal Segment Anything Model (SAM) [2] have sparked
active research in medical and health sectors since their initial
launch. Although groundbreaking, the AI community has in
fact started creating LAMs much earlier, and it was the seminal
work introducing the Transformer model [3] back in 2017 that
accelerated the creation of LAMs.

The recent advances in data science and AI algorithms have
endowed LAMs with strengthened generative and reasoning
capabilities, as well as generalist intelligence across multiple
tasks with impressive zero- and few-shot performance, signifi-
cantly distinguishing them from early deep models. For example,
when asked for medical advice, ChatGPT, based on GPT-4 [4],
demonstrates the capability of recalling prior conversation and
being able to contextualize the user’s past medical history before
answering, showing a new level of intelligence way beyond that
of a simple symptom checker [5].

One notable bottleneck of developing supervised medical and
clinical AI models is that they require annotated data at scale for
training a well-functioning model. However, such annotations
have to be conducted by domain experts, which is often expen-
sive and time-consuming. This causes the curation of large-scale

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4166-3428
https://orcid.org/0000-0001-6369-2663
https://orcid.org/0000-0001-5633-1739
https://orcid.org/0000-0002-2209-0348
https://orcid.org/0000-0001-6407-4912
https://orcid.org/0000-0002-0358-6567
https://orcid.org/0000-0001-9361-4340
https://orcid.org/0000-0001-9405-519X
https://orcid.org/0000-0002-4809-0514
https://orcid.org/0000-0002-5080-108X
mailto:jianing.qiu17@imperial.ac.uk
mailto:lin.3.li@kcl.ac.uk
mailto:jksun@stanford.edu
mailto:jiachuan.peng@seh.ox.ac.uk
mailto:jiachuan.peng@seh.ox.ac.uk
mailto:peilunshi@cuhk.edu.hk
mailto:wyuan@cuhk.edu.hk
mailto:r.zhang@prhk.ltd
mailto:dongyz@connect.hku.hk
mailto:k.lam@imperial.ac.uk
mailto:po.lo15@imperial.ac.uk
mailto:b.xiao@imperial.ac.uk
mailto:wningli@vip.163.com
mailto:xudong@missouri.edu
mailto:benny.lo@imperial.ac.uk


QIU et al.: LARGE AI MODELS IN HEALTH INFORMATICS 6075

Fig. 1. Number of publications related to ChatGPT and SAM in med-
ical and health areas. Statistics were queried from Google Scholar
with the keywords “Medical ChatGPT” or “Medical Segment Anything”,
and the last entry was 31-th Aug. 2023. From April to August, each
month, there were over 200 publications about ChatGPT in medicine
and healthcare.

medical and clinical data with high-quality annotations to be
challenging. However, this may no longer be a bottleneck for
LAMs, as they can leverage self-supervision and reinforcement
learning in training, relieving the annotation burden and work-
load of curating large-scale annotated datasets [6]. With the
ever-increasing proliferation of medical Internet of things such
as pervasive wearable sensors, medical and clinical history such
as electronic health records (EHRs), prevalent medical imaging
for diagnosis such as computed-tomography (CT) scans, the
growing genomic sequence discovery, and more, the abundance
of biomedical, clinical, and health data fosters the development
of the next generation of AI models in the field, which are
expected to have a large capacity for modeling the complexity
and magnitude of health-related data, and generalize to multiple
unseen scenarios to actively assist and engage in clinical and
medical decision-making.

Despite the homogeneity of the model architecture (current
LAMs are primarily based on Transformer [3]), LAMs inher-
ently are strong learners of heterogeneous data due to their large
capacity, unified input modeling of different modalities, and
improved multi-modal learning techniques. Multi-modality is
common in biomedical and health settings, and the multi-modal
nature of health data provides the natural and promising ground
for developing and evaluating LAMs.

The LAMs that this article discusses are mainly foundation
models [7]. However, this article also provides a retrospective
of the recent LAMs that are not necessarily considered foun-
dational at their current stage, but are seminal in advancing
the future development of LAMs in the fields of biomedicine
and health informatics. Fig. 2 summarizes the key features of
LAMs, and highlights the paradigm shift it is introducing, i.e.,
1) large-scale model size; 2) large-scale training/pre-training;
and 3) large generalization.

Albeit inspirational, LAMs still face challenges and limita-
tions, and the rapid rise of LAMs brings new opportunities
as well as potential pitfalls. This article aims to provide a
comprehensive review of the recent developments of LAMs,
with a particular focus on their impacts on the biomedical and
health informatics communities. The remainder of this article

is organized as follows: Section II describes the background of
LAMs in general domains, such as natural language processing
(NLP) and computer vision (CV); Section III discusses current
progress and possible applications of LAMs in key sectors of
health informatics; Section IV discusses challenges, limitations
and risks of LAMs; Section V points out some potential fu-
ture directions of advancing LAMs in health informatics, and
Section VI concludes.

As this field progresses very rapidly, and also due to the page
limit, there are a lot of works that this paper cannot cover. It is our
hope that the community can be updated with the latest advances,
so we refer readers to our website1 for the latest progress about
LAMs.

II. BACKGROUND OF LARGE AI MODELS

The burgeoning AI community has devoted much effort to
developing large AI models (LAMs) in recent years by lever-
aging the massive influx of data and computational resources.
Based on the pre-training data modality, this article categorizes
the current LAMs into three types and defines them as follows:

1) Large Language Model (LLM): LLMs are pre-trained
on language data and applied to language downstream
tasks. Language in different settings can have different
interpretations, e.g., protein is the language of life, and
code is the language of computers.

2) Large Vision Model (LVM): LVMs are pre-trained on
vision data and applied to vision downstream tasks.

3) Large Multi-modal Model (LMM): LMMs are pre-trained
on multi-modal data, e.g., language and vision data, and
applied to various single- or multi-modal downstream
tasks.

This section provides an overview of the background of these
three types of LAMs in general domains.

A. Large Language Models

The proposal of the Transformer architecture [3] heralds the
start of developing large language models (LLMs) in the field
of NLP. Since 2018, following the birth of GPT (Generative
Pre-trained Transformer) [8] and BERT (Bidirectional Encoder
Representations from Transformers) [9], the development of
LLMs has progressed rapidly.

Broadly speaking, the recent LLMs [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], have the following
three distinct characteristics: 1) parameter-wise, the number of
learnable parameters of an LLM can be easily scaled up to
billions; 2) data-wise, a large volume of unlabelled data are
used to pre-train an LLM, and the amount can often reach
millions or billions if not more; 3) paradigm-wise, LLMs are first
pre-trained often with weakly- or self-supervised learning (e.g.,
masked language modeling [9] and next token prediction [4]),
and then fine-tuned or adapted to various downstream tasks such
as question answering and dialogue in which they are able to
demonstrate impressive performance.

Recent advances reveal that LLMs are impressive zero-shot,
one-shot, and few-shot learners. They are able to extract, summa-
rize, translate, and generate textual information with only a few

1[Online]. Available: https://github.com/Jianing-Qiu/Awesome-Healthcare-
Foundation-Models
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Fig. 2. Key features of large AI models lie in the following four aspects: 1) increased size (e.g., for large language models (LLMs), the number
of parameters is often billions); 2) trained with large-scale data (e.g., for LLMs, the data can contain trillions of tokens; and for large vision models
(LVMs), the data can contain billions of images); 3) able to process data of multiple modalities; and 4) can perform well across multiple downstream
tasks, especially on zero-, one-, and few-shot tasks.

or even no prompt/fine-tuning samples [4]. Furthermore, LLMs
manifest impressive reasoning capability, and this capability
can be further strengthened with prompt engineering techniques
such as Chain-of-Thought prompting [22].

There was an upsurge in the number of new LLMs from
2022 onwards. Despite the general consensus that scaling up the
number of parameters and the amount of data will lead to im-
proved performance, which leads to a dominant trend of develop-
ing LLMs often with billions of parameters (e.g., LLMs such as
PaLM [13] have already contained 540 billion parameters) and
even trillions of data tokens (e.g., LLaMa 2 was pre-trained with
2 trillion tokens [11], and the training data of RETRO [23] had
over 5 trillion tokens), there is currently no concerted agreement
within the community that if this continuous growth of model
and data size is optimal [10], [14], and there is also lacking a
verified universal scaling law.

To balance the data annotation cost and efficacy, as well
as to train an LLM that can better align with human intent,
researchers have commonly used reinforcement learning from
human feedback (RLHF) [24] to develop LLMs that can exhibit
desired behaviors. The core idea of RLHF is to use human
preference datasets to train a Reward Model (RM), which can
predict the reward function and be optimized by RL algorithms
(e.g., Proximal Policy Optimization (PPO) [25]). The framework
of RLHF has attracted much attention and become a key com-
ponent of many LLMs, such as InstructGPT [19], Sparrow [26],
and ChatGPT [1]. Recently, Susano Pinto et al. [27] have also
investigated this reward optimization in vision tasks, which

can possibly advance the development of future LVMs using
RLHF.

B. Large Vision Models

In computer vision, it has been a common practice for years to
first pre-train a model on a large-scale dataset and then fine-tune
it on the dataset of interest (usually smaller than the one for
pre-training) for improved generalization [28]. The fundamental
changes driving this evolution of large models lie in the scale
of pre-training datasets and models, and the pre-training
methods. ImageNet-1 K (1.28 M images) [29] and -21 K (14 M
images) [30] used to be canonical datasets for visual pre-training.
ImageNet is manually curated for high-quality labeling, but the
prohibitive cost of curation severely hindered further scaling. To
push the scale beyond ImageNet’s, datasets like JFT (300M [31]
and 3B [32] images) and IG (3.5B [33] and 3.6B [34] images)
were collected from the web with less or no curation. The quality
of annotation is therefore compromised, and the accessibility of
datasets become limited because of copyright issues.

The compromised annotation requires the pre-training
paradigm to shift from supervised learning to weakly-/self-
supervised learning or unsupervised learning. The latter meth-
ods include autoregressive modeling, generative modeling and
contrastive learning. Autoregressive modeling trains the model
to autoregressively predict the next pixel conditioned on the
preceding pixels [35]. Generative modeling trains the model
to reconstruct the entire original image, or some target regions
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within it [36], from its corrupted [37] or masked [38] variants.
Contrastive learning trains the model to discriminate similar
and/or dissimilar data instances [39].

Vision Transformers (ViTs) and Convolutional Neural Net-
works (CNNs) are two major architectural families of LVMs. For
vision transformers, pioneering works ViT [40] and iGPT [35]
transferred the transformer architectures from NLP to CV with
minimal modification, but the resulting architectures incur high
computational complexity, which is quadratic to the image size.
Later, works like TNT [41] and Swin Transformer [42] were
proposed to better adapt transformers to visual data. Recently,
ViT-G/14 [32], SwinV2-G [43] and ViT-22B [44] substantially
scaled the vision transformers up using a bag of training tricks
to achieve state-of-the-art (SOTA) accuracy on various bench-
marks. While ViTs may seem to gain more momentum than
CNNs in developing LVMs, to improve CNNs, the latest works
such as ConvNeXt [45] and InternImage [46] redesigned CNN
architecture with inspirations from ViTs and achieved SOTA
accuracy on ImageNet. This refutes the previous statement that
CNNs are inferior to ViTs. Apart from the above, recent works
like CoAtNet [47] and ConViT [48] merge CNNs and ViTs to
form new hybrid architectures. Note that ViT-22B is the largest
vision model to date, whose scale is significantly larger than
that (1.08B) of the current art of CNNs (InternImage) but is still
much behind that of the contemporary LLMs.

Architecturally speaking, LVMs are largely-scaled-up vari-
ants of their base architectures. How they are scaled up can
significantly impact the final performance. Simply increasing
the depth by repeating layers vertically may be suboptimal [49],
so a line of studies [46], [50], [51] investigate the rules for
effective scaling. Furthermore, scaling the model size up is
usually combined with larger-scale pre-training [49], [52] and
efficient parallelism [53] for improved performance.

LVMs also transform other fundamental computer vision
tasks beyond classification. The latest breakthrough in segmen-
tation task is SAM [2]. SAM is built with a ViT-H image
encoder (632 M), a prompt encoder and a transformer-based
mask decoder that predicts object masks from the output of the
above two encoders. Prompts can be points or bounding boxes
in images or text. SAM demonstrates a remarkable zero-shot
generalization ability to segment unseen objects and images.
Furthermore, to train SAM, a largest segmentation dataset to
date, SA-1B, with over 1B masks is constructed.

C. Large Multi-Modal Models

This section describes large multi-modal models (LMMs).
While the primary focus is on one type of LMMs: large vision-
language models (LVLMs), multi-modality beyond vision and
language is also summarized in the end.

Training LVLMs like CLIP [54] requires more than hundreds
of millions of image-text pairs. Such large amount of data was of-
ten closed source [54], [55], [56]. Until recently, LAION-5B [57]
was created with 5.85B data samples, matching the size of the
largest private dataset while being available to the public.

LVLMs usually adopt a dual-stream architecture: input text
and image are processed separately by their respective encoders
to extract features. For representation learning, the features from
different modalities are then aligned through contrastive learn-
ing [54], [55], [56] or fused into a unified representation through
another encoder on the top of all extracted features [58], [59],
[60], [61], [62]. Typically, the entire model, including unimodal

encoder and multi-modal encoder if have, is pre-trained on the
aforementioned large-scale image-text datasets, and fine-tuned
on the downstream tasks or to carry out zero-shot tasks with-
out fine-tuning. The pre-training objectives can be multi-modal
tasks only or with unimodal tasks (see Section II-B). Common
multi-modal pre-training tasks contain image-text contrastive
learning [54], [55], [56], image-text matching [58], [61], [63],
autoregressive modeling [59], [62], masked modeling [58],
image-grounded text generation [61], [63], etc. Recent studies
suggest that scaling the unimodal encoders up [60], [64] and
pre-training with multiple objectives across uni- and multi-
modalities [61], [63] can substantially benefit multi-modal rep-
resentation learning.

Recently, LVLMs made a major breakthrough in text-to-
image generation. There are generally two classes of methods for
such a task: autoregressive model [65], [66], [67] and diffusion
model [67], [68], [69], [70]. Autoregressive model, like intro-
duced in Section II-B, first concatenates the tokens (returned
by some encoders) of text and images together and then learns
a model to predict the next item in the sequence. In contrast,
diffusion model first perturbs an image with random noise
progressively until the image becomes complete noise (forward
diffusion process) and then learns a model to gradually denoise
the completely noisy image to restore the original image (reverse
diffusion process) [71]. Text description is first encoded by a
separate encoder and then integrated into the reverse diffusion
process as the input to the model so that the image generation can
be conditioned on the text prompt. It is common to reuse those
pre-defined LLM and LVM architectures and/or their pre-trained
parameters as the aforementioned encoders. The scale of these
encoders and the generator can significantly impact the quality of
generation and the ability of language understanding [66], [70].

The paradigm of bridging language and vision modalities
can be beyond learning, e.g., using LLM to instruct other
LVMs to perform vision-language tasks [72]. Beyond vision and
language, recent development in LMMs seeks to unify more
modalities under one single framework, e.g., ImageBind [73]
combines six whereas Meta-Transformer [74] unifies twelve
modalities.

III. APPLICATIONS OF LARGE AI MODELS IN HEALTH

INFORMATICS

In this section, we identify seven key sectors in which LAMs
will have substantial influence and bring a new paradigm for
tackling the problems and challenges in health informatics. The
seven key sectors include 1) bioinformatics; 2) medical diag-
nosis; 3) medical imaging; 4) medical informatics; 5) medical
education; 6) public health; and 7) medical robotics. Table I
compares current LAMs with previous SOTA methods in these
seven sectors.

A. Bioinformatics

Molecular biology studies the roles of biological macro-
molecules (e.g., DNA, RNA, protein) in life processes and
describes various life activities and phenomena including the
structure, function, and synthesis of molecules. Although many
experimental attempts have been made on this topic over
decades [75], [76], [77], they are still of high cost, long ex-
periment cycle, and high production difficulty. For example, the
number of experimentally determined protein structures stored
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TABLE I
COMPARISON BETWEEN STATE-OF-THE-ART LAMS (SECOND ROW) AND PRIOR ARTS (FIRST ROW) IN TYPICAL TASKS OF SEVEN BIOMEDICAL AND

HEALTH SECTORS

in the protein data bank (PDB) hardly rivals the number of pro-
tein sequences that have been generated. Efficient and accurate
computational methods are therefore needed and can be used
to accelerate the protein structure determination process. Due
to the huge number of parameters and learning capacity, LAMs
endow us with prospects to approach such a Herculean task.
Especially, LLMs’ outstanding representation learning ability
has been employed to implicitly model the biological properties
hidden in large-scale unlabeled data including RNA and protein
sequences.

When it comes to the field of protein, starting from amino
acid sequences, we can analyze the spatial structure of proteins
and furthermore understand their functions, and mutual interac-
tions. AlphaFold2 [78] pioneered leveraging the attention-based
Transformer model [3] to predict protein structures. Specifically,
they treated structure prediction as a 3D graph inference prob-
lem, where the network’s inputs are pairwise features between

residues, available templates, and multi-sequence alignment
(MSA) embeddings. Especially, embeddings extracted from
MSA can infer the evolutionary information between aligned
sequences. Evoformer and structure modules were proposed to
update the input representation and predict the final 3D struc-
ture, the whole process of which was recycled several times.
Meanwhile, despite being trained on single-protein chains,
AlphaFold2 exhibits the ability to predict multimers. To fur-
ther enable multimeric inputs for training, DeepMind proposed
AlphaFold-Multimer [79], achieving impressive performance,
especially in heteromeric protein complexes structure predic-
tion. Specifically, positional encoding was improved to encode
chains, and multi-chain MSAs were paired based on species
annotations and target sequence similarity.

In spite of the groundbreaking endeavors aforementioned
works have contributed, to achieving optimal prediction, they
still heavily rely on MSAs and templates searched from
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genetic and structure databases, which is time-consuming. Anal-
ogous to mining semantic information in natural language,
researchers managed to explore co-evolution information in
protein sequences in a self-supervised manner by employing
large-scale protein language models (PLMs), which learn the
global relation and long-range dependencies of unaligned and
unlabelled protein sequences. ProGen (1.2B) [80] utilized a
conditional language model to provide controllable generation
of protein sequences. By inputting desired tags (e.g., function,
organism), ProGen can generate corresponding proteins such
as enzymes with good functional activity. Elnaggar et al. [81]
devised ProtT5-XXL (11B) which was first trained on BFD [82]
and then fine-tuned on UniRef50 [83] to predict the secondary
structure. ESMfold [84] scaled the number of model param-
eters up to 15B and observed a significant prediction im-
provement over AlphaFold2 (0.68 vs 0.38 for TM-score on
CASP14) with considerably faster inference speed when MSAs
and templates are unavailable. Similarly, from only the primary
sequence input, OmegaFold [85] can outperform MSA-based
methods [78], [86], especially when predicting orphan proteins
that are characterized by the paucity of homologous structure.
xTrimoPGLM [87] proposed a unified pre-training strategy
that integrates the protein understanding and generation by
optimizing masked language modelling and general language
modelling concurrently and achieved remarkable performance
over 13 diverse protein tasks with its 100B parameters. For
instance, for GB1 fitness prediction in protein function task, xT-
rimoPGLM outperforms the previous SOTA method: Ankh [88],
with an 11% performance increase. Moreover, for antibody
structure prediction, xTrimoPGLM outperformed AlphaFold2
(TM-score: 0.951) and achieved SOTA performance (TM-score:
0.961) with significantly faster inference speed. We underscore
that in the presence of MSA, although the performance of PLMs
is hardly on par with Alphfold2, PLMs can make predictions
several orders of magnitude faster, which speeds up the process
of related applications such as drug discovery. In addition, be-
cause PLMs implicitly understand the deep information implied
in protein sequences, they are promising to predict mutations in
protein structures and their potential impact to help guide the
design of next-generation vaccines.

In the context of RNA structure prediction, the number of
nonredundant 3D RNA structures stored in PDB is significantly
less than that of protein structures, which hinders the accurate
and generalizable prediction of RNA structure from sequence
information using deep learning. To mitigate the severe un-
availability of labeled RNA data, Chen et al. [89] proposed
the RNA foundation model (RNA-FM), which learns evolution-
ary information implicitly from 23 million unlabeled ncRNA
sequences [90] by recovering masked nucleotide tokens, to
facilitate multiple downstream tasks including RNA secondary
structure prediction and 3D closeness prediction. Especially, for
secondary structure prediction, RNA-FM achieves 3-5% per-
formance increase among three metrics (i.e., Precision, Recall,
and F1-score), compared to UFold [91] which utilizes U-Net as
the backbone. Furthermore, based on RNA-FM, Shen et al. [92]
pioneered predicting 3D RNA structure directly.

Undoubtedly, these models are seminal and have reduced the
time and cost of molecule structure prediction by a large margin.
Thereby, this raises the question of whether LAMs can com-
pletely replace experimental methods such as Cryo-EM [75].
We deem that it still falls short from that point. Specifically,
the advance of LAMs builds upon Big Data and large model

capacity, which means they are still data-driven, and hence
their ability to predict unseen types of data could sometimes be
problematic. For instance, [93] stated that AlphaFold can barely
handle missense mutation on protein structure due to the lack of a
corresponding dataset. Furthermore, how we can assess the qual-
ity of model prediction for unknown protein structures remains
unclear. In turn, these unverified protein structures cannot be
applied to, for example, drug discovery. Therefore, protocols and
metrics need to be established to assess their quality and potential
impacts. There are mutual and complementary benefits between
LAMs and conventional experimental techniques. LAMs can
be re-designed to predict the process of protein folding and
reveal their mutual interactions so as to facilitate experimental
methods. On the other hand, experimental information, such
as some physical properties of molecules, can be leveraged by
LAMs to further improve prediction performance, especially
when dealing with rare data (e.g., orphan protein).

B. Medical Diagnosis

As research has been carried out to improve the safety and
strengthen the factual grounding of LAMs, it is foreseeable
that LAMs will play a significant role in medical diagnosis and
decision-making.

CheXzero [94], a zero-shot chest X-ray classifier, has demon-
strated radiologist-level performance in classifying multiple
pathologies which it never saw in its self-supervised learning
process. Recently, ChatCAD [95], a framework that integrates
multiple diagnostic networks with ChatGPT, demonstrated a po-
tential use case for applying LLMs in computer-aided diagnosis
(CAD) for medical images. By stratifying the decision-making
process with specialized medical networks, and followed by an
iteration of prompts based on the outcomes of those networks
as the queries to an LLM for medical recommendations, the
workflow of ChatCAD offers an insight into the integration of
the LLMs that were pre-trained using a massive corpus, with
the upstream specialized diagnostic networks for supporting
medical diagnosis and decision-making. Its follow-up work
ChatCAD+ [96], shows improved quality of generating diag-
nostic reports with the incorporation of a retrieval system. Using
external knowledge and information retrieval can potentially
enable the resulting diagnostics more factually-grounded, and
such a design has also been favoured and implemented in
the ChatDoctor model [97]. By leveraging a linear transfor-
mation layer to align two medical LAMs, XrayGPT [98], a
conversational chest X-ray diagnostic tool, shows decent ac-
curacy in responding to diagnostic summary. While most LLMs
are based on English, researchers have also managed to fine-
tune LLaMa [10], an LLM, with Chinese medical knowledge,
and the resulting model shows improved medical expertise in
Chinese [99].

Apart from chest X-ray diagnostics and medical question
answering, LAMs have also been applied to other diagnostic
scenarios. HeartBEiT [100], a foundation model pre-trained
using 8.5 million electrocardiograms (ECGs), shows that large-
scale ECG pre-training could produce accurate cardiac diagnosis
and improved explainability of the diagnostic outcome, and the
amount of annotated data for downstream fine-tuning could
be reduced. Medical LAMs may also potentially produce a
more reliable forecast of treatment outcomes and the future
development of diseases using their strong reasoning capability.
For example, Li et al. [101] proposed BEHRT, which is able to
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predict the most likely disease of a patient in his/her next visit
by learning from a large archive of EHRs. Rasmy et al. [102]
proposed Med-BERT, which is able to predict the heart failure
of diabetic patients.

With the ubiquity of internet, medical LAMs can also offer
remote diagnosis and medical consultation for people at home,
providing people in need with more flexibility. We also envision
that future diagnosis of complex diseases may also be conducted
or assisted by a panel of clinical LAMs.

C. Medical Imaging

The adoption of medical imaging and vision techniques has
vastly influenced the process of diagnosis and treatment of a
patient. The wide use of medical imaging, such as CT and MRI,
has produced a vast amount of multi-modal, multi-source, and
multi-organ medical vision data to accelerate the development
of medical vision LAMs.

The recent success of SAM [2] has drawn much attention
within the medical imaging community. SAM has been exten-
sively examined in medical imaging, especially on its zero-shot
segmentation ability. While research revealed that for certain
medical imaging modalities and targets, the zero-shot perfor-
mance of SAM is impressive (e.g., on endoscopic and der-
moscopic images, as these are essentially RGB images, which
are the same type as that of SAM’s pre-training images), for
imaging modalities that are medicine-specific such as MRI
and OCT, SAM often fails to segment targets in a zero-shot
way [103], mainly because the topology and presentation of
a target in those imaging modalities are much different from
what SAM has seen during pre-training. Nevertheless, after
adaptation and fine-tuning, the medical segmentation accuracy
of SAM can surpass current SOTA with a clear margin [104],
showing the potential of extending versatility of general LVMs
to medical imaging with parameter-efficient adaptation. Apart
from zero-shot segmentation, MedCLIP [105] was proposed,
a contrastive learning framework for decoupled medical im-
ages and text, which demonstrated impressive zero-shot med-
ical image classification accuracy. In particular, it yielded over
80% accuracy in detecting Covid-19 infection in a zero-shot
setting. The recent PLIP model [106], built using image-text
pairs curated from medical Twitter, enables both image-based
and text-based pathology image retrieval, as well as enhanced
zero-shot pathology image classification compared to CLIP [54].

Many medical imaging modalities are 3-dimensional
(3D), and thus developing 3D medical LVMs are crucial.
Med3D [107], a heterogeneous 3D framework that enables
pre-training on multi-domain medical vision datasets, shows
strong generalization capabilities in downstream tasks, such as
lung segmentation and pulmonary nodule classification.

With the success of generative LAMs such as Stable Dif-
fusion [68] in the general domain, which can generate realistic
high-fidelity images with text descriptions, Chambon et al. [108]
recently fine-tuned Stable Diffusion on medical data to generate
synthetic chest X-ray images based on clinical descriptions. The
encouraging generative capability of Stable Diffusion in the
medical domain may inspire more future research on using gen-
erative LAMs to augment medical data that are conventionally
hard to obtain, and expensive to annotate.

Nevertheless, some compromises are also evident in medical
vision LAMs. For example, the currently common practice of
training LVMs and LMMs often limits the size of the medical

images to shorten the training time and reduce the computational
costs. The reduced size inevitably causes information loss, e.g.,
some small lesions that are critical for accurate recognition
might be removed in a compressed downsampled medical im-
age, whereas doctors could examine the original high-resolution
image and spot these early-stage tumors. This may cause perfor-
mance discrepancies between current medical vision LAMs and
well-trained doctors. In addition, although research has shown
that increasing medical LAM size and data size could improve
medical domain performance of the model, e.g., STU-Net [109],
a medical segmentation model with 1.4 billion parameters, the
best practice of model-data scaling is yet to be conclusive in
medical imaging and vision.

D. Medical Informatics

In medical informatics, it has been a topic of long-standing
interest to leverage large-scale medical information and signals
to create AI models that can recognize, summarize, and generate
medical and clinical content.

Over the past few years, with advances in the development
of LLMs [9], [13], [110], and the abundance of EHRs as well
as public medical text outlets such as PubMed [111], [112],
research has been carried out to design and propose Biomedical
LLMs. Since the introduction of BioBERT [113], a seminal
Biomedical LLM which outperformed previous SOTA methods
on various biomedical text mining tasks such as biomedical
named entity recognition, many different Biomedical LLMs that
stem from their general LLM counterparts have been proposed,
including ClinicalBERT [114], BioMegatron [115], BioMe-
dRoBERTa [116], Med-BERT [102], BioELECTRA [117], Pub-
MedBERT [118], BioLinkBERT [119], BioGPT [120], and
Med-PaLM [121].

The recent GatorTron [122] model (8.9 billion parameters)
pre-trained with de-identified clinical text (82 billion words)
revealed that scaling up the size of clinical LLMs leads to
improvements on different medical language tasks, and the
improvements are more substantial for complex ones, such as
medical question answering and inference. Previously, the Pub-
MedBERT work [118] also suggested that pre-training an LLM
with biomedical corpora from scratch can lead to better results
than continually training an LLM that has been pre-trained on the
general-domain corpora. While training large number of param-
eters may seem daunting, parameter-efficient adaptation tech-
niques such as low-rank adaptation (LoRA) [123] have enabled
researchers to efficiently adapt a 13 billion LLaMa model to
produce decent US Medical Licensing Exam (USMLE) answers,
and the performance of a collection of such fine-tuned models,
called MedAlpaca [124] also reveals that increasing model size
and quality of data can improve model’s medical domain exper-
tise. As LLMs start to show emergent abilities [125] with their
size scaled up increasingly, Agrawal et al. [126] revealed that
recent LLMs such as InstructGPT [19] and GPT-3 [110] can well
extract clinical information in a few-shot setting despite being
not explicitly trained for the clinical domain. Med-PaLM [121],
a Biomedical LLM with 540 billion parameters generated by
applying instruction prompt tuning on Flan-PaLM [12] (which
exhibited SOTA accuracy on MultiMedQA [121]), demon-
strated the ability to answer consumer medical questions that are
comparable to the performance of clinicians. Its follow-up work,
Med-PaLM 2 [127], further strengthens medical reasoning, and
as shown in Table I, it has reached an accuracy of 86.5% on
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the MedQA benchmark. As prompt engineering has become a
key technique for investigating and improving LLMs, Liévin
et al. [128] have also applied various prompt engineering on
the GPT-3.5 series such as InstructGPT [19] to understand
their abilities on medical question answering, and their results
suggested that increasing Chain-of-Thoughts (CoTs) [22] per
question can deliver better, more interpretable medical question
responses.

The impressive performance of Biomedical LLMs on medical
language tasks shows their potential to be used to assist clinicians
in processing, interpreting, and analyzing clinical and medical
data more efficiently, and also to vastly reduce the time that clini-
cians have to spend on documenting EHRs. Patel and Lam [129]
recently shed insight on using ChatGPT [1] to generate discharge
summaries, which could potentially relieve doctors from labori-
ous writing and improve their clinical productivity. Biomedical
LLMs can also assist in the writing of prior authorizations for
insurance purposes, accelerating treatment authorizations [130].
On the patient side, the zero-, one-, and few-shot learning
capability of LLMs may enable them to provide personalized
medical assistance based on the medical history of each individ-
ual patient. In addition, LLMs may also find them applicable in
clinical trial matching. Based on candidates’ demographics and
medical history, a Biomedical LLM may effectively generate
eligible matching, which accelerates clinical trial recruitment
and initiation.

E. Medical Education

It is likely that future medical education will also be influenced
by LAMs, as research continues to strengthen their scientific
grounding and creative generation. Many LAMs, such as GPT-
4 [4] and Med PaLM 2 [127], have already passed USMLE with
a score of over 86%, demonstrating sound knowledge spectrum
and reasonable capabilities in bioethics, clinical reasoning, and
medical management.

The generative capability of such LAMs may augment med-
ical student learning and help them gain additional insights
from AI-generated content as recently pointed out in [131]. A
LAM with wide knowledge and social compliance can act as
a companion learning assistant, answering medical questions
promptly and explaining intricate terms and practices in simple
sentences. For example, the recent GPT-4 model [4] can act
as a Socratic tutor, leading a student step-by-step to find the
answers by themselves, which is an important step towards
practical adoption of LAMs in education as they can be steered to
teach/assist students in a desired manner. The OPTICAL model
proposed by Shue et al. [132] recently shows the feasibility
of using LLMs to guide beginners in analyzing bioinformatics
data. The sentence paraphrasing abilities of LLMs [133] such as
ChatGPT may also help students with dyslexia in their learning.
However, concerns about the illegitimate uses of LAMs such
as plagiarism are practical and should raise awareness. A pilot
study conducted by Mitchell et al. [134] proposed a zero-shot
detector named DetectGPT, which is able to distinguish human-
written or LLM-generated text. This attempt may lead to more
research into developing reliable tools for verifying the content
source and potentially countering the side effects of LAMs in
education.

For medical education givers, LAMs can potentially create
novel teaching and exam contents, and diversify the teaching
formats and their presentation. Based on the history of medical

study and outcomes, LAMs may also help design personalized
and precise course materials for students in need. In addition,
LAMs may also help deliver remote medical education, provid-
ing engaging learning experiences and opportunities for students
living in resource-poor areas or from underprivileged families.
LAMs can also serve as a grading and scoring system in medical
education, e.g., grading the surgical skill of a surgeon operating
a surgical robot.

In medical and clinical training such as nurse training, one can
imagine a domain-knowledgeable LAM can act as an assistant
or a trainer to supervise the training. For certain frequent and
tedious routine medical training courses, human trainers tend
to become less productive as training keeps repeating, and the
quality of training delivery also varies among different human
trainers. With a wide knowledge spectrum and responsive inter-
actions, training delivered by a LAM can potentially be more
engaging and productive, and the standard of training can be
maintained as equal and of high quality.

F. Public Health

As the American epidemiologist Larry Brilliant said “out-
breaks are inevitable, but pandemics are optional”, with the
world gradually returning to normal after the Covid-19 pan-
demic, if there is one thing that the world has to reflect on, it is
how we become prepared to prevent the next pandemic.

Based on past public policy and interventions to contain the
spread of infectious diseases and the specific current situation,
LLMs may help epidemiologists and policymakers to draft
targeted public policies and recommend effective interventions.
LLMs and other LAMs are also likely to be used to monitor,
track, forecast, and analyze the progress of new outbreaks.
LAMs have been actively researched for drug discovery, e.g.,
the Pangu Drug model [135], and they can potentially be used
for the design of vaccine and drugs to treat and save people
from new outbreaks. Furthermore, another potential usage of
LAMs, as pointed out in [136], can be in precision triage and
diagnosis, in which they could play a pivotal role as medical
care workforce might be stretched when encountering a new
outbreak. An important aspect of tackling an outbreak/epidemic
is to handle misinformation. The study conducted by Chen
et al. [137] revealed that from 21 January 2020 to 21 March
2020, Twitter produced over 72 million Covid-19-related tweets.
If unverified media information proliferates at scale, it inevitably
causes complications in tackling the outbreak. Although LAMs
could be double-edged swords when it comes to misinformation,
with gradually complete regulations and strengthened factual
grounding of LAMs, they can be used to effectively identify
misinformation and tackle public health infodemic.

Beyond their promising usage in preventing pandemics,
LAMs are also an effective tool for solving other public health
challenges, for example, providing large-scale dietary monitor-
ing and assessment [138], [139] to tackle the growing double
burden of malnutrition [140] in many low- and middle-income
countries, and demystifying and proposing new solutions for
mental illnesses that are common in populations. Researchers
have recently proposed ClimaX [141], a foundation model for
forecasting weather and climate change. With their remark-
able forecasting capability, LAMs like ClimaX and Pangu-
Weather [142] can advance our understanding of climate change
and provide solutions to better address the global health issues
posed by climate change.
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G. Medical Robotics

From surgical robots that allow surgeons to perform preci-
sion minimally invasive surgery, to wearable robots that as-
sist patients with health monitoring and rehabilitation, medical
robotics has seen rapid growth and advances over the past
few decades. LAMs have begun to show exciting prospects in
enhancing medical robotic vision, interaction, and autonomy.

1) Enhance Vision: The integration of LAMs into surgical
robots has the potential to enhance the vision of these systems in
surgery. Endo-FM [143], a foundation model with high precision
for endoscopic video classification, segmentation, and detection,
could be one of these LAMs to provide robotic surgery systems
with enhanced vision. In addition to online vision enhancement,
LAMs can also potentially improve the offline workflow analysis
of robotic surgery, and more accurately and objectively predict
the likelihood of complications and successful outcomes, which
help surgeons better plan and execute surgeries in the future.
Furthermore, with their strong generative capabilities, LAMs
can be used to generate and simulate surgical procedures, al-
lowing surgeons to practice and refine their techniques before
operating on a patient with real surgical robots. Beyond surgical
robots, the perception of many companion and assistive robots
can also be enhanced by LAMs, e.g., enabling a companion
robot to better understand a patient’s emotion through accurate
recognition of facial expressions [144], and enabling an assistive
robot to offer safer, more natural navigation for visually impaired
people [145].

2) Improve Interaction: LAMs may significantly improve the
interactive capabilities of many medical robots, by enabling
them to recognize human emotions, gestures, and speech, and
respond to high-level human language commands. For example,
this will be easier for patients undergoing rehabilitation to com-
municate and engage with their robotic assistants, improving
their overall recovery experience. More intelligent LAMs may
also better understand human intentions and create more human-
like companionship, which could improve the overall quality of
care for the elderly [146]. Recently, SurgicalGPT [147], a visual
question answering model for surgery, has shown great promise
that future robotic surgery could become more interactive be-
tween surgeons and the surgical robots.

3) Increase Autonomy: LAMs have the potential to turn
robotic pipelines from the current engineer in the loop to user
in the loop using high-level language commands [148], which
could enable surgeons with less programming proficiency to
easily adapt robotic manipulations to their target tasks. Studies
have proposed to use a single LAM to conduct diverse robotic
tasks, demonstrating impressive adaptability and generalization
skills [149], [150], [151], [152], [153], [154], [155]. These
advancements can potentially inspire the development of more
autonomous medical robots.

IV. CHALLENGES, LIMITATIONS, AND RISKS

Despite the promising outcome of LAMs, there remain many
challenges and potential risks in developing and deploying
LAMs in biomedical, clinical, and healthcare applications.

1) Data: Most existing public datasets for health informatics
are much smaller (please refer to Fig. 2 and Table II2) than those

2References to the datasets in Table II and methods in Table I can be found
in https://github.com/Jianing-Qiu/Awesome-Healthcare-Foundation-Models.

used in general domains and thus are likely insufficient to unlock
the full potential of LAMs in biomedical and health scenarios.
Building large-scale high-quality medical datasets are particu-
larly challenging because 1) curation requires domain-expertise
to identify data of clinical relevance, and quality assurance is
very important with health data; 2) some data modalities like
MRI require special devices to collect, which is inefficient and
expensive; 3) the collected data may not be allowed to publish
or use for training because of consent, legal and privacy issues.
Furthermore, the training strategy RLHF of some LLMs like
ChatGPT requires even more intense engagement of human
experts.

2) Computation: Training, or even fine-tuning, contempo-
rary LAMs is extremely expensive in terms of time and resource
consumption, which is beyond the budget of most researchers
and organizations [156]. Taking LLaMa as an example, an LLM
with 65B parameters, it took about 21 days on 2048 A100
GPUs to train the model once on a dataset of 1.4 T tokens [10].
Furthermore, even inference can be prohibitively costly due to
the model size, making it impractical for most hospitals to deploy
these LAMs locally using their computing devices at hand.

3) Reliability: The reliability threshold for translation into
clinical practice is significantly higher [157]. Despite the im-
pressive performance, LLMs are still far from reliable [158]
and prone to hallucinate [4], [159], i.e., generating factually-
incorrect yet plausible content which misleads users. In ad-
dition, the unsatisfactory robustness of LAMs impairs their
credibility. LLMs are known to be sensitive to prompts [160].
LLMs as well as LMs for other modalities remain vulnerable
to out-of-distribution and adversarial examples [158], [161].
Improving the robustness of LAMs may require even more
data [162]. Therefore, caution is highly required when using
LAMs in healthcare practice to alleviate the potential danger of
over-reliance. In addition, LAMs, especially LLMs were trained
offline, in many clinical and health scenarios, using up-to-date
information is critical.

4) Privacy: First, LAMs have been reported to have exces-
sive capacity to memorize their training data [163], and more
importantly, it is viable to extract sensitive information in the
memorized data using direct prompts [163], [164]. This was
later mitigated by fine-tuning LAMs to refuse to answer such
prompts [165]. However, Li et al. [165] also show that this
mitigation can be bypassed through tricky prompts called jail-
breaking. Moreover, membership inference attacks [166] could
reveal if a sample is in the training set, e.g., if a patient is in a
cancer dataset. It has been recently demonstrated to work even
on the latest large diffusion models [167].

Second, the information provided by users to query LLM-
integrated applications may be leaked. According to the data
policy of OpenAI [168], they store the data that users provide
to ChatGPT or DALL-E to train their models. Unfortunately, it
has been reported that the stored personal information can be
leaked incidentally by a “chat history” bug [169] or deliberately
by indirect prompt injection attack [170].

5) Fairness: LAMs are data-driven approaches so they could
learn any bias from the training data. Unfortunately, bias widely
exists in the delivery of healthcare [171] and also the data
collected in this process [172], [173], [174]. Machine learning
models trained on such data are reported to mimic human bias
against race [172], gender [173], politics [175], etc. In addition to
these conventional biases, LLMs present language bias as well,
i.e., they perform better in particular languages like English but

https://github.com/Jianing-Qiu/Awesome-Healthcare-Foundation-Models
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worse in others [176] because training data is dominated by a
few languages.

6) Toxicity: Current LAMs, even LLMs explicitly trained
with alignment, do not understand and represent human
ethics [177]. LLMs are reported to produce hate speech [178]
that causes offensive and psychologically harmful content and
even incites violence. Secondly, LAMs may endorse unethical
or harmful views and behaviors [177] and motivate users to
perform. Lastly, LAMs can be used intentionally to facilitate
harmful activities like spreading disinformation and encourag-
ing criminal activities. Although some countermeasures like
filtering are applied, they can be circumvented by prompt in-
jection [176].

7) Transparency: Recently, some impactful LAMs like
ChatGPT and Med-PaLM 2 chose not to disclose the complete
technical details, the pre-trained models, and the used data.
This makes it impossible for others to independently reproduce,
improve upon and audit their methods. This transparency threat
for LAMs can be more serious in healthcare as many medical
data is private and models built upon them are not allowed to be
open sourced.

8) Interpretability: LAMs inherently lack interpretability2
due to their extremely dense hidden layers. Even worse, the
behavior of LAMs can be meaningless [179], [180], hard to
predict [181], [182] and thus mysterious. For example, DALL-E
2 generates the images of physical objects with absurd prompts
(e.g., “Apoploe vesrreaitais” for birds) [179]; the reasoning
ability of LLMs can be improved by simply adding a text of
“Let’s think step by step” to prompts [181]. There has been little
progress towards explaining LAMs. Chain-of-thought prompts

provide one way to reveal the intermediate reasoning steps
behind an output, but it remains unclear whether the generated
description of reasoning reflects the model’s true internal reason-
ing. Alternatively, mechanistic interpretability methods [182]
reverse-engineer the computation of LAMs to illuminate the
model’s internal mechanism of reasoning.

9) Sustainability: Despite many benefits, LAMs, if abused,
will negatively impact the sustainability of our society. LAMs
consume lots of computation resource [10] and energy [183]
and emit tons of carbon [183] in all activities in their lifecycle
(from training to deployment) because of their scale. For exam-
ple, as estimated by [184], training a GPT-3 model consumes
1287 MWh and emits 552 tons of CO2. As the paradigm
moves towards LAMs in healthcare, more and more research
is expected to be conducted based on LAMs, which could be
environmentally unfriendly due to the cost and carbon emission
if right practices [183] are not established.

10) Regulation: Regulation is needed to ensure responsible
LAMs especially when some of the above issues cannot be
technically addressed. Particularly, data collection and usage
should be governed to protect the rights of data owner such
as copyright, privacy and “being forgotten” [185]. The liability
of LAMs’ creators/owners for the possible harm caused by the
model’s output should be clarified. LAMs should be deployed
in critical healthcare services only if regulatory approval is
obtained and standardized safety assessment is passed. Regu-
lation today is much behind the development of technology for
LAMs, even for more general AI. Our webpage lists some major
legislation for reference if readers want to know more about AI
regulation.
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Fig. 3. Future directions of LAMs in health informatics.

V. FUTURE DIRECTIONS

In this section, we discuss some promising directions for
future work to advance LAMs in the field of biomedical and
health informatics, and our discussion below is mainly focused
on two aspects (Fig. 3): capability and responsibility.

A. Capability

The first is to develop new LAMs for health informatics
with better capability. The better capability here refers to either
new abilities (e.g., a versatile medical task solver) or improved
existing abilities (e.g., higher diagnostic accuracy), compared
to the prior paradigm. Interestingly, some emergent new abil-
ities may be unexpected or even unknown to humans [125].
Among numerous approaches to LAMs, some are perceived
by us as most promising. Scaling up the size of dataset and
model are two widely recognized approaches, but how to do
it efficiently is of importance and far from solved. Further-
more, pre-training with varied tasks and modalities has achieved
remarkable progress towards versatility in performing down-
stream tasks. A huge benefit is foreseeable if diverse knowledge
that exists in these varied tasks (e.g., biology, medicine, etc.) and
data modalities (e.g., medical corpora, imaging, physiological
signals, etc.) can be incorporated into a single foundation model
as a world model [186]. This world model boosts capability
by complementing the information missing in an input, e.g.,
offering biomedical knowledge (acquired from other tasks) for
diagnosing a disease when only the symptom data is given as
input. Note that this is exactly how human doctors diagnose in
practice, i.e., they comprehend information from the symptoms
based on their medical knowledge acquired from learning and
clinical practicing, i.e., multiple other tasks and sources.

The second is to reveal the hidden capabilities of existing
pre-trained LAMs. A capability is hidden if it has been already
developed in a pre-trained model but just unknown to users.
Discovering hidden capabilities involves nothing but probing
the model. A typical example is the substantially improved
reasoning ability of LLMs by simply adding a line of “Let’s think
step by step” to prompts [181]. There are still many unknowns
about existing LAMs as they have become increasingly complex
with enormously large sets of parameters. It is unclear whether
the full potential of existing LAMs has been harnessed or not.
Therefore, it is worth investigating if those pre-trained LAMs
possess hidden capabilities about the health informatics tasks of
interest. If so, discovering these hidden capabilities provides

a solution or improvement to the tasks in a nearly cost-free
way as it requires no further large-scale training. Prompt en-
gineering [187] as an emerging field is an effective approach to
discovering hidden capabilities.

B. Responsibility

Responsible LAMs for social good is paramount [188].
We suggest two complementary strategies: development and
deployment, for future work to tackle challenges in LAM re-
liability, fairness, transparency, and beyond. Development strat-
egy focuses on learning responsible LAMs, while deployment
strategy emphasizes using LAMs responsibly.

Technically, responsible LAMs can be developed through two
perspectives: data and algorithms. As LAMs learn bias from
training data, an intuitive countermeasure is thus to mitigate bias
in training data. It can be done by filtering biased data [189],
increasing underrepresented populations’ data, etc. Unfortu-
nately, how to efficiently inspect large-scale datasets remains
challenging. Besides, training data should encompass diverse
distributions to robustify the model against the distribution shifts
in the wild, and human preference to align the model with human
values. Some of them like human preference must be collected
from human activities, while the rest can be also generated by
other algorithms like data augmentation and generative models.
Once we have high-quality data, algorithms like RLHF and
adversarial training can be adopted to exploit these data to
acquire the desired properties for responsible LAMs.

In addition to training LAMs to be responsible, it is also vital
to use LAMs in a responsible way. Efforts should be made to
educate the users, especially those use LAMs for critical health-
care services, about the basics and limitations of LAMs being
used. Human-LAM partnership should also be researched for
the effective, efficient and responsible use of LAMs, including
how to query/instruct LAMs by prompt engineering and as-
sess/adopt the responses from LAMs. Besides, a comprehensive
verification framework [190] covering various desired properties
for LAMs is critical for assessing how irresponsible a LAM
is, which is still lacking. We encourage future work to design
methods to better evaluate, verify and benchmark LAMs. Last,
rules and regulations should be implemented to govern the de-
velopment, deployment and use of LAMs. This is a vital measure
to enforce LAMs for social good and prevent anti-social usage.
Overall, building responsible LAMs calls a closer collaboration
in the future among academia, industry and government.

VI. CONCLUSION

We highlight an ongoing paradigm shift within AI community,
which is fostering large AI models for transforming different
biomedical and health sectors. The new paradigm aims to learn
a versatile foundation model on a large-scale (multi-modal)
dataset covering varied data distributions and learning tasks.
Boundaries between different intelligent tasks, and even be-
tween different data modalities, are being dismantled. With
generalist intelligence and more unknown capabilities activated,
we believe large AI models will augment, instead of replacing,
medical professionals and practitioners in the future. Human-AI
cooperation will become pervasive. In this regard, the develop-
ment of large AI models requires even closer and more intense
collaboration between domain experts, as well as gradually
established regulations.
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