
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 11, NOVEMBER 2023 5357

Markov-Based Neural Networks for Heart Sound
Segmentation: Using Domain Knowledge in a

Principled Way
Miguel L. Martins , Miguel T. Coimbra , Senior Member, IEEE,

and Francesco Renna , Senior Member, IEEE

Abstract—This work considers the problem of segment-
ing heart sounds into their fundamental components. We
unify statistical and data-driven solutions by introducing
Markov-based Neural Networks (MNNs), a hybrid end-to-
end framework that exploits Markov models as statistical
inductive biases for an Artificial Neural Network (ANN) dis-
criminator. We show that an MNN leveraging a simple one-
dimensional Convolutional ANN significantly outperforms
two recent purely data-driven solutions for this task in
two publicly available datasets: PhysioNet 2016 (Sensitiv-
ity: 0.947 ± 0.02; Positive Predictive Value : 0.937 ± 0.025)
and the CirCor DigiScope 2022 (Sensitivity: 0.950 ± 0.008;
Positive Predictive Value: 0.943 ± 0.012). We also propose
a novel gradient-based unsupervised learning algorithm
that effectively makes the MNN adaptive to unseen datum
sampled from unknown distributions. We perform a cross
dataset analysis and show that an MNN pre-trained in the
CirCor DigiScope 2022 can benefit from an average im-
provement of 3.90% Positive Predictive Value on unseen
observations from the PhysioNet 2016 dataset using this
method.

Index Terms—Hybrid neural networks, Markov models,
model-based deep learning, phonocardiogram, segment-
ation.

I. INTRODUCTION

C ardiovascular diseases (CVDs) are the number one cause
of mortality worldwide, with the total number of deaths

projected to be over 23 million by 2030 given the current preva-
lence of CVD risk factors, such as smoking, obesity, and physical
inactivity, as reported by the World Heart Federation [1]. CVDs
are most prevalent in low to middle-income countries, where
limited expert human resources and operational conditions con-
strain the effectiveness of healthcare services. To mitigate the
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Fig. 1. Segment of 0.51 seconds of a PCG sample from the CirCor
DigiScope 2022 dataset displaying an entire heart cycle.

economic and humanitarian toll of CVDs (especially in under-
privileged scenarios), early discovery and treatment are only
actionable if the screening becomes more reliable, inexpensive,
and fast. In this context, cardiac auscultation is particularly
attractive since this examination has low cost, can detect several
heart conditions, and is one of the simplest cardiac screening
procedures [2]. Although accurate interpretation of the sounds
collected during auscultation requires access to personnel with
extensive qualifications and clinical experience, collecting the
necessary data in the form of a phonocardiogram (PCG) for
retrospective examination and diagnosis is considerably simpler,
thus requiring less training [3], [4], [5]. Moreover, the advent
of electronic stethoscopes, coupled with significant progress
in machine learning, has brought about a revolution in cardiac
auscultation, since computer-assisted decision systems are now
capable of extracting meaningful information from PCG record-
ings with significant clinical relevance [6], [7].

In order to extract information from heart sounds one can
first detect key events in the PCG recording, notably the two
fundamental sounds present in each heart cycle: the first sound or
S1, generated by the mitral and tricuspid valve vibrations from
the systolic onset, and the second sound or S2, which results
from the aortic and pulmonary valve closure at the diastolic
onset (an example of such fundamental heart sounds is reported
in Fig. 1). The task of delineating the boundaries of the S1 and
S2 sounds (which consequently yields knowledge of the systolic
and diastolic intervals) for every heart cycle in a PCG is called
heart sound segmentation.

One should note that there are many recent solutions for
CVD-related downstream tasks that do not require this explicit
segmentation step (see, for example, [8], [9], [10], [11], [12]),
and the community currently questions whether a dedicated
segmentation component is required within CVD detection
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models [13]. We argue that precise knowledge of the four
fundamental segments in each heart cycle not only enables the
detection and localization of extra sound components (e.g., the
third and fourth heart sounds, murmurs, ejection clicks, etc.), but
it also allows analysis of the waveform morphology of the S1
and S2 sounds. Furthermore, appropriate reconstruction of the
underlying heart sound sequence should constrain the response
of data-driven models to physiologically plausible results, en-
hancing their performance and explainable value. This can be
attested by the final standings in the George B. Moody PhysioNet
challenge 2022 [14], since the winning classification approach
for the heart murmurs task included algorithms that leveraged
segmentation of the fundamental heart sounds [15].

A. Related Work

Existing literature for heart sound segmentation can be
grouped into three main types of techniques: peak-picking, ad-
hoc feature extraction coupled with statistical point-wise clas-
sifiers, and sequential models. Peak-picking strategies typically
apply some transformation to the signal (either in the time or
frequency domains) so that thresholding captures local maxima
related to S1 and S2 sounds [16], [17], [18], [19], [20], [21].

For the second type of strategies, the signal is typically prepro-
cessed to facilitate the discrimination of S1 and S2 components,
and hence features are extracted in the time [22], frequency [23],
or Wavelet [24] domains. Then, different types of classifiers have
been considered to detect the S1 and S2 components, ranging
from k-means clustering [25], [26], decision trees [27], Support
Vector Machines (SVMs) [24], to Artificial Neural Networks
(ANNs) [28], [29], [30]. However, these methods require a
candidate selection step to detect S1 and S2 sounds, which is
typically provided by the above-mentioned peak-picking algo-
rithms.

Finally, sequential models exploit a prirori knowledge of
the steady progression of the heart sounds during each heart
cycle, i.e., the fact that the only permissible transitions are: S1
to systole, systole to S2, S2 to diastole, and diastole to S1. Most
successful parametric sequential models for the specific task
of heart sound segmentation are typically grounded on either
hidden Markov models (HMM) or hidden semi-Markov models
(HSMM). The Markovian/semi-Markovian process governs the
latent heart cycle progression and is normally coupled with
some point-wise discriminator that models the emission dis-
tribution of the signal. Gamero et al. [31] and Gill et al. [32]
combined HMMs with peak-picking on an envelogram of the
PCG. Expanding this line of work, [33] modelled the emission
distribution explicitly through Gaussian Mixture Models.

HSMMs enable parametrization of the so-called sojourn time
of each state, i.e., the distribution of the duration of each heart
sound in the PCG sequence. Contrary to HMMs where the
probability of repeating a state always decays exponentially, in
HSMMs the state duration distribution is adaptive and may differ
from state to state. HSMMs were first applied by Schmidt et al.
for heart sound segmentation [34], [35]. Oliveira et al. [36],
[37] developed methods to learn the sojourn time in the context
of heart sound segmentation. In this line of work, there have

also been proposals to improve the estimates for the emission
distribution, such as the SVM and logistic regression proposed
by Springer et al. [38], [39]. With the recent advancements in
deep learning, ANNs have been successfully implemented in se-
quential models for heart sound segmentation. Renna et al. [40]
introduced a sliding U-Net on envelopes extracted from heart
sound recordings to estimate the emission distributions, which
are then decoded by an HMM parameterized by the maximum
likelihood estimates for the train set. In [41], Messner et al.
suggested an end-to-end, fully data-driven method for simul-
taneous learning of the emission and latent state distributions,
through a gated bidirectional Recurrent Neural Network (Bi-
GRNN) over spectral and envelope features of the signals,
which showed competitive results with the HSMM proposed by
Springer et al. [39]. Fernando et al. [42] proposed a more capable
bidirectional Long Short-Term Memory network coupled with
an attention mechanism (Bi-LSTM+A) that acted on the Mel
Frequency Cepstral Components (MFCCs) of the PCG. The
attention mechanism has the ability to detect salient aspects in
each sound, and its application is intended to enhance robustness
against noisy or irregular recordings. Additionally, a temporal-
framing adaptive (TFA) network was proposed in [43], which
employs a specific transition loss function during training and
can perform dynamic inference, enabling it to adapt to varying
heart sound behaviours. The authors reported positive results
when comparing to the HSMM method of Springer et al. [39]
and the Bi-GRNN proposed by Messner et al. [41].

B. Contributions

Analysis of the literature reveals that modelling the latent state
sequence assuming some statistical prior (HMM/HSMM) and
the end-to-end frameworks (U-Net, Bi-GRNN, Bi-LSTM+A,
TFA) yield the most competitive results. Motivated by this, we
propose a hybrid approach that combines the advantages of the
explicit sequential modelling of HMMs with the discriminative
power of an ANN within a single end-to-end learning frame-
work. In particular, this article presents four main contributions:

1) The formulation of a hybrid framework wherein, given
a priori knowledge that the signal is generated by some
latent HMM, the emission posteriors are estimated using
the output of an ANN. In other words, a Markov-based
Neural Network (MNN).1

2) A set of supervised and unsupervised loss functions tai-
lored to exploit the a priori knowledge of some underlying
Markovian regime.

3) Performance comparison of the proposed MNNs with
recent purely data-driven approaches for the downstream
task of heart sound segmentation. The experiments were
performed in two publicly available PCG datasets: Phys-
ioNet 2016 and CirCor DigiScope 2022.

4) Cross dataset performance assessment of the unsuper-
vised learning algorithm given an MNN pre-trained in
PhysioNet 2016 (CirCor DigiScope 2022) on unseen

1Our implementation is available at https://github.com/miguelmartins/mnn.

https://github.com/miguelmartins/mnn
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Fig. 2. Flowchart illustrating the proposed framework. The blue back-
ground signifies the training procedure, the red background marks the
inference routine.

observations from CirCor DigiScope 2022 (PhysioNet
2016).

We refer the reader to Fig. 2 for a schematic representation of
our framework.

We reported some preliminary results on a simpler version of
this framework in [44], were we proposed to train an ANN to
maximize the Maximal Mutual Information criterion under the
assumption that PCG signals were governed by an underlying
HMM. In this article, we encapsulate and significantly extend
this idea within a broader framework, Markov-based Neural
Networks (MNNs). We introduce a parameter re-projection step
that enables gradient descent to be used for training without
compromising the statistical and physiological plausibility of
the underlying HMM. This not only allows the MNN to be
trained completely end-to-end, but also to be fine-tuned to
unseen, unlabelled datum by maximizing their likelihood given
the model, as prescribed in our MNN formulation. Compared to
our precursory work [44], our experiments are also substantially
more thorough and are sustained by statistical hypothesis test-
ing whenever a comparison between the outcomes of different
models is made. We also compare the performance of the MNNs
with the Bi-LSTM+A by Fernando et al. [42] since it employs
an alternative temporal modulation of the signal without any
type of statistical prior by combining a recurrent ANN with an
attention mechanism.

C. Paper Structure

The remainder of this article is structured as follows: in
Section II, we introduce MNNs and the respective supervised
and unsupervised training routines in a principled way. Then,
in Section III, we instantiate the problem of PCG fundamental
heart sound segmentation, alongside a Left-to-right MNN ar-
chitecture especially tailored for this problem. In Section IV,
we perform a set of experiments to establish the MNN base-
line using the PhysioNet 2016 dataset (Section II-A) and then
compare it to the models proposed by Springer et al. [39],
Renna et al. [40], and Fernando et al. [42] (Section IV-C2), both
in the PhysioNet 2016 and the CirCor DigiScope 2022 datasets.
Finally, in Section IV-C3 we assess cross dataset performance
of the unsupervised learning algorithm given an MNN pre-
trained in PhysioNet 2016 (CirCor DigiScope 2022) on unseen

observations from CirCor DigiScope 2022 (PhysioNet 2016).
We discuss our findings in Section IV-D, and in Section V draw
conclusions alongside future lines of inquiry.

II. MARKOV-BASED NEURAL NETWORKS

Suppose you have a dataset D = {(o(i), s(i))}Ni=1 such that
each observation sequence o(i) = [o1,o2, . . . ,oTi

] is a function
of a state sequence s(i) = [s1, s2, . . . , sTi

] that was generated
by some (latent) homogeneous first-order Markov chain with
discrete states st ∈ S , S = {0, 1, . . . , L− 1}. The joint distri-
bution of a pair of emissions o(i) and states s(i) is given by:

P
(
o(i), s(i)

)
= P (s1)

Ti∏
t=2

P (st−1|st)
Ti∏
t=1

P (ot|st). (1)

Presume ignorance of the class of distributions to which
P (ot|st) pertains. Consider instead access to a highly discrim-
inant artificial neural network (ANN) such that ANN(ot) ∼
P (st|ot). One can approximate (1) by using Bayes’ rule to
estimate the emission distribution given the posterior predicted
by the ANN; we call this the hybrid formulation of the model,
i.e., we leverage both the HMM and the ANN in order to estimate
P (o(i), s(i)) as:

P
(
o(i), s(i)

)
= P (s1)

Ti∏
t=2

P (st−1|st)
Ti∏
t=1

ANN(ot)P (ot)

P (st)
.

(2)

Note that we do not assume knowledge ofP (ot) in (2). However,
ignoring this term yields a function proportional to (2) which is
sufficient for our optimization scheme.

The likelihood of o(i) follows directly as the marginal of (2)
over all possible state sequences STi :

P (o(i)) =
∑
s∈STi

P (s1)

Ti∏
t=2

P (st−1|st)
Ti∏
t=1

ANN(ot)P (ot)

P (st)
,

(3)

which can be computed efficiently without overflowing errors
using a scaled forward-backward algorithm [45], [46]. Equa-
tion (2) and (3) bind the hidden Markov model (HMM) and
ANN into a single, unified framework since they depend on the
parameters of both models. An MNN is thus an HMM that shares
the parameter space with an ANN, which models its emissions.
Conversely, the MNN can also be interpreted as an ANN whose
likelihood is a function of a latent Markovian state.

We denote by Ψ = {λ,Θ} the set of all parameters of
an MNN, where λ = {π,Γ} collects the parameters of the
underlying Markov chain, with initial state probabilities π =
(P (s1) : s1 ∈ S) such that π ∈ R

L, and state transition matrix
Γ ∈ R

L×L. Finally, Θ is the set of parameters of the ANN.

A. Training

This section will describe the training procedure assuming
that the underlying Markov chain is first-order, homogeneous,
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and stationary. The parameters are searched in the joint param-
eter space Ψ while minimizing some loss function L(D;Ψ)
using a customized gradient descent approach. We define several
L using the likelihood expressions from (2) and (3).

1) Proposed Loss Functions: We start by introducing two
supervised loss functions tailored toward sequence classification
given knowledge of the ground truth states for a train set.

Let PΨ(.) be a density function parameterised by Ψ. From
(2) one can derive the complete log-likelihood loss (LCL):

LCL(D;Ψ) = −
N∑
i=1

logPΨ

(
o(i), s(i)

)
. (4)

Following [47], and by noting that logP (o(i)|s(i)) =
logP (o(i), s(i))− logP (o(i)) one can use the derivations of (2)
and (3) to build the mutual information criterion loss (LMMI):

LMMI(D;Ψ) = −
(

N∑
i=1

logPΨ

(
o(i), s(i)

)
− logPΨ

(
o(i)
))

.

(5)

One of the distinctions between LCL and LMMI is that the latter
leverages logPΨ(o(i)) as to preserve the generative properties of
the MNN while still accounting for discriminative performance
of the model.

Finally, we also propose an unsupervised gradient-based op-
timization of (3) to make Ψ adaptive to co-variate shifts. Thus,
we introduce the unsupervised fine-tuning loss (LFT):

LFT(D;Ψ) = −
N∑
i=1

logPΨ

(
o(i)
)
. (6)

2) Parameter Initialization: We initialize the parameters of
the underlying Markov chain of an MNN by computing its
maximum likelihood estimates (MLE). Given access to a labeled
train set, the MLE estimate of the transition matrix, ΓMLE, can
be attained directly from {s(i)}Ni=1 by calculating the expected
number of transitions between states [45]. Concerning the initial
state distribution, we approximate it with the steady state prob-
ability vector πsteady ∈ R

L. Consequently, we solve the linear
system:

πsteadyΓ = πsteady, (7)

so thatπsteady ≥ 0 and ||πsteady||1 = 1, where≥ is applied entry-
wise and || · ||1 is the �1-norm. Henceforth, assume λMLE =
{ΓMLE,πsteady}.

Concerning the ANN, regardless of our choice of architec-
ture, we initialize bias weights to zero, and the remainder of
parameters using Glorot et al.’s normalized initialization [48].

3) Gradient Descent With Re-Projection: The MNN’s
parametrization is searched within a constrained optimization
scheme. Specifically, since λ has probabilistic parameters, the
feasible set for π and the rows Γi ∈ R

L of Γ must be a subset
of the canonical simplex KL of RL:

KL =

{
x ∈ R

L : xi ≥ 0, i = 0, . . . , L− 1,
L−1∑
i=0

xi = 1

}
.

(8)

Algorithm 1: Training in the Joint-Parameter Space of a
Generic MNN.

Let || · ||2 denote the �2-norm. Following [49], we define the
projective map Φ : RL −→ KL so that:

Φ(y) = arg min
x∈KL

(
1

2
‖x− y‖22

)
. (9)

For each gradient descent update we set Γi = Φ(Γi + η∇Γi
L),

given some learning rate η. In this way, we guarantee that the
transition matrix stays in the feasible setKL throughout training.
Moreover, in each epoch, we derive π directly by solving (7)
immediately after this projection step. The pseudo-code of the
framework for gradient descent in an MNN is available in
Algorithm 1, given dataset D, some loss function L, learning
rate η, and maximum number of epochs m.

4) Unsupervised Fine-Tuning: The main advantage of an
MNN is that it intrinsically models the (Markovian) character
of the temporal regime through λ for some dataset D. However,
the training procedure outputs a fixed parametrization Ψ for all
o ∈ D. The fact that the underlying model is coupled to a strong
statistical prior also makes it sensitive to observations sampled
from a different temporal regime from that of its training set.
Herein, we propose a routine that effectively allows the model
to adapt to unseen or unusual observations by means of an
unsupervised loss function. Thus, we adapt Algorithm 1 so that it
leverages (6) for the specific purpose of increasing the likelihood
of some target observation o given baseline parametrization Ψ.
Note that we fine-tune one model per observation and re-start
the procedure with baseline Ψ given a different datum. The
unsupervised fine-tuning routine is described in Algorithm 2.

Hereafter, let Ψk be the parametrization after k rounds of
fine-tuning on the same observation o given baseline Ψ.

III. METHODS

In Section II we introduced formalism for a broader family
of MNNs. Herein, we will instantiate an MNN explicitly for
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Fig. 3. Left-to-right HMM parameterized by λ for PCG segmentation
containing 4 states: S1 (0), systole (1), S2 (2) and diastole (3).

Algorithm 2: Fine-Tuning Pre-Trained MNN Ψ on o.

PCG fundamental heart sound segmentation. First, we establish
an adequate feature extraction pipeline that serves the models
throughout our experiments. Then we define the characteristics
of the parameters in λ alongside their feasible set in the context
of fundamental heart sound segmentation. We conclude this
section with two distinct, relevant characterizations of MNNs
for this task.

A. Preprocessing

Replicating [40], the signals are first filtered using a Butter-
worth filter of order two with pass-band [25, 400] Hz and then
downsampled to 1000 Hz. After applying the spike removal
algorithm proposed by [35] we extract two distinct feature
maps: the envelograms, XEnv, as in Renna et al. [40], and
the static MFCCs, XMFCC, following Fernando et al. [42].
Our models adopt the same feature extraction setup described
in [39]. Specifically, XEnv is comprised of 4 channels (one for
each feature): i) the homomorphic envelogram, ii) the Hilbert
envelope, iii) the wavelet envelope, and iv) the power spectral
density envelope. These features are downsampled to 50 Hz and
normalized so that each channel has zero mean and unit variance.
ConcerningXMFCC, following Fernando et al. [42], we extract 6
static Mel-frequency Cepstral Coefficients (MFCC), alongside
their first and second order frame differences, Δ and Δ2. Each
model processes segments of 64 samples, which is equivalent
to approximately 1.3 seconds. We assume that the label at the
central position of each segment (i.e., 64/2 = 32, or around 0.65
seconds) is the ground truth label for the entire frame. The value
of this label is one-hot-encoded.

Henceforth, assume that L = 4 and that S maps the set of
possible states: S1, systole, S2, and diastole (as in Fig. 3).

B. Left-to-Right MNN for PCG Segmentation

Heart sound segments defined by fundamental heart sounds
obey three important properties: a) they occur in a cyclic fashion,

Fig. 4. Feasible set for the columns of Γ ∈ R3×3, where U3 =
{U3

1 ,U3
2 ,U3

3 }. Note how U3 ⊂ K3. More specifically, it is comprised of
the edges of K3 while excluding its vertices.

b) their occurrence order is unchanged throughout time (i.e., S1,
systole, S2, diastole), c) no segment lasts forever. This domain
information is expressed organically by a left-to-right HMM as
illustrated in Fig. 3. More formally:

Definition 1: Let UL
i be the point set defined as:

UL
i =

{
x ∈ R

L | ∀j ∈ S : (j = i+ 1 mod L)

⇒ (xi, xj > 0, xi + xj = 1) else xj = 0} ,
for some i ∈ S . Then, let:

UL :=
⋃
i∈S

UL
i .

Clearly,UL ⊆ KL. A matrixΓ ∈ R
L×L is called non-absorbent

left-to-right if it is defined as Γ = [ΓT
0 ,Γ

T
1 , . . . ,Γ

T
L−1]

T, where
Γi ∈ UL

i , for all i ∈ S .
One can visualize UL

i as an edge of the L-dimensional
canonical simplex KL (see Fig. 4 for an example in R

3). We
are interested in guaranteeing that the gradient updates with
regards to λ in Algorithms 1 (lines 8 to 11) and 2 stay in
UL. Hence, we need to compute a map Φ from any x ∈ R

L

to the closest point in UL
i ⊆ UL for every i ∈ S (following (9)).

This computation should be efficient as it will be performed
during each step of gradient descent throughout the training
routines. We adapted Michelot’s finite projection algorithm [49]
restricted to the two non-zero components for eachΓi. In order to
guarantee a solution in UL

i , we add/subtract a small perturbation
ε to the maximum/minimum component of the solution obtained
with this algorithm, thus avoiding absorbing states permitted
in KL.

C. Inference and Post-Processing

We developed the MNNs for PCG segmentation using a
standard Viterbi decoder [45] to output the most likely sequence
produced by the MNN. Thus, the sequence is decoded as follows:

ŝ(j) = max
s1,s2,...,sTj

PΨ(x1,x2, . . . ,xTj
, s1, s2, . . . , sTj

), (10)

so that s1, s2, . . . , sTj
∈ S .

IV. EXPERIMENTS

We conducted our experiments on the 2016 PhysioNet and
2022 CirCor DigiScope datasets [50], [51]. Onwards, we will
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Fig. 5. Template of the one-dimensional CNN backbone for the MNNs
implemented in our experiments assuming a mini-batch size B. The
output layer is a 4-way softmax yielding the posterior estimates for each
of the PCG states.

refer to each dataset as PhysioNet’16 and CirCor’22, respec-
tively. Both databases contain noisy sounds collected in clini-
cal and non-clinical environments (e.g., during screening cam-
paigns). The raw datasets are fed independently into our prepro-
cessing pipeline (see Section III-A), where we extract XEnv and
XMFCC. We adopt a 10-fold cross-validation setup throughout
our experiments, where the folds have a fixed length of roughly
10% of the length of the dataset in its entirety. We set aside
10% of the out-of-fold dataset as a validation set so that we
can employ early stopping within each fold. Thus, we will have
a train, validation, and test split for each of the ten dataset
partitions generated for cross-validation. We also ensure that
all folds are mutually exclusive with regards to their patient
identifiers. The sounds that have matching patient identifiers
to those of each fold are removed from the respective train and
validation sets. Our experimental methodology can be separated
into 3 main components: (Section IV-C1) establishment of an
MNN baseline in PhysioNet’16, (Section IV-C2) performance
assessment of the baseline MNN versus a statistical sequential
model and two existing data-driven solutions in PhysioNet’16
and CirCor’22, and (Section IV-C3) cross dataset assessment of
the performance of the unsupervised fine-tuning given an MNN
pre-trained on either PhysioNet’16 or CirCor’22. We selected a
simple one-dimensional Convolutional Neural Network (CNN)
architecture (see Fig. 5) as the ANN component of our MNN. It
is built from a convolutional stem comprised of three blocks of
one-dimensional convolutions with kernels of size 3 and rectified
linear unit (ReLU) activation functions. These are interlaced
with 2× 1 max-pooling layers. Each block stacks 8, 16, and
32 convolutional filters, respectively. Finally, we employ a 25%
dropout bottleneck layer, followed by a fully connected layer
spanning 64 neurons with the ReLU activation function. The
output layer implements a 4-way softmax.

We compare our results with the well established HSMM
approach by Springer et al. [39] and two recent data-driven PCG
segmentation solutions: the sliding U-Net followed by Viterbi
algorithm proposed by Renna et al. [40], and the Bi-LSTM+A
proposed by Fernando et al. [42]. We use the preprocessing con-
figurations associated with the best results reported by each au-
thor; hence, we useXEnv for the HSMM and U-Net, andXMFCC

for the Bi-LSTM+A. The MNNs and U-Net were trained with a
mini-batch of size 1, and the Bi-LSTM+A with a mini-batch of
32 samples. We used the Adam gradient descent algorithm [52].
The MNNs and U-Net were trained using a learning rate of
0.001. The Bi-LSTM+A was trained with an initial learning rate

of 0.002, and 0.0002 from epoch 10 onwards, as proposed by the
authors [42]. Both the U-Net and the Bi-LSTM+A were trained
to minimize the cross-entropy. Training was performed during
50 epochs throughout each fold and the value of the loss function
in the validation set was used as the early-stopping criterion in
all experiments.

A. Materials

1) The PhysioNet 2016 Dataset (PhysioNet’16): The pub-
lic dataset used for the 2016 Computing in Cardiology
(CinC)/PhysioNet Challenge [50] served as the initial baseline
for our experiments. It is a repository of 9 different heart sound
databases collected by different international research groups.
It amasses a sizeable amount of PCG recordings collected from
aortic, pulmonary, tricuspid, and mitral auscultation locations.
It spans 2435 recordings from 1297 healthy or pathological pa-
tients, the latter spanning a variety of conditions, including heart
valve and coronary artery diseases, aortic stenosis, and mitral re-
gurgitation. It includes a fairly large amount of noisy recordings
with real-world acquisition conditions. These recordings were
originally re-sampled at 2000 Hz with anti-aliasing [50]. Of the
set of original recordings, we use only the 792 heart sounds (181
healthy, 611 pathological from a total of 135 patients) that have
an associated ECG recording.2 The fundamental heart sound
sequence was estimated through analysis of the synchronous
ECG recordings following [39]. The duration of each recording
in this set ranges from 1 to 35.5 seconds. We discarded 39
samples, accounting for the cases where the signal lasted less
than 1 s or had noisy labels (i.e., illegal state sequences, such as
those that allow transitions from state S1 directly to state S2).

2) The CirCor DigiScope Dataset (CirCor’22): The CirCor
DigiScope Dataset [51] (CirCor’22) is currently the largest
publicly available pediatric heart sound dataset and it was fea-
tured in the 2022 George B. Moody PhysioNet Challenge [14].
The focus of the tasks enabled by this dataset was that of
cardiac murmur detection and classification. The CirCor’22
dataset was assembled using data collected from two different
screening campaigns in Northeast Brazil with specific focus on
the pediatric population [51]. The study included all subjects
who volunteered for screening within the study period. Patients
younger than 21 years of age with a parental signed consent form
(when appropriate) were included, with no further exclusion
criteria. Two cardiac physiologists independently analyzed the
collected sounds and discarded PCG recordings based on a signal
quality standard. Thus, the database spans 5282 PCG recordings
collected from the aortic, pulmonary, tricuspid, and mitral loca-
tions from 1568 healthy or pathological subjects (1144 healthy,
305 pathological, 119 indiscernible). The signals were sampled
at 4000 Hz with 16-bit resolution, with durations ranging from
5.3 to 80.4 seconds. The ground truth labels were provided by
the same two blinded cardiac physiologists, also tasked with
reviewing and correcting the automatic annotation recommen-
dations proposed by the automatic segmentation algorithms of
Springer et al. [39], Oliveira et al. [37], and Renna et al. [40].

2The dataset is available at https://PhysioNet.org/physiotools/hss/

https://PhysioNet.org/physiotools/hss/
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Of the 5282 recordings, we used the 3279 samples publicly
available in the training set for the 2022 PhysioNet Challenge.3

B. Metrics and Evaluation

We follow the instructions of [35] to compute the confusion
matrix in our experiments. Specifically, a prediction is consid-
ered a true positive if the center of an S1 (S2) prediction is closer
than 60 ms to the next S1 (S2) sound in the true sequence. All
other predicted S1 or S2 segments are considered false positives.
Given these assumptions, the Positive Predictive Values (PPV)
and Sensitivities (S) are computed according to the resulting
confusion matrix in a standard fashion [35].

These metrics are only tractable if no illegal transitions are
present in the model prediction sequence. Thus, our imple-
mentation of the Bi-LSTM+A enforces temporal framing of
the prediction sequences through Viterbi decoding using the
maximum likelihood estimates of the train set (as described in
Section II-A2).

C. Results

1) MNN Baseline Benchmark: We start by ablating the joint
search of Ψ = {λ,Θ} described in Algorithm 1 in the Phys-
ioNet’16 dataset. Thus, we define the static formulation of an
MNN where the parameters of the underlying HMM stay fixed
to λ = λMLE throughout training, and a hybrid MNN where λ is
initialized with λMLE but is jointly-learned with Θ throughout
training. We denote the static model as MNNΘ

L and its hybrid
counterpart as MNNΨ

L . At the same time, we evaluate the differ-
ence between settingL = LMMI (5) andL = LCL (4). Inspecting
Fig. 6, concerning L = LMMI in particular, the hybrid model
MNNΨ

LMMI
displays less variability between folds. Moreover, this

variant appears more robust in terms of sensitivity, while its static
counterpart measures higher median PPV. Notwithstanding,
our pair-wise t-test (α = 0.5) showed no statistical difference
in their inter-fold performance metrics (see Fig. 7).

When one looks at the results for L = LCL, the static MNN
is considerably more sensitive than its hybrid counterpart while
being just marginally inferior in terms of PPV. There was a
significant difference between MNNΘ

LCL
and MNNΨ

LCL
in terms

of sensitivity. However, the null hypothesis could not be rejected
in terms of PPV.

Finally, a general view of the pair-wise tests in Fig. 7 (in
conjunction with the box-plots of Fig. 6) also reveals a sta-
tistical difference between MNNΘ

LCL
and MNNΘ

LMMI
in terms

of sensitivity. Concerning PPV, both models optimizing LCL

were statistically different to MNNΘ
LMMI

. Thus, MNNΘ
LCL

appears
to be the superior configuration regarding sensitivity, while
MNNΘ

LMMI
is better suited for optimal PPV. Henceforth, we

choose MNNΘ
CL as the baseline for the remaining experiments,

since it offers the most efficient paradigm, as LCL can be calcu-
lated in O(T ), where T is the length of the sound, without the
forward-backward algorithm. Moreover, a static MNN does not
need the costly gradient re-projection step.

3The dataset is available at https://physionet.org/content/circor-heart-sound/
1.0.3/

Fig. 6. Measured sensitivity (S) and positive predictive value (PPV)
in the 10-fold cross-validation experiment of the PhysioNet’16 dataset
for different static/hybrid MNNs, under different loss functions L =
LMMI/L = LMMI.

Fig. 7. Pairwise t-test (α = 0.05) between S and PPV of MNNΘ
LMMI

,

MNNΨ
LMMI

, MNNΘ
LCL

and MNNΨ
LCL

in the PhysioNet’16. White cells signify
that we can reject the null hypothesis for a pair of models, black cells
mark the converse. The grey colour denotes uninformative cells.

2) Model Performance Comparison: We now compare
MNNΘ

LCL
to the HSMM with logistic regression by Springer

et al. [39], the U-Net proposed by Renna et al. [40] and the
Bi-LSTM+A introduced by Fernando et al. [42]. We will be
performing measurements on 10-fold cross-validations of the
PhysioNet’16 and CirCor’22 datasets. We recorded the average
performance on each fold in the box-plots of the 10-fold cross-
validated experiments in Figs. 8 and 10, alongside pairwise
t-tests with a significance level α = 0.05 (Figs. 9 and 11).

Concerning PhysioNet’16, an inspection of the box-plots
(Fig. 8) reveals that the models that leverage ANNs are substan-
tially more performant than the HSMM. Our proposed MNN
displays superior robustness with regards to both S and PPV.
In concrete terms, the proposed MNNΘ

LCL
scored an average S

of 0.950± 0.022 and PPV of 0.937± 0.025. It scored higher

https://physionet.org/content/circor-heart-sound/1.0.3/
https://physionet.org/content/circor-heart-sound/1.0.3/
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Fig. 8. Measured sensitivity (S) and positive predictive value (PPV)
statistics in 10-fold cross-validation on the CirCor’22 dataset between
the HSMM by Springer et al. [39], the U-Net by Renna et al. [40], the
Bi-LSTM+A by Fernando et al. [42], and MNNΘ

LCL
. The green edged

triangles mark the mean of the distribution, while the black crosses
signify outliers. Note how the MNN with fixed λ during gradient descent
using the complete likelihood loss (MNNΘ

LCL
) yields the best trade-off

between the two metrics.

Fig. 9. Pairwise t-test between MNNΘ
LCL

, the HSMM by Springer
et al. [39], the U-Net by Renna et al. [40], and the Bi-LSTM+A by
Fernando et al. [42] with significance α = 0.05 in the PhysioNet’16
dataset. White cells signify that we can reject the null hypothesis for a
pair of models, black cells mark the converse. The grey colour denotes
uninformative cells.

on average then all other models. However, in terms of S, we
could not find a significant difference between the Bi-LSTM+A,
which measured an average of 0.944± 0.020 S. On the other
hand, with respect to PPV, it was significantly superior to all
other approaches by a considerable margin, with an average
1.5% improvement over the 0.929± 0.026 PPV observed in
the Bi-LSTM+A, the second best scoring model. With respect
to the CirCor’22 dataset, the gap between the HSMM and the
data-driven solutions becomes even wider. The measurements
in Fig. 10 reveal that the superiority of our model is even more

Fig. 10. Measured sensitivity (S) and positive predictive value (PPV)
statistics in 10-fold cross-validation on the CirCor’22 dataset between
the HSMM by Springer et al. [39], the U-Net by Renna et al. [40], the
Bi-LSTM+A by Fernando et al. [42], and MNNΘ

LCL
. The green edged

triangles mark the mean of the distribution, while the black crosses
signify outliers. Note how the MNN with fixed λ during gradient descent
using the complete likelihood loss (MNNΘ

LCL
) yields the best trade-off

between the two metrics.

Fig. 11. Pairwise t-Test between MNNΘ
LCL

, the HSMM by Springer
et al. [39], the U-Net by Renna et al. [40], and the Bi-LSTM+A by
Fernando et al. [42] with significance α = 0.05 in the CirCor’22 dataset.
White cells signify that we can reject the null hypothesis for a pair
of models, black cells mark the converse. The grey colour denotes
uninformative cells.

pronounced in this (arguably) more challenging dataset (see
Fig. 10). Our model scored 0.950± 0.008 S and 0.943± 0.012
PPV. Concerning S, we could not prove statistical difference
with the U-Net (see pairwise t-tests in Fig. 11), which scored
0.944± 0.018. However, one should note that the mean and
variance of MNNΘ

LCL
are still higher. Moreover, the U-Net has a

sizeable outlier in one of the folders, where it scored just 0.901
S. Concerning PPV, the MNNΘ

LCL
is significantly superior to

all other models, scoring an additional 1.1% PPV on average
over the U-Net, its runner-up, which registered an average
0.932± 0.017 PPV.
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Fig. 12. Fine-tuning average performance of MNNΨ0
LCL

compared with MNNΨi
LFT

, for 1 ≤ i ≤ 20. The baseline is pre-trained on PhysioNet’16 and
fine-tuned throughout different number of epochs to the CirCor’22 dataset. (Top) PPV. (Bottom) Sensitivity. A pairwise t-test between the baseline
metric distribution and the outcome after i epochs was made to assess statistically significant differences. The left vertical axis displays average
relative changes in percentage and the right horizontal the average measured values.

3) Fine-Tuning MNN on Unseen Data: In this section we
measure the effects of a pre-trained static MNN in the Phy-
sioNet’16/CirCor’22 as the source dataset when fine-tuned to
CirCor’22/PhysioNet’16 as the target dataset. For each experi-
ment, we set L = LCL and use random holdout with 80/10/10
split with early-stopping at the best loss value. The parameters
of the model attained at this pre-training stage are denoted as
Ψ0, so that Ψ0 = {λMLE,Θ} depends on the train set split of
the source dataset. Then, using Algorithm 2, we fine-tuned the
model in a hybrid fashion on each observation and recorded
the impact of each additional round of fine-tuning until k = 20
epochs (Figs. 12 and 13). We measure the mean performance
of each metric in the same folders of the previous experi-
ments for each MNNΨi

LFT
. Pairwise t-tests between MNNΨ0

LCL

and MNNΨi

LFT
, 1 ≤ i ≤ k with significance α = 0.05 (Fig. 12)

were performed to grasp the statistical significance in PPV
and S.

When PhysioNet’16 is used as the source and CirCor’22 as
the target datasets, the fine-tuning procedure tends to result in
an increase in PPV at the cost of S. The results in Fig. 12
show that PPV increases or stays statistically the same for
i ≤ 13. Afterwards, the overall performance degrades, and each
subsequent round of fine-tuning is completely detrimental to
the performance of the model. More specifically, the baseline
MNNΨ0

LCL
mean scores are 0.769 PPV and 0.704 S. At iteration

i = 2 it is possible to have a small increase in average PPV,
0.777 (0.80% statistically significant increase), compromising
S to 0.703 (0.01% statistically non-significant decrease). For
larger numbers of i, the trade-off in S is always significant.

The results are more promising when CirCor’22 is the source
and PhysioNet’16 the target dataset (see Fig. 13). A steady
increase in PPV is observed throughout all i with a positive
or negligible impact in S. In fact, baseline MNNΨ0

LCL
scored a

mean PPV of 0.847 and mean S of 0.891, while the model
MNNΨ20

LFT
scores the best average PPV at 0.886 (3.90% statisti-

cally significant increase) with mean sensitivity of 0.889 (0.20%
statistically non-significant decrease), which is a substantial
improvement in performance.

D. Discussion

The fact that the proposed MNN algorithm supported by a
very simple CNN (18785 parameters) consistently outperforms
models with 9.52 and 3.40 times the number of parameters,
such as the U-Net (178828 parameters) and Bi-LSTM+A (63908
parameters), highlights the impact the Markovian inductive bias
has for the task of PCG heart sound segmentation. Note that
this is true for both PhysioNet’16 and CirCor’22, regardless
of the sizeable co-variate shift in age groups, the heart sound
duration statistics (see Fig. 15), and the overall average length of
the recordings between the two datasets. Furthermore, even for
CirCor’22, where one would expect the larger dataset (roughly
4.12 times the number of samples of PhysioNet’16) to benefit
more complex networks, our experiments show that the MNNs
are still superior.

We surmise that MNN performance could be further unlocked
by increasingly more complex discriminators or feature extrac-
tion components. We believe this to be especially likely for the
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Fig. 13. Fine-tuning average performance of MNNΨ0
LCL

compared with MNNΨi
LFT

, for 1 ≤ i ≤ 20. The baseline is pre-trained on CirCor’22 and
fine-tuned throughout different number of epochs to the PhysioNet’16 dataset. (Top) PPV. (Bottom) Sensitivity. A pairwise t-test between the
baseline metric distribution and the outcome after i epochs was made to assess statistically significant differences. The left vertical axis displays
average relative changes in percentage and the right horizontal the average measured values.

Fig. 14. Predicted state sequences of an unseen CirCor’22 sound using a pre-trained MNNΨ0
LCL

on PhysioNet’16 as baseline (dotted red line) and

an MNN fine-tuned before the sensitivity significance threshold MNNΨ2
LFT

(dashed blue line with star markers). Note how MNNΨ0
LCL

deviates from

the underlying regime, specifically from the diastole in the interval [28.4, 28.8] seconds onward. This behaviour is mitigated by MNNΨ2
LFT

, which
effectively reduces the differences in rhythmic structure between the real and predicted state sequences.

unsupervised fine-tuning case since we found that the gradient
ofLCL depended mostly on the CNN, with the underlying HMM
parameters only undergoing very subtle changes during this type
of training. Algorithm 2 effectively allows MNNs to adapt to
the rhythmic structure of unseen sounds sampled from different
latent distributions, as it can be observed in Fig. 14. On the other
hand, our experiments reveal that the success of this procedure
heavily depends on the source and target datasets.

For the case when CirCor’22 is used as the source domain,
we did not observe any significant decrease in performance as
the number of epochs increased. We suppose that pre-training

in a larger source dataset with more variation in its observations
may yield a more robust discriminator, which in turn results
in a more stable fine-tuning procedure. When PhysioNet’16
was used as the source domain, the model quickly became
over-tuned as the number of epochs increased. It is still un-
clear how this over-tuning phenomenon could be avoided in
real-world scenarios where access to labeled data might be
impossible.

We note that the parameter set λ can be seen as a global
descriptor of the statistics of the sequences produced by the
MNN, but lacks local information. We envision that statistics on
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Fig. 15. Distributions of the systole and diastole heart duration in the
PhysioNet’16 (dark gray) and CirCor’22 (light gray). In order to improve
readability, we only accounted for values within two standard deviations
of the mean when plotting the distributions.

local invariances of the signal could be used as additional prior
information to the MNN in order to mitigate over-tuning. Other
limitations of this study are: the fact that, in section III-B, we
assume that fundamental heart sounds occur in an unchanged
cyclic fashion, which is true from a strictly physiologically
perspective. However, these assumptions are too strong once we
appreciate that mistakes may occur during sound collection (e.g.,
accidentally lifting the stethoscope). Note that the proposed
MNN framework is already sufficiently generic to account for
this phenomenon. One needs only to include an extra state for
such an occasion, and change the underlying automaton from
left-to-right to a more densely connected first order HMM.
Furthermore, we only studied HMMs as the inductive bias for
the time modulation of PCG heart signals. Notwithstanding,
our framework is easily extended to support more sophisticated
priors, such as an adaptation of the HSMM model proposed by
Springer et al. [39].

Finally, we note that our framework has some computational
performance barriers, especially during training. The proposed
loss functions (4), (6) and (5) require sequential computation of
the exact likelihood estimates, which requires mini-batches of
size 1. Consequently, although the model is less complex and
its training is theoretically more time efficient, it is nonetheless
less parallelizable, hence its GPU training is lengthy compared to
the more complex Bi-LSTM+A, since the latter can implement
mini-batch sizes greater than 1. On the other hand, our MNN
instantiation is faster during inference than the U-Net and the
Bi-LSTM+A given its very simple discriminator and feature
extraction pipeline. We note that in order to guarantee phys-
iological valid predictions, all models share the same limiting
factor: the decoder. In fact, we are contemplating non-sequential
extensions of our framework for real-time screening, since the
Viterbi algorithm requires complete observation of a sound in
order to decode its output sequence. A possible next step in this
direction is coupling our MNN with an online short-time Viterbi
decoder [53], thus allowing valid sequences to be emitted by the
MNN in real time.

V. CONCLUSION

In this article, we introduced MNNs by formalizing a set of
principles that allow the embedding of some underlying HMM
with a highly discriminant data-driven neural network through
a unifying loss function. We proposed algorithms encapsulat-
ing gradient-descent strategies for supervised and unsupervised
learning that guarantee the Markovian assumption holds using
a projective strategy of the gradient updates. We instantiated
left-to-right (non-absorbent) MNNs for the downstream task of
phonocardiogram fundamental heart sound segmentation, where
we showed the superiority of the novel framework compared
to two recent fully data-driven architectures. The experiments
were based on the results measured in two publicly available
datasets: PhysioNet’16 and CirCor’22. For the supervised case,
we showed that the simplest MNN leveraging one-dimensional
feature maps is superior to both the U-Net and Bi-LSTM+A. Was
also showed that an MNN is adaptive to new datum sampled from
dissimilar distribution by means of the proposed unsupervised
fine-tuning procedure.
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