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Automatic Segmentation of Retinal Layers in
Multiple Neurodegenerative Disorder Scenarios

Mateo Gende , Víctor Mallen , Joaquim de Moura , Beatriz Cordón , Elena Garcia-Martin ,
Clara I. Sánchez , Jorge Novo , and Marcos Ortega

Abstract—Retinal Optical Coherence Tomography (OCT)
allows the non-invasive direct observation of the central
nervous system, enabling the measurement and extraction
of biomarkers from neural tissue that can be helpful in the
assessment of ocular, systemic and Neurological Disorders
(ND). Deep learning models can be trained to segment the
retinal layers for biomarker extraction. However, the onset
of ND can have an impact on the neural tissue, which can
lead to the degraded performance of models not exposed
to images displaying signs of disease during training. We
present a fully automatic approach for the retinal layer
segmentation in multiple neurodegenerative disorder sce-
narios, using an annotated dataset of patients of the most
prevalent NDs: Alzheimer’s disease, Parkinson’s disease,
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multiple sclerosis and essential tremor, along with healthy
control patients. Furthermore, we present a two-part, com-
prehensive study on the effects of ND on the performance
of these models. The results show that images of healthy
patients may not be sufficient for the robust training of au-
tomated segmentation models intended for the analysis of
ND patients, and that using images representative of differ-
ent NDs can increase the model performance. These results
indicate that the presence or absence of patients of ND in
datasets should be taken into account when training deep
learning models for retinal layer segmentation, and that
the proposed approach can provide a valuable tool for the
robust and reliable diagnosis in multiple scenarios of ND.

Index Terms—Deep learning, medical image seg-
mentation, neurological disease, optical coherence tomo-
graphy, retina.

I. INTRODUCTION

A. Context

PATIENTS of neurological disorders (ND) recurrently suf-
fer from a late diagnosis, often when the disease has already

progressed beyond a stage where there is a noticeable effect in
patient quality of life. Furthermore, cognitive function testing
is affected by a lack of repeatability, vague symptomatology
and day-to-day fluctuations in patient conduct, which can fur-
ther delay diagnosis [1], [2]. Aside from externally perceptible
symptoms, these disorders can have a measurable impact on
the tissue of the central nervous system. In the domain of
neuro-ophthalmology, the measurement of changes to this tissue
can provide a unique opportunity for an early diagnosis and
treatment of these diseases, helping to mitigate the progressive
degeneration and improving patient care and quality of life [3].
Changes to the human retina have been shown to correlate
with the effects that these diseases present on the neurological
tissue [4], [5]. Thanks to the transparency of the optic medium,
this makes it possible to study the progression of ND by directly
observing changes to the ocular neurological tissue.

Optical Coherence Tomography (OCT) is a medical imag-
ing technique that uses light interferometry in order to ob-
tain depth-wise measurements of biological tissue [6], [7]. In
ophthalmology, OCT is used to obtain in-vivo cross-sectional
visualisations of the ocular tissue in a non-invasive way. Its
micrometre-resolution, and the fact that it can generate three-
dimensional volumes of information that represent the inner
ocular tissue, make OCT one of the most prevalent ophthalmic
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imaging modalities [8]. OCT has been shown to be of great use
for the diagnosis of several ocular diseases such as glaucoma [9],
[10], uveitis [11], diabetic macular oedema [12], and age-
related macular degeneration [13], among others. Furthermore,
its non-invasiveness, along with the high resolution volumetric
visualisation that OCT enables without the need of contrast
agents, makes it an attractive alternative to brain imaging for
the diagnosis and assessment of ND. Because of this, several
studies have focused on finding biomarkers that allow the as-
sessment of these diseases from OCT images [4], [5], [14], [15].
Specifically, clinical studies have found associations between
changes in the retinal layers and the progression of patients of
Alzheimer’s Disease (AD) [16], [17], [18], [19], [20], in patients
of Parkinson’s Disease (PD) [18], [21], [22], and in patients of
Multiple Sclerosis (MS) [23], [24], [25], among others.

In order to measure the disease-related changes in the neu-
rological tissue of the eye, it is often necessary to identify and
quantify the thickness of the retinal layers. This can be used to
identify signs of disease, as well as to track patient progression
and characterise the progressive thinning of the layers as a
sign of degeneration. While most manufacturers provide retinal
layer segmentation software suites, these may require manual
correction, especially when analysing images that display signs
of pathology which deviate from the norm [26], [27], as is
the case of patients affected by ND. However, the manual
annotation of these layers is a subjective and tiresome process,
which motivates the development of fully automated retinal layer
segmentation methods [28]. There are several approaches to the
problem of determining the boundary and content of the retinal
layers, from kernel regression [29] and graph-theory [30] based
approaches to approaches that combine these methods with
machine learning [31], [32], [33], [34]. Deep learning models,
and more specifically, Convolutional Neural Networks (CNNs),
have proven to be especially useful for retinal layer segmentation
due to their ability to be trained directly from annotated data
without the need manual process of feature extraction, selection
or adjustment. As such, many works report success in the use of
CNNs for retinal layer segmentation (for reference, [31], [35],
[36], [37], [38], [39]).

B. Related Works

Recent advances in neuro-ophthalmology, as well as the cur-
rent relevance of the analysis of OCT images of ND patients
has lead to the development of recent works focused on the
automatic segmentation of retinal layers in patients of these
disorders. Among the different disorders, most works focus on
the retinal segmentation in patients of MS: in [40], a set of
features was extracted around each pixel of the OCT image, and
a random forest classifier was used to classify them as boundary
regions. A graph search algorithm was then used to further
refine the boundaries in order to produce the segmentation. The
method was trained and validated on control and MS patients,
reporting a higher error on images corresponding to MS patients.
In [41], the authors proposed a layer evolution algorithm for
retinal boundary segmentation in control and MS patient OCT
images. This method used a series of visual features to train a

random forest classifier, which can return a boundary probability
map for the image. This probability map was then progressively
refined in the layer boundary evolution process. He et al. [42]
proposed the use of a segmentation network followed by a
regression network to correct boundary defects. These networks
could segment both the retinal layers and microcystic macular
oedema in images of MS patients. Wang et al. [43] proposed a
modified U-Net [44] structure with edge and boundary aware
modules incorporated within the skip connections. The same
authors later proposed the use of fully convolutional regression
networks for layer segmentation in patients of MS and diabetic
macular oedema [45]. This method was able to achieve sub-pixel
segmentation accuracy in an end to end manner without the
need of post-processing stages. By modelling layer boundaries
as height values in the images, a boundary guarantee loss can
be incorporated to ensure topological consistency. The method
was evaluated on a dataset containing MS patients and controls,
reporting a drop in performance on the MS patients when com-
pared with controls. In [46], the authors proposed the use of a
cascaded two-stage network, with each stage being composed
of a compressed version of U-Net. A post-processing stage was
incorporated in which a Laplacian-based outlier detection is
applied, followed by an adaptive non-linear interpolation with
the intention of filling any inconsistent holes in the segmentation.
The method was trained and validated in a set of MS and control
patients.

Thus, the automatic segmentation of retinal layers in ND
patients has garnered recent interest, due to its relevance for
neuro-ophthalmic diagnosis [14], [15]. Nevertheless, the exist-
ing body of work is currently limited in its reach and repre-
sentation of ND. Most of the existing works are focused on the
automatic segmentation of MS patients, while several other NDs
remain unaddressed. Furthermore, the majority of these works
are based on deep learning-based models. These models rely
on the visual patterns that are apparent in their training data
in order to segment the images during inference. This means
that the trained models can present problems in generalising
to images that display visual patterns that differ from those the
model was trained in [47]. In this sense, models that were trained
on images of healthy patients, or of patients of a single ND
such as MS, may experience a loss of performance when used
on images of patients of other NDs. All the previous works
that break down the results between ND patients and controls
report comparatively worse results for images of the former
class [40], [43]. Currently, to the extent of our knowledge, no
study has addressed or compared the performance of automatic
OCT layer segmentation methods for different NDs so far. From
the examples in the literature it can be inferred that these diseases
affect the tissue in a way that can influence the retinal layer
segmentation models. Furthermore, these diseases are all caused
by different physiological mechanisms and can have a different
effect on neural tissue [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [48], [49]. In this regard, the impact that the lack of
training set representation of the most prevalent NDs can have
in the automatic retinal layer segmentation models, as well as
an in-depth study on the behaviour of these models in different
ND scenarios, remain to be addressed.
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C. Contributions

Given this important gap in the literature, in this work, we
present an approach for the fully automatic segmentation of the
retinal layers in multiple ND-specific scenarios representative
of the most common disorders. Furthermore, we conducted
an exhaustive study of the performance and robustness of this
deep learning-based approach in different scenarios of image
availability. A dataset containing images of the four most preva-
lent NDs, namely AD, PD, MS and Essential Tremor (ET),
along with Healthy Control (HC) patients was annotated with
the location of the retinal layers of interest and used to train
and validate state-of-the-art deep learning models. This dataset
constitutes the most complete sample of retinal OCT imaging of
ND patients extracted under identical circumstances. Moreover,
two complementary analyses were carried out in order to conduct
a comprehensive study on the performance of these automatic
retinal layer segmentation models trained with the images of
these representative NDs. In a first experiment, a series of
models were trained on images displaying symptoms of every
ND but one. Then, these models were evaluated in their ability to
segment the retinal layers of patients of the ND that was excluded
from the training. This allows us to compare the ability of the
models to generalise to each specific ND by emulating scenarios
in which these have never been exposed to the characteristic
visual features that may be apparent in images of that disease.
In the second experiment, the models were trained on images
belonging to patients of a specific NDs (or control patients),
and then evaluated on their ability to generalise to each of
the other specific diseases. This allowed us to analyse how
the visual patterns apparent in each specific ND can contribute
to the segmentation, and which image sets may be lacking in
order to address the problem of inter-disease variability when
training retinal layer segmentation models. To the extent of
our knowledge, this work is the first to address the automatic
segmentation of retinal layers in OCT images of patients of
these representative NDs, also providing an exhaustive analysis
of the effects of training deep learning models for this task in
the presence or absence of images that are characteristic of these
disorders. The primary contributions and findings of this work
can be summarised as follows:

� This work presents the first study into the impact of NDs
on the performance of retinal layer segmentation models,
using an annotated OCT imaging dataset comprising the
four most prevalent NDs acquired under uniform condi-
tions, and pioneering a comprehensive exploration in this
domain.

� The study reveals that models trained using HC images
demonstrate sub-optimal performance when confronted
with images from patients suffering from NDs, leading
models to over-segment the RNFL. This can mask the
degenerative effects of these diseases and hinder accurate
patient assessment.

� In order to address the representation challenge posed by
individual NDs, the proposed approach uses images of
other NDs during training. Remarkably, the models trained
using this approach effectively compensate for the lack

of representation of any single ND of those considered.
Furthermore, models trained only on images of AD or ET
patients exhibit, on average, superior performance when
segmenting the layers of patients of the other NDs.

� This study sets the stage for future research endeavours
focused on identifying distinctive visual features that can
characterise images representative of different NDs. These
features hold the potential to significantly improve early
differential diagnosis, leading to enhanced patient care
and overall quality of life for individuals affected by these
diseases.

D. Outline

This manuscript is structured as follows: Section II explains
the data and the deep learning models that were employed in
this study, along with an explanation of the experimental setup;
Section III presents the results that were obtained for each of
the experiments, as well as a discussion of the obtained results.
Section IV outlines the main conclusions.

II. MATERIALS AND METHODS

In this section, we introduce the materials and resources that
were employed for the training and validation of the models,
along with an explanation of the experimental setup that was
followed.

A. Dataset

In order to train and evaluate the retinal layer segmenta-
tion models, a set of macular OCT images was specifically
collected and annotated for this work. This set was formed
by five independent samples of the four most prevalent NDs:
AD, PD, MS and ET, along with a sample of HC patients.
These were prospectively recruited by three specialist clinicians
(one ophthalmologist specialised in neuro-ophthalmology, one
neurologist specialised in demyelinating diseases and one neu-
rologist specialist in movement disorders and dementia).

The AD group includes patients with an AD diagnosis as
indicated by expert neurologists in accordance with the Stroke-
Alzheimer’s Disease and Related Disorders Association, the
National institute of Neurologic and Communicative Disorders
and the Diagnostic and Statistical Manual of mental Disorders
(DSM IV) [50] criteria. For inclusion, only patients with less
than 5 years since diagnosis and low to moderate changes (Mini
Mental State Examination ≥ 20) were considered, aiming to
focus in patients representative of an early diagnosis. Standard
clinical and neuroimaging criteria were used for the diagnosis
of MS [51]. Only relapsing-remitting MS phenotype patients
were included in order to obtain a homogeneous population. A
trained neurologist diagnosed PD based on standard clinical and
neuroimaging criteria [52], as well as information about disease
severity using the Hoehn Yahr scale [53], according to the United
Kingdom Brain Bank Criteria [54]. The diagnosis of ET was
based on the Consensus statement of the Movement Disorder
Society on Tremor [55], excluding cases of “probable ET” and
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Fig. 1. Summary of the dataset distribution. 1250 images were ex-
tracted from 50 patients, grouped in 5 different ND sets.

“possible ET”. HC subjects include patients referred for refrac-
tion that underwent routine examination without abnormal ocu-
lar findings. The exclusion criteria employed were best corrected
visual acuity lower than 0.5 using Snellen charts, refractive
errors higher than 5 dioptres of spherical equivalent refraction
or 3 dioptres of astigmatism, intraocular pressure higher than
20 mmHg, media opacifications (nuclear colour/opalescence,
cortical or posterior subcapsular lens opacity > 2, according to
the Lens Opacities Classification System III [56]), concomitant
ocular diseases such as glaucoma or retinal pathology, and
other systemic conditions that could affect the visual system.
Furthermore, related medical records were carefully reviewed,
including disease duration, the Expanded Disability Status Scale
(EDSS) score in MS patients, the treatments, and the presence of
prior episodes of optic neuritis. All procedures performed in this
work are in accordance with the Declaration of Helsinki. Written
informed consent was collected from all participants in the study,
and the experimental protocol was approved by the Ethics Com-
mittee of the Miguel Servet Hospital (CEICA: Comité Ético de
Investigaciones Científicas de Aragón) under registration num-
ber C.I. PI21/113. For each of the 50 patients, 25 equally spaced
macular images were extracted and annotated, for a total of 1250
annotated images (Fig. 1). All patients contained in this study
are within a similar distribution of age and sex in order to prevent
any relevant differences that may cause a significant distortion
of the results. These images were acquired using a Heidelberg
SPECTRALIS imaging platform. OCT output was included with-
out manual correction. An assessment of the quality of the scans
was performed prior to the analysis, rejecting any poor-quality
scans or images with less than 25/40 points of quality [57].
The original resolution of these images was 512× 496. These
images were annotated with two semantic classes: the Retinal
Nerve Fibre Layer (RNFL), the layer most commonly reported
to be affected by ND, and a class grouping the rest of the retinal
layers between the Ganglion Cell Layer and Bruch’s Mem-
brane (GCL-BM), as a way to quantify the remaining retinal
thickness.

Fig. 2. Summary of the segmentation process in the MGU-Net archi-
tecture. The first stage generates a segmentation mask separating the
retinal tissue from the background. This mask is applied to the image
before presenting it to the second stage. This second stage separately
segments each retinal layer producing the final output. The right side
displays detailed views of the retina and a visualisation of the effects of
each stage.

B. Software and Hardware Resources

The models were developed, trained and validated using the
PyTorch [58] machine learning library (version 1.8.2) under
Python (version 3.8.10). For all the image processing require-
ments, OpenCV [59] (version 4.5.4-dev) and NumPy (version
1.21.4) were employed. Statistical tests were performed using
the SciPy library (version 1.10.1). The training and validation
process of the model was performed on two NVIDIA RTX
A6000 GPUs, an AMD Ryzen Threadripper 3960X CPU, and
256 GB RAM.

C. Retinal Layer Segmentation

MGU-Net [60] was used as a base network architecture for
retinal layer segmentation, due to its favourable results when
compared with other segmentation architectures such as U-
Net [44], ReLayNet [61] and DRUNET [62]. The MGU archi-
tecture uses a two-stage process for retinal layer segmentation
(Fig. 2). The first stage separates the retinal tissue from the back-
ground, separating the region of interest for further refinement.
The second stage refines the area segmented by the first one
into each of the individual retinal layers. This architecture was
adapted for the segmentation of the RNFL and the GCL-BM by
adapting its final layer.

In order to best capitalise on the amount of available data,
the models were first initialised to a pre-training on a publicly
available retinal layer segmentation dataset [60]. This dataset
contains a total of 732 OCT scans. The pre-training process
was performed for a maximum of 50 epochs under the same
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conditions employed in the original publication. Afterwards,
all of the layers in the models were allowed to train on the
data partitions described for each experiment. For compatibility
with the segmentation model, all the images were resized to
1024× 992 pixels, the intensity values converted to a float
value within [0, 1] and normalised using the mean and standard
deviation of the whole dataset. The images used for training were
further subdivided at the patient level, using 90% of the images
for training, and the remaining 10% for validation, ensuring
that images from the same patient are not shared between the
training, validation or test sets.

The models underwent training for a maximum of 50 epochs
in the baseline and experiment 1, while experiment 2 extended
the training to 100 epochs, which was empirically determined to
ensure model convergence. Throughout training, a checkpoint
of the trainable weights was saved at each epoch where the
validation loss reduced, selecting the checkpoint with the low-
est validation loss for model testing. For model optimisation,
we employed the Adam optimiser [63]. The hyperparameters
employed were a learning rate of 0.001, a momentum of 0.9,
and a weight decay of 1× 10−4. Additionally, a batch size of 16
was used during training. To calculate the loss, each stage of the
model used its separate calculation, which was then weighted
(1). The segmentation loss for each stage (2) comprised the
summation of Cross-Entropy Loss (3) and Dice Loss (4), defined
as follows:

L = Lstage1 + 2× Lstage2 (1)

Lstage = LCE + LDice (2)

LCE = − 1

C

C∑

c=1

gc log pi (3)

LDice = 1− 1

C

C∑

c=1

2
∑

i∈Ω pc(i)× gc(i)∑
i∈Ω pc(i) +

∑
i∈Ω gc(i)

(4)

where gc indicates the ground truth and pc indicates the predicted
probability for pixel i belonging to class c. In order to make
the most of the amount of available data, image augmentation
was applied to the training samples in the form of random
rotations in the range [−7◦, 7◦], random horizontal and vertical
shear transformations in the range [−7◦, 7◦], Gaussian noise and
intensity variations in the range [0.9, 1.1], as well as random
horizontal flipping.

D. Impact of ND

Two complementary analyses were conducted in order to
provide an exhaustive study of the performance of the retinal
layer segmentation models when training in multiple scenarios
of presence or absence of the different NDs. These analyses are
implemented in the form of two experiments that can provide
insight into how the models perform on images of different NDs
when trained in the absence of images of each specific ND. To
do this, the images were first subdivided in 5 sets, one for each
ND, and one for the images from HC. In the first experiment,
the models were trained using images from all the sets but one.

Fig. 3. First experiment: each model is trained on the images from all
sets except one. The remaining set is used to evaluate each model.

Then, the remaining images were used as a test set to evaluate
the model. This provides valuable insight into the particular
differences in terms of visual features that may set each ND
apart from the others. In the second experiment, each model
was trained using images from a single set, and then these were
evaluated on each of the other sets. This experiment can enable
the comparison between all the available NDs, highlighting NDs
that are similar in terms of visual features, and which cases may
need to be supplied with additional samples in order to make up
for lack of representation.

1) Analysis 1 - Multi ND Training: The main purpose of this
analysis is twofold: To assess how well the retinal layer seg-
mentation models perform on images that show visual signs of
diseases that were not part of their training data, and to explore
whether certain neurological disorders require the use of images
that represent they characterising structural changes in the retina.
To this end, the models were initially trained on all available
sets of images, excluding one set. Then, the trained models were
tested on the images from the excluded set. A diagram displaying
this procedure and the partitioning that was employed can be
found in Fig. 3.

Training the models on all available sets except one ensures
that the model does not see any visual features exclusive to that
particular set during training. Doing this allows the model to be
exposed to shared features between multiple NDs and controls.
By evaluating the performance on the excluded set, it is possible
to determine which NDs can benefit from training with images
from other sets (i.e., sharing features), and which NDs require
representative samples from their own set to be used during
training. This approach can help understand the transferability
of features between different NDs and controls.
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Fig. 4. Second experiment: each model is trained in a single set and
then evaluated in all of the unseen ones separately.

2) Analysis 2 - Single ND Training: The main goal of this
analysis is to assess the similarities between the visual features
presented by each individual ND. To achieve this, an experiment
was conducted where the models were trained on one of the
sets and subsequently evaluated on each of the other sets. This
allows the measurement of the performance of the model accross
various combinations of training and test sets. A summary of all
of the combinations of training and test sets employed for this
experiment is represented in Fig. 4.

By comparing the performance of models trained on one
dataset when applied to images from another, the one-directional
compatibility of NDs can be studied, providing insight into how
well models trained on images of one ND perform when pre-
sented with images from another ND. A model trained on images
from a disease that exhibits visual patterns similar to another
ND would be expected to perform better on the latter than a
model trained on images that do not share these visual patterns.
By studying these mutual performance variations, it is possible
to gain a deeper understanding of the shared characteristics
and distinctive features of various NDs, ultimately contributing
to a more comprehensive and nuanced understanding of these
diseases.

3) Baseline: A baseline experiment was also performed in
order to enable a comparison with an ideal case in which images
from all NDs are simultaneously available. In it, the models are
trained with images from all the sets, setting a patient from each
set apart for testing. This process is repeated until all patients
have been used for testing, enabling a fair comparison with the
other experiments.

E. Evaluation

A comprehensive set of metrics was used in order to achieve
a fair and complete evaluation of the experiments performed in
this work. These metrics are, namely, Precision (5), Sensitivity
(6), and Dice Score (7), as defined by:

Precision =
TP

TP + FP
(5)

Sensitivity =
TP

TP + FN
(6)

Dice =
2× TP

2× TP + FP + FN
(7)

Where TP, FP, TN and FN denote True Positives, False Pos-
itives, True Negatives and False Negatives, respectively. Each
pixel was considered to belong to the layer with the highest
score returned by the segmentation mask produced by the model.
Along with these pixel-wise metrics, the segmentation error
for the models was also computed. The contour surrounding
every layer was extracted both from each ground truth and
automatically segmented output image. Following other related
retinal layer segmentation works (for reference, [40], [41], [46]),
the Mean Absolute Error (MAE) was computed between the
pixel heights for every image column as a measurement of
contour error (MAEC), along with the MAE for the thickness of
each layer (MAET ). In order to provide a robust measurement
of these metrics, and following other similar approaches in the
literature [64], [65], bootstrapping with 1000 repetitions was
applied at the image level to all tests.

III. RESULTS AND DISCUSSION

This section presents the results that were obtained for each
of the experiments previously described, along with a detailed
discussion highlighting any conclusions that can be extracted,
in order to provide an exhaustive and comprehensive analysis
of the performance of the models and the effect of the different
scenarios of ND presence.

A. Experiment 1

In the first experiment, the models were trained on images
that displayed signs of every ND except the one used for
testing. Table I displays the results of this first experiment,
while Table II displays the test results achieved by the baseline
models, which were allowed to train with images from all of the
sets.

The results that were obtained show that the models are
able to achieve a performance that is on par with the trained
baseline, in which they were exposed to images of every ND,
including the one used for testing. There are no remarkable
differences between the results from the first experiment and
the baseline. The biggest observable differences are those in
the PD image set, but these may be explained by the train-
ing variability. This indicates that other NDs may be used
to supply the missing visual features that characterise each
specific ND.

The average layer thickness at the eye level was computed for
the ground truth and the automatically measured values from this
experiment (Fig. 5). This shows that the automatically measured
values closely align with the annotated thicknesses. It also allows
a comparison between the layer thicknesses of all NDs. Patients
of MS show the highest variability in RNFL thickness, while
ET patients display the lowest. For the GCL-BM layers, the
healthy patients generally show a higher thickness than the
ND patients, which is in line with previous reports of thinner
ganglion cell layer in patients of NDs [66], [67], [68], [69].
Nevertheless, a one-way analysis of variance test found no
significant differences between the thickness of the retinal layers
for the eyes of patients of these different NDs (F = 1.811, p =
0.143 for the RNFL; F = 1.247, p = 0.305 for the GCL-BM
layers).
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TABLE I
TEST RESULTS ACHIEVED BY THE EXPERIMENT 1 MODELS FOR EACH LAYER. PRECISION, SENSITIVITY AND DICE COEFFICIENT VALUES REPRESENT A

RATIO BETWEEN 0 AND 1. MAEC AND MAET VALUES REPRESENT NUMBER OF PIXELS. ALL VALUES REPRESENTED AS MEAN ± STANDARD DEVIATION

TABLE II
TEST RESULTS ACHIEVED BY THE BASELINE MODELS FOR EACH LAYER. PRECISION, SENSITIVITY AND DICE COEFFICIENT VALUES REPRESENT A RATIO

BETWEEN 0 AND 1. MAEC AND MAET VALUES REPRESENT NUMBER OF PIXELS. ALL VALUES REPRESENTED AS MEAN ± STANDARD DEVIATION

Fig. 5. Retinal thickness averaged per eye for the ground truth and the
values measured by the first experiment models, grouped by image set.
Solid colours show values extracted from the annotated ground truth
images. Striped colours show values automatically measured by the
Experiment 1 models.

B. Experiment 2

In the second experiment, the models were trained on every
individual image set and then evaluated separately in every other

set. Tables III and IV display the test results for the RNFL and
GCL-BM layers, respectively. Fig. 6 summarises the contour
and thickness errors grouped by the training and test sets used.
Furthermore, a Wilcoxon signed-rank test was performed in
order to validate any statistically significant differences between
the models trained with every set of images. In this series of
tests, the models were grouped according to the images used for
training each of them. Then, for every one-on-one comparison,
the images shared between the test sets of the models to be
compared were grouped together. Thus, for each comparison of
the models trained on two different image sets, the correspond-
ing results for the test images of these models applied to the
images of the three remaining sets were selected. This paired
test was applied to the contour and thickness errors achieved
by the models, and a summary of the results can be found in
Fig. 7, where an arrow is shown pointing to any training set that
produces a significantly lower (p < 0.05) error than another, or
a cross is shown when no statistically significant differences are
found.

Regarding the one-on-one comparative performed in this
experiment, more differences can be observed between the
different sets. Averaging and grouping the results achieved by
the image set used for training (Fig. 6), we can see that the
worst results in terms of RNFL MAEC and MAET , as well as
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TABLE III
TEST RESULTS ACHIEVED BY THE EXPERIMENT 2 MODELS FOR THE RNFL LAYER. PRECISION, SENSITIVITY AND DICE COEFFICIENT VALUES REPRESENT A

RATIO BETWEEN 0 AND 1. MAEC AND MAET VALUES REPRESENT NUMBER OF PIXELS. ALL VALUES REPRESENTED AS MEAN ± STANDARD DEVIATION

TABLE IV
TEST RESULTS ACHIEVED BY THE EXPERIMENT 2 MODELS FOR THE GCL-BM LAYER. PRECISION, SENSITIVITY AND DICE COEFFICIENT VALUES REPRESENT
A RATIO BETWEEN 0 AND 1. MAEC AND MAET VALUES REPRESENT NUMBER OF PIXELS. ALL VALUES REPRESENTED AS MEAN ± STANDARD DEVIATION

GCL-BM MAEC , are achieved by the models that were trained
on HC images. This can be indicative that models trained on
images that do not display the visual features that characterise
these diseases can have a reduced performance when used to
measure the retinal features of ND patients. Furthermore, the
models trained on HC images seem to over-segment the RNFL
on images of ND patients. On average, these models achieve
the highest RNFL Sensitivity (0.941± 0.015) while at the same
time achieving the lowest Precision (0.901± 0.037). A thinning
of this layer is most commonly associated with ND progression.

This loss of performance is not seen when grouping these
results by the set used for testing, indicating that this may be
a lack of representation of the relevant visual features, rather
than HC images being visually distinct (i.e. HC images are not
representative enough of ND images, while ND images are of
HC images). This uni-directional relationship is also apparent
with the images belonging to the PD patients. Models that only
used PD images for training produce the second highest MAE
for both layers and metrics, while the other sets are all separately
able to segment PD images with the lowest error.
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Fig. 6. Comparative of the MAE calculated using layer contours and
thickness for the second experiment, averaged and grouped by the
set used for training and the set used for testing. Error bars indicate
standard deviation. Smaller MAE is better.

Fig. 7. Results from the Wilcoxon signed-rank test comparing the
results of the models based on the images used for training. The im-
ages shared in the test set between the two models are used in the
comparison. For each point in every matrix, an arrow points to the
training set used for the model that produced a lower error with statistical
significance with p < 0.05, indicative of better performance. A cross
indicates no statistically significant difference was found.

On the other hand, AD images seem to allow the models
a better representation of the visual features present in all the
other NDs. Models trained with AD images achieved the lowest
MAE of all those considered for both layers. At the same time,
all of the other models achieve the highest MAET for both layers
and MAEC for the RNFL when tested on the AD images. It is
possible that these images display a higher variability of the
neural degeneration associated with the other NDs. This is also
supported by the models trained on AD achieving better results
on all NDs, but worse on the HC images (Tables III and IV).
Furthermore, the worst results achieved by the model trained
on HC images are the ones regarding the test on AD images.
Other works in the literature aimed at the classification of NDs
using other imaging modalities have also reported images of
AD patients harder to classify, indicating that this disease may
show signs that can be confused with those of other NDs [70],
[71]. It bears mentioning that this study only considered early
cases of AD, and the results seem to indicate that even in
these early stages, there are noticeable changes in the displayed
visual features that can have a noticeable effect on model
performance.

Models trained with images of ET patients achieve generally
well-rounded results when tested on images from the other NDs,
while performing slightly worse on HC images. Nevertheless,
the statistical tests represented in Fig. 7 show that models trained
on ET images are able to achieve significantly lower error than
every other training set in all of the comparisons that were
performed. As with the AD patients, it is possible that images
from ET patients display a wider variability of disease-specific
features that allow models trained on them to better adapt to
other NDs. Additionally, models trained on images of other
NDs perform comparatively worse when tested on ET images,
although the magnitude of this error is still lower than when
AD images are used for testing. This, in turn, means that mod-
els intended for the automatic segmentation of these images
may require a greater sample of images to compensate for the
lack of representation of other NDs and, specially, that of HC
images.

Overall, the results show that the choice of training images can
have a noticeable effect on retinal layer segmentation models.
The use of HC images for training can produce models that
may mask the effects and progression of ND. These effects
are subtle, and arise when taking into account the general
performance of each model. A qualitative comparison of the
segmentation masks produced by the models of the first and
second experiment can be seen in Fig. 8. This figure shows that
the models provide a robust and accurate segmentation of the
retinal layers while showing minor differences between them.
Although not considered in this study, other ocular pathologies
such as diabetic macular oedema or age-related macular degen-
eration may interact with these diseases and further affect seg-
mentation models, producing more deviation in overall thickness
measurements.
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Fig. 8. Qualitative comparison of a series of samples of ground truth
and automatic segmentation masks for each of the pathology sets. Ev-
ery column displays an image representative of each image set. Every
row shows the corresponding segmentation masks, expanded for ease
of comparison. Experiment 2 rows show the model that was trained on
each image set. The training set for each model is not represented.

IV. CONCLUSION

Retinal OCT imaging can provide a non-invasive window
of analysis of several NDs. The degeneration caused by these
diseases can have a measurable effect on the thickness of several
retinal layers. Different NDs have distinct causes and can have
a different impact on neural tissue, which can translate into a
loss of performance of automated retinal layer segmentation
models that were not trained using images representative of
these changes. In this work, we have presented a fully automatic
approach for the automatic segmentation of retinal layers in
multiple disease scenarios of the four most representative NDs
(namely, AD, PD, MS, and ET), as well as a set of HC patients.
The proposed approach has been meticulously developed and
extensively evaluated on a dataset comprising images extracted

under identical conditions for these four representative NDs.
These images have been accurately annotated, providing the pre-
cise location of the retinal layers. So far, this dataset represents
the most complete collection of retinal OCT imaging extracted
from ND patients, ensuring a robust and comprehensive analysis
of the proposed methods. Taking advantage of this dataset,
the proposed approach has been analysed and validated in a
two-part in-depth study aimed at comprehensively examining
the effects that the presence or absence of representative images
of each ND can have on deep learning models intended for retinal
segmentation. The two experiments that were conducted allow a
comprehensive analysis of the impact that the different features
that characterise these diseases can have on models trained
without enough representation of said features. The results show
that training models in images of HC patients can translate into
a loss of performance when segmenting images of ND patients.
Furthermore, these models tend to mask the sign of disease,
which can be detrimental to the diagnosis process of NDs. The
models that were trained on images of all NDs but one are able
to perform at a level similar to the baseline models which were
allowed to see images of every ND during training. These results
indicate that it may be necessary to take into account the presence
or absence of patients of these diseases in datasets used to train
automatic retinal layer segmentation models, since it can have an
impact on performance. By exposing the models to the multiple
scenarios of ND during the training, the proposed approach can
aid in the diagnosis of these diseases in a reliable way, helping
improve patient care in clinical practice.

Early studies attempting to achieve an early diagnosis of NDs
through neuro-retinal measurements have primarily relied on
numerical thickness data provided by OCT. This study, how-
ever, takes a different approach by focusing on the analysis of
images without relying on any particular commercial software.
The proposed approach has effectively addressed the challenges
associated with the lack of representativity in HC image. This
enables the development of robust and ND-oriented retinal layer
segmentation models, which can be crucial for accurately track-
ing disease progression in patients affected by these conditions.
Moreover, these findings highlight that neuro-retinal images
exhibit distinct characteristics that depend on the specific ND
that affects the patient. This opens the possibility for differential
diagnosis between different neurological disorders. By facilitat-
ing an accurate and early differentiation, this can assist clinicians
in reaching a definitive diagnosis much sooner which, in turn,
allows for the timely establishment of appropriate therapies,
ultimately improving overall patient quality of life while slowing
down the progression of the disease.

Future plans include a more detailed analysis of the different
retinal layers that were included in the GCL-BM set such as
the GCL-inner plexiform layer complex, as well as the separate
study of the sectors that conform the parafoveal area, which can
enable a more comprehensive analysis of the effects of these
diseases and the impact that these may have on computer-aided
diagnosis systems that make use of automatic retinal layer
segmentation. Additionally, the approach and study proposed in
this work could be extended to other retinal layer segmentation
architectures based on different techniques such as transformers.
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Moreover, the development of an automated tool that can enable
the differential diagnosis of these diseases can be of great benefit
in order to achieve an early treatment of ND.
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