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Decoding Eye Blink and Related EEG Activity
in Realistic Working Environments
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Abstract—Accurately evaluating cognitive load during
work-related tasks in complex real-world environments is
challenging, leading researchers to investigate the use of
eye blinking as a fundamental pacing mechanism for seg-
menting EEG data and understanding the neural mech-
anisms associated with cognitive workload. Yet, little is
known about the temporal dynamics of eye blinks and re-
lated visual processing in relation to the representation
of task-specific information. Therefore, we analyzed EEG
responses from two experiments involving simulated driv-
ing (re-active and pro-active) with three levels of task load
for each, as well as operating a steam engine (active vs.
passive), to decode the temporal dynamics of eye blink
activity and the subsequent neural activity that follows
blinking. As a result, we successfully decoded the binary
representation of difficulty levels for pro-active driving us-
ing multivariate pattern analysis. However, the decoding
level varied for different re-active driving conditions, which
could be attributed to the required level of alertness. Fur-
thermore, our study revealed that it was possible to de-
code both driving types as well as steam engine operat-
ing conditions, with the most significant decoding activ-
ity observed approximately 200 ms after a blink. Addition-
ally, our findings suggest that eye blinks have consider-
able potential for decoding various cognitive states that
may not be discernible through neural activity, particularly
near the peak of the blink. The findings demonstrate the
potential of blink-related measures alongside EEG data to
decode cognitive states during complex tasks, with impli-
cations for improving evaluations of cognitive and behav-
ioral states during tasks, such as driving and operating
machinery.

Index Terms—Decoding, eye blink, multivariate pattern
analysis, EEG, driving, temporal generalization.
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[. INTRODUCTION

HE assessment of cognitive workload is essential in
T stressful working environments like car driving [1], [2],
operating machinery [3], and other applications [4], [S] to
detect dangerous situations. However, methods like individ-
ual questionnaires and qualitative observations are subjective
and discrete in time, necessitating a continuous and objective
estimation of cognitive workload. Therefore, objective quan-
tification of mental processes and states is crucial, and less
intrusive methods like electroencephalography (EEG) or eye
tracking can deliver a real-time and objective estimation of
cognitive workload. EEG is a widely used neuroimaging tech-
nique that measures the electrical activity of the brain, offering
several advantages including superior temporal resolution, non-
invasiveness, affordability, portability, and the ability to capture
activity from critical brain regions [6], [7]. These factors make
EEG an indispensable tool for investigating various cognitive
and neural processes. However, a difficulty associated with EEG
recordings is the requirement for event markers that signify the
timing of noteworthy events. However, adding event markers
based on stimulus presentation can be challenging in natural-
istic settings, where visual inputs to participants continuously
change. Recently, eye blinks have been proposed as valuable
event markers to indicate cognitive load in real-life situations
where a task is performed consistently without interruption [8],
[9], [10], [11]. People generate these blinks spontaneously, and
such blinks can be easily detected with EEG without any extra
devices, offering a non-invasive and straightforward approach
to identifying notable events.

Research exploring the brain activity associated with eye
blinking is essential to authenticate using eye blinks as event
markers. Several studies have demonstrated that spontaneous
eye blinks indicate cognitive load, often when processing intri-
cate visual scenes [3], [8]. After blinking, the brain experiences
an upsurge of visual information when the individuals open
their eyes, leading to visual processing-related brain activity.
However, previous research linking eye blinks to cognitive
load has primarily concentrated on blink features such as eye
movements and blink rate variability [12], [13], [14], with less
emphasis on brain activity associated with eye blinks. To the best
of our knowledge, only a handful of studies have investigated the
neuronal processes connected to eye blink events [3], [8], [15],
and none have yet investigated the neural and blink patterns
involved in decoding cognitive states that precede and follow
eye blinks.
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In recent research, Multivariate Pattern Analysis (MVPA) has
gained attention as a technique for deciphering neural processes
associated with target events in a time-resolved manner. The
MVPA exhibits high sensitivity to subtle changes in neural
activity patterns that are difficult to detect through traditional
univariate approaches [16], [17]. The primary method used to
assess the temporal characteristics of visual information per-
ception is the analysis of event-related potentials (ERPs) [18].
However, the limitations of univariate ERPs are their restricted
sensitivity to local neural processes and the inability to capture
the contributions of multiple neural processes that occur in
distributed brain regions involved in visual processing.

The multivariate decoding approach has significantly broad-
ened the utility of ERPs beyond traditional univariate evaluations
of condition differences [19], [20]. The MVPA leverages voltage
topographies that reflect distributed neural activities, enabling
the discovery of discriminability between experimental condi-
tions that is not achievable with the univariate ERP method.
This decodable information in neural patterns has been utilized
to measure differences in neural representations [21]. Thus,
the temporal profile of decoder performance in EEG data can
provide valuable insights into the formation and evolution of
neural representations associated with a particular stimulus or
condition over time [22]. For example, Bo et al., [19] identified
affect-specific neural representations forming in the occipital
and temporal cortices within 200-300 ms following picture on-
set. These representations persisted for two seconds, suggesting
that they are organized over time in a way that depends on the
emotional valence of the stimulus and are sustained by repeated
neural interactions across various brain regions. Another study
by Cichy et al., [23] utilized MVPA to investigate the represen-
tation of visual stimuli in the early visual cortex. The results
demonstrated that MVPA could accurately decode the category
of visual stimuli based on the patterns of neural activity in the
early visual cortex.

Supervised machine learning algorithms, specifically L2-
regularized linear logistic regression [24], [25], have been shown
to deliver outstanding results in the analysis of EEG data [26].
The L2-norm regularization approach efficiently singles out a
restricted set of relevant features from a feature space with many
dimensions [27]. Recently, the integration of these machine
learning-based techniques with neuroimaging tools such as
EEG, Magnetoencephalography (MEG), or functional Magnetic
Resonance Imaging has gained significant traction in cognitive
neuroscience research [28], [29]. Such integration holds the
potential to provide a more comprehensive understanding of the
relationship between neural activity and cognitive processes.

The ability of the human brain to process and encode visual
information has been extensively researched in cognitive neu-
roscience. However, one aspect that has received less attention
is the effect of blinks on forming neural representations. In this
study, we aimed to investigate the timing of neural representa-
tions after blinking and explore the possibility of decoding blink
patterns from EEG components. Additionally, we examined
whether different conditions, which vary in visual information,
exhibited systematic timing responses in forming neural rep-
resentations. To accomplish this, we analyzed EEG responses
from two different experiments. One experiment comprised a

simulated re-active and pro-active driving task, and the other
experiment consisted of two operating conditions of the steam
engine (active and passive). We investigated eye blinking and
related EEG activities at three difficulty levels (low, middle,
and high) for both re-active and pro-active driving, as well as
active and passive operating conditions of the steam engine. We
hypothesized that visual processing generated from different
conditions following eye blinks could be decoded separately,
exhibiting consistent temporal patterns of neural representations
across these conditions. This could have important implications
for understanding the neural basis of visual perception and
decoding real task scenarios.

Il. MATERIALS AND METHODS
A. Participants

We conducted an analysis of the data collected from two
experimental paradigms utilized in our previously published
studies [1], [2], [3]. The first experiment involved re-active and
pro-active driving. A total of 32 participants (16 female and 16
male) were recruited for each of the re-active and pro-active
driving experiments, and three participants from each experi-
ment were excluded due to poor data quality resulting in a low
number of epochs. The remaining participants were between
the ages of 20 and 70 with an average age of 44 and a standard
deviation of 20. They were experienced drivers, using a car at
least twice a week for the past three years.

The second experiment consisted of two types of steam en-
gine operation: active and passive. A total of 18 participants
(comprising 16 males and 2 females) were selected via online
announcements. However, four participants had to be excluded
from the analysis due to faulty trigger markers in the EEG
data, making the segmentation of conditions unfeasible. The
remaining participants were between the ages of 22 and 35, with
an average age of 27.29 and a standard deviation of 4.45.

All potential participants were screened for eligibility based
on various criteria, including the absence of neurological or psy-
chiatric disorders before participation. All participants provided
informed written consent and received compensation of 10€ per
hour. The study was approved by the local ethics committee
of the Leibniz Research Centre for Working Environment and
Human Factors and was conducted following the Declaration of
Helsinki.

B. Procedure and Stimuli

The study employed two experimental designs, treating each
experiment as separate entities. The first experiment focused on
driving with two modes: pro-active and re-active driving, each
with three difficulty levels [1], [2]. Data for this experiment were
collected using a static driving simulator (ST Sim; ST Software
B.V. Groningen, Netherlands). In the re-active driving condition,
participants drove on a straight two-lane road while a sinusoidal
lateral force was applied to simulate crosswinds. The force com-
prised eight superimposed and phase-delayed sine waves with
varying frequencies. During the pro-active task, the participants
were required to drive on the road with a single lane and varying
radii of curves. The task difficulty was manipulated by varying
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the amplitude of the crosswind and the radii of the curves, with
three task load levels (low, middle, high) randomly presented in
segments of a 2-minute duration. Participants were instructed to
maintain their driving accuracy. Short transfer intervals were
introduced before each task load segment to prevent sudden
shifts. The experimental design consisted of 10 triplets of 3
task load levels, with the first triplet being a practice period.
The entire experimental block lasted for 54 minutes without
interruption.

The second experiment focused on the operation of a steam
engine and involved two conditions: active and passive. Data
for this experiment were collected in a seminar room that was
furnished with a miniaturized steam machine having a single
engine [3]. The steam engine was powered by boiling water and
regulating the steam flow using a valve and an adjustable Bunsen
burner. A Raspberry Pi 2B was placed on top of the engine to
generate trigger signals for EEG data and provide visual stimuli
to the participant. USB thumb drives were used to control the
sequence of visual stimuli. The participants were given two
tasks. In the first task, they had to operate the steam engine
to reach a specific pressure level by regulating the heat supply,
incoming cooling water quantity, and pressure valve. They then
recorded various temperatures and calculated the temperature
difference between the incoming and outgoing cooling water. In
the second task, they passively observed the system and marked
the water tank temperature when the Raspberry Pi diode lit up
three times at quasi-random intervals. The passive task followed
the active task, and this procedure repeated three active and
three passive tasks, with each task block lasting seven minutes,
resulting in 42 minutes of experimentation time.

C. EEG Data Acquisition and Processing

1) Data Acquisition: During the driving task, 64 scalp elec-
trodes were used to record EEG data (Biosemi active system, Ac-
tive two, BioSemi, NL). The electrode placement was based on
the International 10-10 system, along with two extra electrodes
positioned on the mastoids, specifically on the left and right
sides. The system employed a 2-wire active electrode approach
that followed the Common Mode Sensing and Driven Right Leg
(CMS/DRL) principle. The data were sampled at a frequency of
2048 Hz and a bandwidth of DC-140 Hz while maintaining the
electrode impedance below 10 k().

For the steam engine experiment, EEG signals were recorded
using a 10-20 system montage (Brain Products GmbH, Gilching,
GER) with 30 active electrodes. Electrodes were placed into
electrode holders within a tight flexible cap and filled with
electrolyte gel until an impedance of 10 k{2 was achieved. Ca-
ble management was carefully implemented to prevent motion
artifacts. The recordings were made with an online reference
at FCz, and the ground electrode was placed at AFz. The EEG
signals were recorded with a mobile amplifier at the back of the
participant’s head and stored offline on a micro-SD card inserted
into the amplifier. The data was transferred to a BrainVision
Recorder laptop and converted into EEGLab readable files using
the LiveAmp File converter software. The recordings were made
at a sampling frequency of 500 Hz with a bit depth of 24 bits.

2) Preprocessing: The data analyses were performed
through custom EEGLAB scripts using MATLAB [30]. To
eliminate environmental and muscular artifacts, the raw EEG
data were filtered using finite impulse response (FIR) filters
(eegfiltnew), with a high-pass filter at 0.1 Hz and low-pass
filters at 16 Hz for driving and steam engine datasets. The
clean_artifacts function was applied to identify and flag bad
channels with default parameters (flatline = 0.5s, burst = 5,
line noise = 4, correlation = 0.8, and window = 0.25) before
re-referencing the data to the common average. Subsequently,
a high-pass zero-phase Hamming window FIR filter with a
cutoff frequency of 1.5 Hz was applied to the data. The filtered
data were further subjected to decomposition into statistically
independent components (ICs) using AMICA [31]. Finally, the
obtained ICs were copied onto the average referenced data,
representing the data prior to the high-pass filtering step.

Afterward, the IClabel algorithm was applied to the decom-
posed signal to automatically classify components and remove
any ICs that were not brain-related. This included any compo-
nents with < 30% brain and > 30% muscle, eye, channel, heart,
and other classification probabilities. However, the occipital
activity for steam engine data could be impacted by the subject’s
voluntary movements during the task, potentially resulting in a
merging of the muscular and visual components. Thus, the cutoff
frequency was set to 16 Hz, and ICs with >30% classified as
muscle were excluded to eliminate most muscular artifacts. In
pursuit of consistency during data preprocessing, the driving
data was also processed in a manner analogous to the steam
engine data.

3) Blink Detection and Data Segmentation: The preprocess-
ing stage athand was concerned with identifying eye blink events
and eliminating eye artifacts from the brain activity signal. It
involved selecting a continuous “blink™ signal based on the best
eye-blink IC. Numerous methodologies exist to detect blinks
from EEG [8], [9], [10], but this study focused on using the
EEG BLINKER tool to extract blinks [32]. BLINKER detects
intervals of potential blinks in the EEG signal when the signal
exceeds the overall signal mean by more than 1.5 standard
deviations. The tool only considers possible blinks that last for
more than 50 ms and are at least 50 ms apart. The algorithm
identifies blinks by identifying landmarks such as the highest
peak and zero crossings, then computing linear fits for the middle
80% of the upward and downward strokes. The R2 value of these
fits determines how closely the potential blink matches a typical
blink. Additionally, the blink amplitude ratio is calculated by
dividing the average signal amplitude between the left and right
zero crossings by the average amplitude of the positive signal.
Blinks with a ratio outside the range [3-50] are excluded from
the final computation.

The BLINKER algorithm selects the best blink IC based
on a figure-of-merit computed from the difference between
the means of frontal and rear hemisphere distributions of each
component. However, this may not always select the most rel-
evant eye blink IC, as it sometimes fails to identify eye blinks
from saccade-related ICs. To address this issue, we modified
the BLINKER algorithm to identify the optimal blink IC by
calculating the Pearson correlation between the left and right
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anterior channels of eye ICs classified by the IClabel algorithm
[33]. The IC exhibiting a high positive correlation was identified
as the eye-blink IC, while the IC with a high negative correlation
was identified as the saccade IC. The selected eye blink IC was
then inserted into the BLINKER tool with default parameters
to identify blinks and insert corresponding event markers into
the EEG.event data structure to segment the blink (continuous
blink IC time series) and brain signal. Prior to this, the data
were down-sampled to 256 Hz for driving data and 250 Hz for
steam engine data. Epochs were then extracted from —500 ms
to 1200 ms relative to the peak of the eye blink. These epochs
were processed using an automatic epoch rejection EEGLAB
function called “pop_autorej”. This function excluded epochs
with fluctuations that exceeded an absolute threshold value of
500 1V and a standard deviation threshold of 5. The exclusion
process was iterative, with a maximum of 10% of epochs being
rejected in each iteration.

D. Multivariate Pattern Analysis

The MVPA is an advanced technique that determines optimal
topographical weights of electrophysiological signals, distin-
guishing perceptual states in a predefined temporal window,
and identifies critical discriminative features and their spatial
distributions, providing valuable insight into underlying neural
mechanisms. The present study employed MVPA by feeding
50ms integrated time windows, each consisting of approxi-
mately 13-time points, derived from signals obtained from all
electrodes for the brain signal and the eye blink IC for the blink
signal.

This study utilized a linear logistic regression classifier with
a C parameter of 1.0 and L2 regularization from LIBLINEAR
[25] to determine the optimal projections of brain and blink
signals to discriminate between various conditions at a specific
time. This allowed the assessment of how and when visual
information is processed by the brain and the eye. The brain
processes visual information from the eyes, while the blink
signal provides information about the state of the eye (open or
closed). To prevent biased classification outcomes, the datasets
underwent rigorous balancing procedures whereby the majority
class was downsampled to align with the size of the minority
class. The average number of balanced epochs generated for
re-active and pro-active driving data is 489, while for steam
engine data is 255. For each participant, we conducted feature
extraction by generating two feature vectors, one for each class
or condition. These feature vectors were created using the raw
potential measured across all electrodes or blink data and time
points within a window of the past 50 ms (e.g., brain, 13 x 64;
blink 13 x 1). The performance of the classifier was assessed
by means of a Monte Carlo cross-validation (MCCV) with five
repetitions, where the entire dataset was randomly partitioned
into a training set (90% of the trials) and a test set (10% of
the trials) in each repetition. During each repetition, the feature
vector comprising raw potential values of the training set was
subjected to normalization through min-max scaling within
trials. To ensure consistency in the normalization process, the
testing data was normalized using parameters (i.e., maximum

and minimum values) estimated solely from the training set. The
weight values obtained from the classifier were transformed into
absolute values, which were then visualized as a topographical
map. This map served the purpose of evaluating the contribution
of each channel to the accuracy of decoding between different
conditions.

The focus of our investigation lies within the domain of
blink-related EEG data, a topic presented in this study. However,
alingering question remains: Can random EEG epochs, as a pos-
sible method for segmenting data from real-world environments
without associations with events such as blinking, be decoded
and interpreted in a comparable fashion? To address this, we
performed MVPA on EEG epochs that were randomly selected
to match the number of epochs used in the blink-related EEG
dataset. The main goal was to determine whether these arbitrarily
chosen epochs could be successfully decoded or capture specific
neural events, and whether the outcomes would deviate signifi-
cantly from chance-level performance. The results are provided
in the supplement.

E. Temporal Generalization

In this study, we also used the temporal generalization matrix
approach to evaluate the temporal stability of brain patterns [34].
Each matrix is associated with a set of weights that facilitate
optimal discrimination for a particular condition at a specific
time point. For instance, decoding accuracy for a given point on
the plane (ty, ty) indicates the classifier’s ability to discriminate at
time point t,, which was trained at time point t,. To accomplish
this, a computational model was trained on a subset of trials
within a specific temporal interval, and its ability to accurately
distinguish between conditions was tested using the remaining
trials across the remaining intervals. This process was repeated
five times for each temporal interval to achieve the final decoding
accuracy.

F. Statistical Analysis

The present study employed global field power (GFP) as a
quantitative measure of electric field strength [35]. Statistical
analyses were conducted to determine the significance of the
GFP signal deviation from the pre-blink interval [—300,—100]
for each experimental condition separately using paired t-tests.
To control for false positive results, the resulting p-values were
corrected using false discovery rate (FDR) correction across the
time course [36]. To assess the significance of time points in
decoding, paired t-tests were conducted on the distribution of de-
coding performance across participants. Decoding performance
was calculated using both real and shuffled labeled data. The
statistical significance of the results was adjusted for multiple
comparisons using the FDR (p < 0.05).

To examine the statistical significance of temporal general-
ization, an extreme pixel-based permutation test was employed.
This test is more rigorous than a cluster-based permutation test
and can detect smaller clusters [37]. Our hypothesis assumed
no significant differences between real and shuffled temporal
generalization matrices. A null hypothesis map was created
by shuffling subjects among groups, computing the mean for
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each new group, and subtracting one map from another. The
minimum and maximum values were extracted from this new
graph, and the process was repeated 1000 times to generate
a bi-modal distribution. Values above 0.025 and below 0.975
were considered statistically insignificant, while values outside
this range were deemed significant. This approach enabled the
identification of statistically significant differences in temporal
generalization. Finally, a Spearman correlation coefficient was
used to assess the relationship between eye blink properties and
high prediction accuracies.

[ll. RESULTS

The results of the GFP analysis for both re-active and pro-
active driving levels, as well as steam engine operating condi-
tions, are shown in Fig. 1. In both experiments, all conditions
elicited a significant electrophysiological response compared to
the pre-blink period. This response commenced at the maximum
blink point (time 0 ms), corresponding to the first potential peak,
and continued for over 300 ms. These findings suggest that a no-
table amount of brain activity occurs immediately after a blink,
which could potentially indicate a difference in cognitive pro-
cessing between the two conditions during a similar timeframe.

In contrast to the conventional approach of analyzing human
electrophysiological data by averaging across trials and subjects,
we utilized MVPA to investigate whether the electrophysiologi-
cal activity of individual trials contains discriminative informa-
tion across different experimental conditions. To this end, we
trained classifiers for one-versus-one condition discrimination at
each time interval using randomly selected 90% of the trials for
training and the remaining 10% for testing. The results presented
in Fig. 2(a) demonstrate that levels of pro-active driving (low vs.
high, low vs. middle, and middle vs. high) could be accurately
distinguished above the chance level at temporally adjacent
points following the blink maximum, specifically at 188 ms,
215 ms, and 234 ms, respectively.

The decoding performance analysis revealed that the brain
processes high-level visual information, which was supported
by the contribution of various electrodes to the high decod-
ing performance, as demonstrated in Fig. 2(a). The classifier
weight maps illustrated that the neural activities responsible for
the classifier performance were predominantly located in the
parieto-occipital channels. However, when analyzing re-active
driving, only the comparison between low and high levels could
be decoded significantly above the chance level at 188 ms after
the blink maximum, with the contribution of occipital channels
indicated by the weight map. In contrast, the other comparisons
between low vs. middle and middle vs. high levels could not be
reliably decoded.

On the other hand, when examining EEG data unrelated to
eye-blinks for the binary representation of difficulty levels in
both the pro-active and re-active, as well as the steam engine
datasets, we observed results that did not significantly deviate
from chance levels (see supplemental material, Fig. S1). Essen-
tially, the random EEG epochs exhibited a noteworthy struggle to
decoding, thereby failing to reveal any meaningful or discernible
patterns.
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Fig. 1. Average global field power (GFP) across all electrodes and

participants for (a) re-active (low, middle, and high difficulty levels),
(b) pro-active (low, middle, and high difficulty levels), and (c) steam
engine operating conditions (active and passive). The colored lines
indicate when the GFP significantly differed from pre-stimulus levels at
p < 0.05 significance level for each difficulty level.

Interestingly, blink data could provide sufficient informa-
tion for discriminating between different conditions above the
chance level. Fig. 3(a) demonstrates that blink data can ac-
curately decode most conditions around the blink maximum,
from eye closure to opening. This finding suggests that blink
data contains essential information and can complement EEG
measures when evaluating cognitive states. Notably, it appears
that there is potential to distinguish between low and middle,
as well as middle and high re-active driving conditions with an
accuracy above chance levels. However, its significance has been
somewhat constrained by multiple corrections. This distinction
was achieved using blink data, while EEG data, on the other
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Fig. 2. Decoding accuracy of EEG data between difficulty levels of

re-active and pro-active conditions over time. Panel (a) shows the time
courses of EEG data decoding accuracy, while panel (b) displays the
temporal generalization maps for decoding across time and conditions
using one-versus-one classification with border color lines representing
between conditions decoding. The classifiers trained at each time point
were tested on all other time points in the time series. The significant
clusters obtained via the pixel-based permutation test are highlighted
using black contour lines. Panel (a) also shows the weight maps of EEG
data channels contributing to high decoding performance at specific
times, with the corresponding period of significant decoding at the group
level marked by bottom red horizontal lines below the time courses
(p < 0.05, FDR).

hand, demonstrated similarity to chance levels. Therefore, in-
corporating blinks and related neural activity into cognitive and
behavioral assessments could have immense potential.

A temporal generalization analysis was also performed to
investigate the temporal dynamics and similarity of pro- and
re-active level representations. A classifier trained at a specific
time point was used to test all other time points, resulting in
a two-dimensional matrix that illustrated generalized decoding
profiles. The results showed a consistent processing pattern,
as indicated by the narrow main diagonal decoding pattern,
particularly in pro-active levels for the EEG data (Fig. 2(b))
and pro- and re-active level representations for the blink data
(Fig. 3(b)). This pattern revealed that classifiers trained at a
particular time point (7) only generalized effectively to adjacent
time points. The lack of off-diagonal decoding patterns is critical
for comprehending the dynamics of neuronal data coding that
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Fig. 3. Decoding accuracy of blink data between difficulty levels of

re-active and pro-active conditions over time. Panel (a) shows the time
courses of blink data decoding accuracy with the corresponding period
of significant decoding at the group level marked by bottom red horizon-
tal lines below the time courses (p < 0.05, FDR). Panel (b) displays the
temporal generalization maps for decoding across time and conditions
using one-versus-one classification with border color lines representing
between conditions decoding. The classifiers trained at each time point
were tested on all other time points in the time series. The significant
clusters obtained via the pixel-based permutation test are highlighted
using black contour lines.

occurs following eye blinks. The main diagonal cluster for the
EEG data roughly starts at the blink maximum (0 ms) and lasts
approximately 400 ms, while for the blink data, it commences
before the blink maximum (~ —200 ms) and lasts about 400 ms.
These findings suggest that certain neural processes or cognitive
operations occur at specific intervals following eye blinks, as
demonstrated by the observed decoding pattern.

Moreover, the EEG and blink data revealed significant de-
coding of overall pro- vs. re-active driving data, including all
difficulty levels, as well as active vs. passive operators, as
demonstrated in Fig. 4(a) and (b), respectively. Notably, the
MVPA results showed highly accurate decoding for pro- vs.
re-active driving, with a peak at 172 ms after the blink maximum,
where the classifier accurately predicted (>80%) whether the
trials were for a re- or pro-active driving condition. We also de-
coded the multivariate EEG patterns evoked by the steam engine
operating conditions and found that against active operators, the
high-performance time of above-chance decoding for passive
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Fig. 4. Decoding accuracy and temporal generalization matrices for

the driving and steam engine data. Panels (a) and (b) display the
decoding accuracy and temporal generalization matrices based on EEG
and blink data, respectively, for pro-active vs. re-active driving and active
vs passive operator. The temporal generalization maps are color-coded
with border lines corresponding to the decoded conditions. At each time
point, classifiers were trained and then tested on all other time points
in the time series. The significant clusters obtained via the pixel-based
permutation test are highlighted using black contour lines.

operators was at 196 ms. Interestingly, the weight maps showed
an occipital and parieto-occipital lateralized distribution at the
decoding peak following the blink maximum for the driving and
steam data, respectively.

Additionally, the blink data demonstrated significantly high
decoding performance prior to and following the blink maxi-
mum, specifically during the closing and opening of the eye, thus
confirming the reliability of the blink data as a complementary
tool alongside blink-related EEG data. The temporal generaliza-
tion matrices indicated similar patterns to those previously dis-
cussed, shedding light on the possibility of discriminating condi-
tions at some time point based on the maximally discriminative
weights at another time point. Fascinatingly, during driving and
steam engine operating conditions, the temporal generalization
profile mostly clustered around the diagonal, suggesting that
distinct, sequential neural processes in the occipital area, as
depicted in the weight maps, play a crucial role in encoding
information following blinks.

To investigate the potential of using eye blinks as a proxy for
decoding cognitive states, we analyzed the variance of eyelid
closure and opening waveforms for all trials in two experimental
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Fig. 5. Relationship between blink behavior and high accuracy per-
formance for driving and steam engine data. The normalized mean
variance of eye closing and opening data across all trials for driving and
steam engine data are displayed in panels (a) top and (b) top, respec-
tively, providing a comprehensive overview of the variability between
conditions. Scatterplots (a) bottom with Spearman’s rank coefficients
for driving and (b) bottom for steam engine data show the correlation
between variance difference and high accuracy performance for eye
opening and closing, and highlight the stronger correlations for eye
closing (r = 0.38 for driving, r = 0.81 for steam engine) compared
to blink opening (r = 0.17 for driving, r = 0.58 for steam engine).

conditions: pro-active and re-active driving (Fig. 5(a)) and active
and passive operating conditions (Fig. 5(b)). These waveforms
refer to the eyelid movement over time, offering a more compre-
hensive comprehension of the various patterns and fluctuations
in eyelid movement. The results demonstrate that during eye
closures and openings, the pro-active driving and active op-
erating conditions exhibit a higher variance compared to the
re-active driving and passive operating conditions, respectively,
as illustrated in the top portion of Fig. 5(a) and (b).

To explore the relationship between the variance difference
in both driving conditions (pro-active — re-active) and both
steam engine conditions (active — passive) and the decoding
performance during eye closing and opening, we conducted
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a Spearman’s rank correlation analysis. The results revealed a
strong positive correlation between the variance difference and
high decoding performance. Specifically, the correlation was
higher for eye closing (r = 0.38, p < 0.05 for driving; r = 0.81,
p < 0.001 for steam engine) compared to blink opening (r =
0.17, p = 0.37 for driving; r = 0.58, p < 0.05 for steam engine).
These findings suggest that the variance observed in eye closing
can serve as a dependable and consistent indicator of cognitive
states during both driving and operating a steam engine.

IV. DISCUSSION

The present study investigated the neural and blink behavioral
correlates associated with cognitive states during pro-active and
re-active driving, as well as steam engine operating conditions.
The study results indicated that both re-active and pro-active
driving levels, as well as steam engine operating conditions,
produced significant EEG activity represented by GFP following
a blink. This increase in EEG activity was most prominent up
to 400 ms after the blink compared to the pre-blink period.
This variation in EEG activity may be attributed to the high
cognitive activity that occurs after a blink. Previous studies
have examined the relationship between blinking and cognitive
processes, showing increased EEG activity following a blink.
For example, Wascher et al., [8] discovered that blinking was
associated with an increase in theta-band power in the EEG sig-
nal when there were higher demands for walking tasks. Another
study by Liu et al., [38], using MEG, revealed that spontaneous
eye blinks activate the precuneus region of the brain, which is
responsible for environmental monitoring and awareness. This
suggests that blinking plays a significant role in regulating atten-
tion and cognition. Taken together, these findings suggest that
blinking is a neurophysiological process that actively contributes
to regulating attention and engaging cognitive processes.

Our findings showed that blink-related neural activity follow-
ing the blink maximum differed significantly between exper-
imental conditions. The use of MVPA enabled us to identify
the temporal dynamics and similarity of pro- and re-active level
representations. The results revealed that levels of pro-active
driving could be accurately distinguished above the chance level
at temporally adjacent points following the blink maximum,
likely due to the varying visual information presented at different
levels of pro-active driving. In contrast, during the analysis of
re-active driving, we found that only the comparison between
low and high task loads could be significantly decoded above the
chance level. This implies that decoding the neural mechanisms
and visual processing associated with intermediate levels of
re-active driving is challenging, possibly due to distinct learn-
ing experiences requiring comparable attentional resources and
visual information.

However, the broader context of the EEG data, which extends
beyond a specific temporal threshold (400 ms) from the peak
of the blink, or the utilization of random EEG epochs, seems
to carry a diminished cognitive signal. This raises questions
about their potential relevance in capturing meaningful neural
activity. The inability to decode random EEG epochs high-
lights the complexity of brain activity associated with different

neurological events. These findings emphasize the precision in
decoding blink-related EEG data while also revealing a notice-
able reduction in decoding effectiveness when applying the same
methodology to non-specific, random EEG epochs.

Returning to blink-related EEG data, within the realm of
high-performance decoding, the human brain exhibits notable
neural activity that appears to be specifically related to the
processing of visual information. This is supported by the con-
tribution of various electrodes, predominantly located in the
parieto-occipital channels, to the decoding performance. These
observations suggest that the brain is actively involved in visual
information processing, in line with prior research that has
linked the activation of the parieto-occipital sulcus region with
voluntary blinks [38], [39], [40]. In studying the spatiotempo-
ral characteristics of ocular currents resulting from voluntary
blinking in both light and dark conditions, these studies found
that occipital activations only occurred in the light condition,
indicating visual processing [40], [41].

Furthermore, the results also demonstrate significant decod-
ing of pro- vs. re-active driving data as well as active vs. passive
operators. Following the blink maximum, decoding peaks were
observed at adjacent time points, implying that eye blinks con-
sistently and transiently impact ongoing brain activity. These de-
coding peaks were found to occur approximately 200 ms after the
blink maximum, indicating a predictable time lag. Furthermore,
the study employed temporal generalization analysis, revealing
a consistent processing pattern of specific neural processes or
cognitive operations occurring at particular intervals following
eye blinks. Therefore, regardless of the driving situation or op-
erator type, eye blinks are likely to have a comparable influence
on brain activity during this specific time interval.

Our study extends these findings by demonstrating that blink-
related measures can effectively decode cognitive states during
driving and steam engine operation. Surprisingly, the data col-
lected from blink-related potentials provided sufficient informa-
tion to distinguish between different conditions with accuracy
above chance level, and accurately decode most conditions
around the blink maximum. This finding emphasizes the valu-
able insights that blink-related potentials offer into cognitive
processing, as evidenced by the high decoding performance
observed when correlating with the variance difference of eye
closure and opening between conditions. Previous studies have
confirmed that variations in eye blink parameters can be induced
by differences in cognitive or visual load [13]. However, we
assume that the visual load was comparable across all conditions,
except for the low vs. middle and middle vs. high re-active
driving conditions, where we believe the difference was not
strong enough to induce significant blink modulation.

Integrating blink and related neural activity into cognitive
and behavioral evaluations holds great potential. Our results
also suggest that eye blinks can complement EEG measures in
assessing cognitive states during driving, steam engine opera-
tion and other real-world scenarios. These findings align with
previous research, which indicated the feasibility of utilizing
eye blinks-based EEG as a non-invasive measure correlating
with neural mechanisms underlying attentional demand [42].
Hence, blink-related measures could serve as a substitute or a
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complementary tool alongside blink-related EEG data in various
cognitive and behavioral assessments.

Despite the promising results of our study, further research
is needed to explore the neuronal processes linked with eye
blinking events and their patterns before and after blinking to un-
derstand their cognitive implications better. Also, our study only
involved two experiments, which may limit the generalizability
of our findings. Despite the controlled experimental settings,
there may be variations in the real-world scenarios that were
not captured in our study. Therefore, further studies are required
to validate our findings in different contexts and populations.
Additionally, the EEG-based decoding approach used in our
study provides limited information about the neuroanatomical
origin of rhythmic activity. EEG signals only provide informa-
tion about the electrical activity of the brain’s surface and do not
give a clear picture of the underlying neural network activity.
Future studies may consider combining EEG with fMRI or func-
tional near-infrared spectroscopy to provide better integration of
anatomical and temporal information.

V. CONCLUSION

This study offers valuable insights into the relationship be-
tween blinking, cognitive states, and neural activity during
driving and steam engine operation. The results demonstrate
significant differences in blink-related neural activity following
a blink maximum between experimental conditions, suggesting
that the underlying neural processes vary between conditions
following blinks. Conversely, randomly selected EEG epochs,
which are not locked to blinks, do not exhibit any significant
differences from the chance level, underscoring the unique EEG
patterns associated with eye blinks. The authors also emphasize
the potential of blink-related measures in decoding cognitive
states during driving and steam engine operation, and how these
measures can complement EEG data in various cognitive and
behavioral assessments. Integrating blink and related neural
activity into cognitive and behavioral evaluations could enhance
our understanding of attentional demand and the engagement
of cognitive processes in real-world scenarios. These findings
have significant implications for developing more effective and
accurate assessments of cognitive and behavioral states during
complex tasks such as driving and operating machinery. The
results propose that blinking could serve as an essential pacing
mechanism for processing visual information during driving and
steam engine operation tasks, highlighting its critical role in
regulating attentional processes in such tasks.
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