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Abstract—Objective: In the last two decades, there has
been a growing interest in exploring surgical procedures
with statistical models to analyze operations at different
semantic levels. This information is necessary for devel-
oping context-aware intelligent systems, which can assist
the physicians during operations, evaluate procedures af-
terward or help the management team to effectively uti-
lize the operating room. The objective is to extract reliable
patterns from surgical data for the robust estimation of
surgical activities performed during operations. The pur-
pose of this article is to review the state-of-the-art deep
learning methods that have been published after 2018 for
analyzing surgical workflows, with a focus on phase and
step recognition. Methods: Three databases, IEEE Xplore,
Scopus, and PubMed were searched, and additional studies
are added through a manual search. After the database
search, 343 studies were screened and a total of 44 studies
are selected for this review. Conclusion: The use of tempo-
ral information is essential for identifying the next surgical
action. Contemporary methods used mainly RNNs, hierar-
chical CNNs, and Transformers to preserve long-distance
temporal relations. The lack of large publicly available
datasets for various procedures is a great challenge for
the development of new and robust models. As supervised
learning strategies are used to show proof-of-concept, self-
supervised, semi-supervised, or active learning methods
are used to mitigate dependency on annotated data. Sig-
nificance: The present study provides a comprehensive
review of recent methods in surgical workflow analysis,
summarizes commonly used architectures, datasets, and
discusses challenges.
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I. INTRODUCTION

TO PROVIDE better treatment to patients, increase the suc-
cess rate in surgeries, and ensure cost-effective utilization

of the Operating Room (OR), new types of equipment and
functionalities are continuously being added to contemporary
medical systems in hospitals [1]. ORs are evolving strongly
towards digitalized environments and increasing the ability of
physicians to carry out more complex and successful surgical
procedures [2]. In addition to being better surgical instruments,
these systems collect and display sensory data for navigation
and monitoring purposes. As the ORs are evolving into more
complex environments, the volume of data to be analyzed during
or after the surgery is increasing rapidly [3], [4]. This data is es-
sential for a successful surgery but it may also hinder the smooth
execution of the procedure if it is not presented in the correct
time and format. Integrating multiple sensors and orchestrating
all data is an important aspect of future ORs [5]. In addition to
the complexity and corresponding volume of medical data, the
number of patients is also increasing, multiplying the workload
in the OR. Consequently, new methods have to be considered
to make the best possible use of the OR. Standardization of
surgical routines and integration of intelligent systems into the
surgical workflow is proposed by Herfarth et al. [6] to address
this problem. Although surgeries are complex procedures, the
same operation types often have similar patterns. These patterns
can be analyzed by smart systems [7]. In that sense, an intelligent
system, which can understand the actions in an OR, process the
medical information accordingly, and represent it in a desirable
way or trigger predefined events, would be very beneficial [8],
[9], [10].

Standardization of surgical procedures can be beneficial for
better execution of operations. It also contributes to the reliable
analysis of surgical workflow systems [11]. The term Surgical
Workflow Analysis (SWA) is used for referring to automatic
methods to extract meaningful patterns for any semantic pur-
pose from surgical procedures. A common method in surgi-
cal workflow analysis is the Surgical Process Model (SPM),
which defines a surgical procedure with predefined smaller
representations [12]. In this approach, a surgical process is
hierarchically decomposed into predefined actions at different
granularity levels, and classification algorithms are employed
afterward for detecting these predefined blocks, i.e., surgical
actions. It should be noted that starting and ending points of
these surgical actions are also to be estimated together with the
classification task. Given the surgical data, segmentation of the
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Fig. 1. Search results of surgical workflow analysis in different
databases since 2008. There is a clear trend of increasing interest in
surgical workflow analysis in recent years. The year bar 2022 shows
studies presented before the term search, August 2022.

actions is not known a priori. The predefined representations
aim to achieve specific objectives in different granularity levels
and can be structured systematically [13]. Surgical phases and
surgical steps are the terms commonly used to decompose an op-
eration. Surgical phases are the main periods of intervention and
refer to the highest-level actions in the OR such as anesthesia,
sterilization, or cutting. Steps are actions needed to accomplish
surgical objectives of phases, as they are more fine-grained units.
Some examples are preparing instruments, setting, or removing
covers [14], [15]. Recognition of these surgical actions provides
semantic information about the surgical procedure and opens
a way for various applications [16], [17]. We limit the scope
of our review to phases, steps, or similarly defined surgical
actions. For a specific application, more detailed information
could be necessary. In that case, the decomposition can be further
processed into finer-grained actions such as activities, gestures,
and dexemes [16].

The earliest works on the analysis of surgical procedures
by decomposing them into sub-parts are published in 2001 by
Jannin et al. [12] and MacKenzie et al. [15]. Initial approaches
used classical machine learning pipelines with statistical feature
extraction methods and classifiers such as Support Vector Ma-
chine, Random Forest, or Hidden Markov Model [17]. However,
these models resulted in limited success. Due to the tremendous
classification and recognition capabilities of multi-layer neu-
ral networks, deep learning models are used progressively in
surgical recognition tasks and their potential is confirmed by
many studies [17]. The annual number of publications related
to surgical workflow analysis since then is depicted in Fig. 1,
showing a strongly increasing interest in the last few years.
This trend is overlapping with the recent breakthroughs in deep
learning. Therefore, we are focusing on deep learning methods
in this review to provide a comprehensive overview of recent
methods and data.

There are already reviews in the field of surgical workflow
analysis. Lalys and Jannin [14] reviewed acquisition, model-
ing, analysis, application, and evaluation techniques for sur-
gical process modeling in 2014. They provided the taxonomy
and compared different approaches in their analysis. Antunes
et al. [18] reviewed sensors applied for capturing the workflow
of healthcare environments and analyzed gaps in this application
area. Garrow et al. [19] have provided an overview of the latest
algorithms and data sources for surgical phase recognition in
2018. Junger et al. [20] have investigated 58 studies published
between 2010 and 2019 at different granularity levels with a
focus on applicability and transferability. Amsterdam et al. [16]

Fig. 2. Process of selecting the related studies for our review. The grey
rectangles show the database search, the blue rectangle represents the
manual search, and the green rectangle represents the total number of
selected studies.

have focused on low-level granularity and reviewed gesture
recognition techniques in robotic surgery.

The contribution of our review is fourfold: we review studies
published after 2018 on high-level surgical workflow analy-
sis such as phase and step recognition, we point out current
challenges in the field, we provide a structured analysis of
contemporary methods used for feature extraction and modeling
distant temporal relations, we list publicly available datasets for
surgical phase or step recognition, and we discuss challenges
and what could be future research directions.

II. METHODOLOGY

The literature search for selecting studies is conducted fol-
lowing the PRISMA guidelines [21].

Literature Search: The literature search is carried out by
using IEEE Xplore, Scopus, and PubMed databases. Since the
terminology for surgical workflow analysis is not necessarily
the same in every study, we have decided to include synonyms
that might relate to our search in order to achieve a better
exploration of the available literature. For our database search,
we included the terms: surgical workflow analysis, surgical
workflow recognition, surgical workflow segmentation, surgical
workflow detection, surgical phase recognition, and surgical
step recognition. Only studies between 2018 and July 2022, the
time of writing this article, were considered.

The initial search yielded 381 studies, which were reduced to
343 unique studies after removing duplicates. During the follow-
ing title screening process, review papers and unrelated studies
were eliminated. A full-text reading for the remaining 68 studies
followed and we ultimately selected 32 studies. In addition to the
database search, a manual search was conducted afterward using
Google Scholar and PubMed, which was guided by references
and the above-mentioned terms. Here, we selected 12 studies,
and thus the total number of studies for our review increased to
44. The overall study selection procedure is illustrated in Fig. 2.

Inclusion and Exclusion Criteria: In the full-text reading part,
we included studies explicitly explaining their model architec-
ture, and reporting their results on surgical phase recognition,
step recognition, or with a similar level of detail. In this review,
we have constrained our search to deep learning methods, thus,
in this full-text reading part, we have selected only studies that
utilized deep learning techniques. Furthermore, we included
only peer-reviewed studies and excluded studies that were not
published in English, used only synthetic data, or focused on
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animal surgeries. We applied these exclusion criteria since such
types of data and surgeries may not be representative enough
for human surgeries and thus potentially negatively affect model
comparisons.

Study Selection: Literature search, removal of duplicates, and
title screening were performed by a single reviewer. The full-
text reading inclusion and exclusion criteria were validated by
a second reviewer. Disagreements were resolved by agreement
after a discussion or by consulting other reviewers’ opinions.
The list of selected studies is given in Table I.

III. CHALLENGES

Achieving accurate surgical phase and step recognition poses
significant challenges which can be broadly categorized into
two main areas: model and data-based challenges. Model-based
challenges arise during the design and development of deep
learning models. Data-based challenges pertain to the availabil-
ity and quality of the datasets.

A. Model-Based

1) Temporal Relation Modeling: A well-known problem in
surgical workflow analysis is aggregating the necessary long-
term temporal information into an estimation at the current
time step. This information is vital when the data window used
for estimation does not contain sufficient distinctive informa-
tion to generate reliable outputs. An example in Laparoscopic
Cholecystectomy (LC) operations is the limited inter-phase and
high intra-phase variance among frames, which refers to weak
dissimilarities of signals in different classes and substantial
differences in the same classes [42], [58]. These frames can
be recognized correctly by aggregating related temporal infor-
mation. The temporal-relation models in selected studies are
analyzed in Section IV-B.

2) Class-Imbalance: Although recognizing all phases is
equally important for clinicians, the distribution of samples in
each phase may vary significantly. The class-imbalance problem
hinders the learning capabilities of the models [28], challenges
correct performance evaluation [60], and results in missing
recognition of short phases or steps [55]. The problem originates
from the fact that certain phases or steps may consist of many
more actions and hence naturally require more time. In an
example study, Zhang et al. [57] reported varying phase du-
ration’s ranging from one minute to four hours in Laparoscopic
Sacrocolpopexy (LS). The execution time of each action can
also differ depending on the operating personnel and condition
of the patient, or optional phases can even be entirely omitted
under certain conditions [48], [54].

For cataract surgeries, Primus et al. [26] undersampled large
phases and augmented minor phases to have an equal number of
samples in all phases. In a similar sense, Zhang et al. [44] used
Synthetic Minority Oversampling Technique (SMOTE) [66] in
Sleeve Gastrectomy (SG) operations. However, these resam-
pling techniques do not consider temporal information and may
even degrade the performance of the model in some cases [67].
Modified loss functions, such as class-weighted cross-entropy
or focal loss are proposed to mitigate this problem and shown
to be effective [44], [48].

3) Input Noise: Noisy inputs distort short-time temporal in-
formation and make the classification tasks more challeng-
ing [27], [33], [47]. In endoscopic video data of LC, these
frames occur when the camera lens is covered with blood or

moisture, moved out of the body for cleaning, not correctly
focused on the operating area, or created blurry images. In [32]
and [40], authors initially detected these frames and classified
them separately without disturbing the temporal information
flow of other frames. Similarly, an out-of-topic conversation
with the medical staff can create noise with speech modality
in a similar manner [65]. Filtering these conversations before
the workflow analysis task could be beneficial.

4) Modality: Different modalities present particular chal-
lenges and require specialized techniques for feature extraction
and model design. Video is the most commonly used modality in
our review, especially endoscopic video in LC and microscopic
video in cataract surgery. Limited inter-phase and high intra-
phase variance, noisy input frames, and subtle details being of
key importance are reported as the main challenges. Tool usage
information is another data source that indicates which tools
are being used and when. Obtaining these data is often done
by manual labeling, thus it is not possible to use in real-world
applications. Solutions to this problem are offered by modify-
ing surgical instruments physically, e.g., adding tool-tracking
devices [68] or RFID tags [69]. Therefore, this modality is not
widely used in the latest studies. Sahu et al. [36] initially rec-
ognized tools in videos and estimated surgical phases with this
information. Besides visual information acquired from videos
another important aspect is the audio data. In the speech modal-
ity, using multiple expressions for similar meanings, different
languages, off-topic conversations, and background noise are
reported as possible challenges [45].

5) Online/Offline Setting: An online algorithm refers to a
method that can perform the SWA task as the new data arrives
sequentially, hence the algorithm utilizes only current and past
data. That translates to real-time decision-making capability,
in contrast to offline algorithms which require access to data
from the entire operation. In the online setting, algorithms
must optimize efficiency and reliability at the same time while
utilizing limited hardware capacity [56]. Conversely, offline
algorithms have the advantage of accessing the entire data set
at once, enabling them to produce more accurate results [51].
These properties are utilized in Yu et al. [25] in which a teacher
network operates offline and is trained on a small set to predict
the annotations for all training data. The training data is then
used in the student network operating online.

Online recognition algorithms can help physicians to reduce
surgical errors by following surgical procedure steps or adminis-
tration to plan OR schedule more effectively. Offline recognition
algorithms can be used for educational purposes in the analysis
and assessment of the surgery. Table I shows the online/offline
settings of all selected studies.

6) Evaluation: Correct evaluation of models and comparing
them poses a great challenge. Commonly, frame-wise perfor-
mance analysis of algorithms is done with the following metrics:
Precision (PR), Recall (RE), Accuracy (AC), F1 score, and
Jaccard index (J). Using the phase-wise set of Ground Truth
(GT) sample-label pairs and set of Prediction (P) sample-label
pairs, these metrics are computed as:

PR =
|GT ∩ P |

|P | , RE =
|GT ∩ P |
|GT | , J =

|GT ∩ P |
|GT ∪ P | .

The AC shows the percentage of frames correctly classified
in the ground truth labels. The F1 score is the harmonic mean of
the precision and recall. Except for AC, phase-wise classification
results are then macro-averaged over an operation, and average
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TABLE I
SUMMARY OF OUR INCLUDED STUDIES GROUPED BY YEAR
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results of all operations are commonly reported as the final
metrics. Especially in strongly imbalanced datasets, the AC
score under-represents the errors in short phases. That can result
in a high accuracy even if the model performs poorly on the
minority class. Macro-averaging assumes equal importance of
all phases. Thus, metrics such as Jaccard and F1 score give better
insight into the model performance. The precision assesses the
rate of false-positive predictions, indicating phases recognized
erroneously. The recall checks for false-negative predictions,
evaluating whether parts of a phase are missed.

In addition to frame-wise metrics, Padoy et al. [7] proposed
two custom metrics to calculate classification errors within
phases or completely miss-classified phases. Similarly, Der-
gachyova et al. [70] proposed using three new metrics to track
the consistency of the estimations, positive and negative time
delays, and over-segmentation errors. Among selected studies,
Zhang et al. [57] leveraged an event-based Ward [71] metric for
the evaluation of their model in a highly imbalanced dataset.
Moreover, Ban et al. [59] used Levenshtein distance [72] and
Zhang et al. [54] used segmental edit distance [73] and seg-
mental F1 score [74]. Confusion matrices and color ribbons
showing ground truth and predictions are also used widely.
Although these tools can not provide numerical conclusions,
they can give insights into the performance of the proposed
models.

B. Data-Based

1) Dataset Size: There is a great effort in the research com-
munity to create large annotated datasets for surgical workflow
analysis. However, limited available surgical data is still the
key limitation for designing robust systems. Publicly available
datasets for surgical workflow analysis and their properties
are summarized in Section V. According to Maier-Hein
et al. [75], regularity constraints, incompatibility of different
data sources, insufficient and unstructured data storage, and
hardware limitations are the current main problems for establish-
ing large surgical data sources. In response to legal constraints
for patient data protection, Kadkhodamohammadi et al. [53]
anonymized ambient videos via face detection and subsequent
masking algorithm. Anonymization algorithms can help protect
patient privacy and ease the establishment of new public datasets.
Moreover, synthetic data generation can also be an alternative for
creating large annotated data automatically [76], [77]. However,
there is a sim-to-real gap between synthetic and real-world
data [78]. Thus synthetic data can not alone solve the issue of
limited dataset size.

2) Operation Type: In SWA, each operation type might ne-
cessitate the design of different methods considering the unique
characteristics of the procedure to solve the recognition task.
Even though a particular method may be effective for one type
of operation, it may not be suitable for use in another. While
limited inter-phase and high intra-phase variance problems are
reported in LC [27], [42], [58], the strong similarity of frames
needs to be considered in cataract surgeries [46]. In the SG
procedure, an extreme class-imbalance problem is reported [44].
In open surgeries, the usage of head-mounted cameras and
the necessity of privacy-preserving methods are mentioned as
challenges [53]. An inspiring work on this topic is presented
by Neimark et al. [79]. The authors performed step recognition
tasks on four different laparoscopic surgeries.

3) Annotation: In our study, the majority of the selected
studies focus on supervised learning. However, creating a large
annotated dataset for fully supervised learning is a laborious and
costly task. Collaborating medical experts define surgical phases
or steps of interested operation type. Following annotation work
in an entire dataset is either directly done or validated by
medical experts. However, these definitions or annotations may
not be universally accepted and can vary between experts [48].
When multiple experts are contributing to the study, a strong
correlation of their annotation or validation work is required to
ensure a minimum degree of ambiguity and label noise [55]. An
example of the potential differences in definitions of the same
procedure type can be seen between M2CAI16 [80], [81] and
the Choec80 datasets. M2CAI16 has an additional Placement
of Trocars phase which is included within the Preparation
phase of Cholec80. To mitigate the dependency on annotations
and lessen the costly process, unsupervised, semi-supervised,
self-supervised learning, and active learning methods are pro-
posed. These methods are summarized with selected studies in
Section IV-C.

IV. STEP AND PHASE RECOGNITION APPROACHES

In this section, we examine selected studies for their feature
extraction and temporal relation modeling methods, see Fig. 3.
Additionally, annotated data for workflow analysis is limited. In
the last section, we review strategies developed to address the
challenge of limited data.

A. Feature Extraction

In early studies, Convolutional Neural Networks (CNNs)
were shown to be more effective for feature extraction than state-
of-the-art statistical methods. In surgical workflow recognition,
Twinanda et al. [80] showed that using features extracted via a
CNN-based architecture yields significantly better results than
using handcrafted features. In our review, all of the selected
studies using videos preferred CNN-based architectures for
feature extraction. In the speech domain, Seibold et al. [65]
used log-spectrograms and Guzmán-García et al. [45] used the
Word2Vec [82] model for creating features from the transcrip-
tion of speech uttered during surgery.

To improve the shallow architecture used in [80], Jin et al. [27]
compared a 22-layer GoogLeNet [83], and a ResNet [84] model
with 35, 50 and 101 layers respectively. Jin et al. achieved the
best results with ResNet-101 and showed that the depth of the
CNN module has a positive impact on its performance. However,
using very deep networks increases the risk of overfitting when
training data is not abundant. Thus, they used ResNet50 in
their study. Czempiel et al. [37] compared AlexNet [85] with
ResNet50 and reported an increase in accuracy up to 8% by using
the ResNet architecture. ResNet pre-trained on ImageNet [86]
is used extensively as a backbone architecture, i.e. in 20 of the
reviewed studies. Jin et al. [42] compared their model with
ResNet and ResNeSt [87] backbones and reported improved
results with ResNeSt. Zhang et al. [54] made an ablation study
for feature extraction with a CNN-based network R(2 + 1)D
[88], a BERT [89] based transformer network and a hybrid model
with their combinations. They reported very close results with
their CNN-based network and hybrid model, and worse results
with only transformer-based architecture.
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Fig. 3. Temporal relations are crucial to analyze surgical workflows. While a few studies rely on no temporal connections, RNNs have been clearly
the dominant algorithm in the beginning. Lately, non-local networks, TCNs, or transformer-based approaches are used more frequently.

Adding auxiliary features to boost the performance of neural
networks is considered by several studies. Qi et al. [30] added
manually extracted edge information from original images to
ResNet features and reported improved accuracy in phase recog-
nition. However, the reason why edge information is not already
captured by ResNet is not discussed in this study. Additionally,
tools could be informative complementary sources for workflow
analysis, as they can be used for recognizing specific phases or
steps [17]. Zisimopoulos et al. [28] used ResNet to estimate
binary tool usage information and added this information to
classification layers. Moreover, using multi-task learning with
closely correlated tasks can improve feature extraction. Jin
et al. [35] showed consistent improvement in both phase and tool
recognition tasks with multi-task learning. In addition to recog-
nizing surgical phases and tools, recognizing surgical actions at
different granularity levels is another technique for multi-task
learning. Ramesh et al. [48] reported improved results when
the network trained simultaneously for recognizing phases and
steps.

B. Temporal Relation Modeling

1) Frame-Wise Models: A naïve approach for surgical work-
flow analysis is performing frame-wise classification directly
based on extracted features from a single image. Even for
experts, this is almost an impossible task, and the implicit
fact of ignoring temporal relations causes a significant drop in
performance [27]. Zhang et al. [44] improved this approach
using a 3D CNN to extract features. This includes temporal
information from the set of past frames. Pradeep and Sinha [43]
extracted spatio-temporal features from 64 images together
and used them for classification directly. In this way, they
achieved 86.07± 0.04% accuracy on Cholec80 with a signif-
icantly smaller-sized network than standard networks, i.e. with
4.7M parameters. It shows that this approach may be useful
for hardware-limited applications. However, this aspect is not
considered a priority in other studies.

2) Recurrent Neural Networks: Recurrent Neural Networks
(RNNs) have been employed successfully with sequential data
in many applications. The RNN can carry the memory state
ht−1 from previous states to the computation of the current
prediction yt, t indicating the time step. Commonly, Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
are used instead of the general RNN model. The key idea in
this model is forgetting non-useful information and memorizing
new information in separate steps. In the LSTM, for the input
signal x and learnable weights, Wf ,Wc,Wi,Wo, the first step

is computing the vector f in the forget gate to control which part
of the information to de-emphasize:

ft = σ(Wf [ht−1, xt])

where σ is an activation function, and [·] is the concatenation
operation. In the next step, new information to be added is
memorized in input gate using input data and hidden state:

it = σ(Wi[ht−1, xt])

C̃t = tanh(WC [ht−1, xt]).

The cell state C is updated afterward with candidate vectors:

Ct = ft � Ct−1 + it � C̃t

using the element-wise multiplication operator �. Finally, the
current hidden state ht and the output vector yt are computed
with the following equations:

ht = σ(Wo[ht−1, xt])� tanh(Ct)

yt = σ(ht).

The GRU operates following the same logic, differing only
in the fact that the memory operates directly via a hidden
state and does not use an additional cell state. This recursive
characteristic makes RNNs an appropriate candidate for an-
alyzing sequential surgical workflow. Jin et al. [27] made an
ablation study comparing the ResNet model with and without
additional LSTM layers for phase recognition and reported
improved accuracy. 21 studies in our review used RNN as a
part of their architectures, including CNN-RNN models and
using solely RNNs for the temporal modeling. Zisimopoulos
et al. [28] compared LSTM and GRU [90] architectures and
reported that the LSTM-based version of their model showed
better performance. Bi-directional RNNs (BRNNs) can also
further enhance performance by processing the data first in the
forward direction and in the backward direction afterward. Zia
et al. [29] achieved the best results in their study with single-layer
bi-directional RNNs. A limitation of the BRNN is that it can only
be used in an offline application.

RNNs have drawbacks as they are slow to train with large
datasets and have a limited receptive field in practice [91]. That
is similarly reported in several studies in our review [37], [41].
The duration of a surgery can be multiple hours and the short
receptive field of LSTMs can be a limiting factor [37].

3) Temporal Convolution Networks: Temporal Convolu-
tional Network (TCN) [73] and multi-stage TCNs (MS-
TCN) [92] are proposed to hierarchically capture long-range
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spatio-temporal relationships from sequential input data. TCNs
aim to capture low-level and high-level features via a stack of
multiple dilated convolutional layers, which has a larger filter
derived by dilating the original convolution filter with zeros. This
helps the convolution layer to operate on a coarser level. A stage
is constructed by stacking multiple dilated convolutional layers
with increasing dilation factors. For online algorithms, casual
dilated convolution layers are used in stages, which ensures that
kernel computations are made only using previous data points.

Five studies in our review used TCN. Czempiel et al. [37]
replaced RNN layers of a CNN-LSTM model with a multi-
stage TCN for the first time and reported an increase of 2%
accuracy. They compared their model with one, two, and three
stages and observed improvements from the one-stage model
to the two-stage model, but decreases in performance in the
three-stage model. The performance drop could be explained by
overfitting. Ramesh et al. [48] compared one and two-stage TCN
and LSTM with the same ResNet backbone and confirmed the
best results with two-stage TCN. Zhang et al. [51] used four-
stage non-causal TCN, however, the effect of this choice is not
additionally experimented with. Similarly to other approaches,
Ding et al. [63] used ResNet50 and an MS-TCN in a contrastive
learning setting.

4) Non-Local Networks: A non-local block aims to compute
the response of the input signal at position j to the input signal
in all other positions in time or space. This way, interactions
between any two positions can be represented [93]. In that
sense, the non-local block can be seen as a more general version
of self-attention, encompassing broader space and space-time
relationships. The non-local operation is constructed as follows:

yj =
1

C(x)
∑
∀k

F(xj , xk)G(xk), (1)

where j is the position index, k enumerates all other indexes,
x is the input signal, F is a pairwise function outputting a
scalar for representing relationship, G computes the represen-
tation of the input signal, and C is the normalization factor. A
non-local block can be plugged into existing architectures to
learn the relationship between frames in space. In our review,
five studies used non-local blocks. Shi et al. [56] compared their
network with and without non-local block on top and reported
an increase in accuracy with non-local block. Jin et al. [42]
used this scheme to incorporate the current feature vector and
memory vector. They examined the effectiveness of a non-local
block by comparing it with a weighted average operation in
surgical workflow analysis and reported better results with the
integrated non-local block. In [34], Shi et al. used non-local
blocks to learn dependencies between frames and used this
dependency information to find the most informative frames in
an active learning setting. Ding et al. [33] extracted relationships
between all pixels and frames simultaneously by using non-local
blocks embedded in 3D CNNs. Computing these relationships,
however, significantly increases the computational load of the
network.

5) Transformers: Transformers aim to efficiently model tem-
poral relations and extract global features using the self-attention
mechanism [94]. The Transformer uses stacked self-attention
and point-wise, fully connected layers in the encoder-decoder
structure. The self-attention layer input consists of a Query
matrixQ, a Key matrixK with dimension dk, and a Value matrix

V . It is represented as:

Attention(Q ,K ,V ) = Softmax

(
QKT

√
dk

)
V . (2)

The attention mechanism calculates the similarity between
queries and keys via dot product operation, resulting in a sim-
ilarity score. The dot product is scaled by the square root of
the dimension of the key vectors to have more stable gradients.
The result is utilized to assign weights to the corresponding
values. The weighted values are combined through summation,
ultimately generating the output of the attention mechanism.

In our review, seven studies used Transformers. Similar
to common CNN-LSTM models, Czempiel et al. [50] used
ResNet50 for frame-wise feature extraction but they preferred
an 11-layer transformer network for temporal relation mod-
eling. They compared a CNN-LSTM model, a CNN-TCN
model [37], and their proposed CNN-Transformer architectures
using two different datasets. They reported best results with
CNN-Transformer model achieving 1–2% increase in accuracy
compared to CNN-TCN model and 4–6% increase compared
to CNN-LSTM model. Gao et al. [49] presented a TCN-
Transformer network that uses TCN layers to extract temporal
features from spatial features and fuses them with Transformer
layers. Zhang et al. [54] compared temporal modeling methods
with an MS-TCN model, MS-Longformer [95], and a hybrid
model with their combination. They achieved the best results
with their hybrid model. Ding and Li [58] used Transformers to
learn the relationship between segments in different temporal
resolutions. Valderrama et al. [62] leverage Transformers to
detect actions, phases, instruments, and steps. With their archi-
tecture, improved results on the PSI-AVA dataset can be achieved
compared to CNN-based methods.

Applications using Transformers are frequently trained on
vast amounts of data, which is not available for tasks analyzing
surgical workflows. When trained in the absence of a sufficient
amount of data and proper regularization, Transformers do
not generalize well unlike CNNs due to the lack of inductive
bias. Another drawback is that Transformers require substantial
power for processing, and GPU memory increases quadratically
with the input size. Utilizing Transformers can be particularly
difficult given these factors.

6) Other: Kadkhodamohammadi et al. [60] used Graph Neu-
ral Networks (GNNs) to incorporate temporal information. They
represented each feature vector extracted from a single image
with a node in the graph and processed the whole video through
several layers by aggregating information from neighboring
frames. Jin et al. [42] used feature vectors extracted from short
video clips to create a memory bank, which stores information
about the distant past. In their memory bank, they can access the
last 30 stored feature vectors. Later, they use the past temporal
information from the memory bank during the current surgical
phase estimation. Ban et al. [41] used hidden states of the LSTM
layer to create a memory. Then, they leveraged this memory via
statistical models and added it to the current phase estimation.
Hierarchical learning or multi-step learning methods are also
considered in several studies. Ji and Jiang [32] designed a
framework with the goal of classifying frames that are hard
to detect first, in order to then process these frames separately
for the final estimation. Ding and Li [58] used segment-level
features for estimating the current phase of a frame. In addition,
Guzmán-García et al. [45] extracted word vectors and compared



5412 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 11, NOVEMBER 2023

HMMs together with SVM, random forest, logistic regression,
and shallow linear layers for classification. Paysan et al. [52]
used hidden semi-Markov model for modeling temporal rela-
tions. Zhang et al. [64] present an offline approach using a
multi-agent network to predict the transition of phases. The net-
work contains LSTM and a Deep Q-Learning Network (DQN)
which segments a single phase. Different phases are merged via
a Gaussian composition operator.

C. Learning Strategies

Assessing different learning strategies in deep learning is quite
common. The most frequently used strategy in surgical workflow
analysis is supervised learning. However, the field of supervised
methods evolved to address the challenges in complex and cost-
intensive data annotation processes. While purely supervised
methods often need a huge amount of data to generalize, semi-
supervised learning uses only a small amount of annotated data.
Annotating OR videos requires expert knowledge, as the phases
are even hard to distinguish by individuals [96]. Therefore, the
strategy of semi-supervised learning [22] is of interest for such
complex tasks. Chen et al. [22] uses semi-supervised learning
to combine temporal and spatial information. Considering the
learning strategies, classical supervised methods, they for exam-
ple use a CNN for feature extraction followed by temporal mod-
eling [28]. Semi-supervised approaches require more individual
steps. Chen et al. [22] use a spatial CNN based on unsupervised
generative adversarial learning followed by a connection be-
tween low-level surgical video features and high-level surgical
workflow semantics. In their last step, they use semi-supervised
learning to integrate the spatial and the temporal models for
finetuning, respectively the CNN and LSTM.

For missing data annotations, another strategy is self-
supervised learning. Self-supervised learning can be categorized
as a method between supervised and unsupervised learning. In
the first place, pseudo labels are used to initialize the network
weights. Afterward, either a supervised or unsupervised method
is applied to fit the network toward the final task. Yengera
et al. [97] used readily available time-stamps of endoscopic
videos to train their network for remaining surgery duration
estimation before fully performing surgical phase recognition.
For surgical workflow analysis among selected studies, Funke
et al. [24] proposes several self-supervised pre-training strate-
gies using temporal coherence. Similar to many supervised
approaches [23], [32], [38], [41], [48], Funke et al. [24] rely
on a ResNet50 backbone. The backbone is pre-trained using a
contrastive loss and a ranking loss. For supervised fine-tuning,
the CNN is extended using LSTM. Contrastive learning is a
sub-strategy of self-supervised learning. A contrastive learning
algorithm tries to map features from similar data instances
closely while mapping features from distinct data instances into
separated points in the feature space. The model learns which
points in the input are similar to one another and which ones
differ. Xia et al. [46] introduced a contrastive branch in their CNN
to learn spatio-temporal features. They used this technique to to
handle the limited inter-phase and high intra-phase variance.
Ding et al. [63] use contrastive learning to transfer knowledge
in a teacher-student manner from publicly available datasets to
the surgical domain.

Moreover, a weakly-supervised learning strategy can be suit-
able for a huge amount of data where only a subset is annotated or
when the data contains noisy labels. Nwoye et al. [39] use weak
supervision to support the action recognition. Zhang et al. [64]

utilized the method of reinforcement learning for surgical phase
recognition. While previous methods predict frame-wise and
potentially add the time axis via e.g. RNN. The approach of
Zhang et al. predicts the start and end frame of every phase.

Furthermore, active learning evolved which also aims to
tackle the cost-intensive data annotation processes. In active
learning, a random subset of data is selected and a teacher, mostly
a human is asked to annotate this subset which is then used
to train the network. Afterward, the trained network is used to
annotate the rest of the data. This process is repeated and can be
seen as an iterative supervised approach. For surgical workflow
analysis, Bodenstedt et al. [31] and Shi et al. [34] apply active
learning to find important data points in videos of the surgical
workflow.

Besides the challenge of missing annotations or only a small
amount of data, the models used in the deep learning domain
are growing rapidly and often contain a high computational cost.
The teacher-student strategy applies two networks where the stu-
dent network contains less computational cost than the teacher
network. The student learns the intermediate feature maps of the
teacher and aims for convergence with a simpler architecture.
Yu et al. [25] approach this for surgical workflow analysis and
further address the annotation problem. Their teacher network
operates offline and is trained on a small set of data to predict
the annotations for all training data. This data is then used to
train the student network operates online.

V. DATASETS

In this section, publicly available datasets for surgical work-
flow analysis and their properties are summarized, see Table II.

M2CAI16: This dataset contains two separate sub-
datasets [80], [81]. The first dataset is m2cai16-workflow,
contains endoscopic videos from 41 procedures for phase
recognition. In this challenge 27 videos are separated for
training and remaining videos are used for testing. Videos are
recorded at 25 fps with 1920 × 1080 resolution. Operations in
these videos are annotated with eight phases.

Cholec80 & CholecT50: The dataset contains endoscopic
videos from 80 laparoscopic cholecystectomies, performed
by 13 surgeons at the University Hospital of Strasbourg,
France [80]. Videos are recorded at 25 fps with 1920 × 1080
resolution. The dataset contains annotations for phases and tool
usage. Surgeries are decomposed into seven phases by a senior
surgeon in the same hospital.

HeiChole: The dataset contains 33 videos with seven surgical
phases similar to Cholec80 [98]. In addition to previous datasets,
the cameras and fps vary. HeiChole is recorded in three different
Hospitals in Germany. Among all, 15 videos captured at Hei-
delberg University Hospital have a resolution of 960 × 540 and
25 fps. Other 15 videos were recorded at Salem Hospital and
the remaining three videos at GRN-hospital Sinsheim. These
are recorded with a resolution of 1920 × 1080 and 50 fps and
three videos at Salem Hospital are recorded with a resolution
of 720 × 576 and 25fps. The dataset is annotated by medical
experts. It contains annotations of seven surgical phases, four
actions, and 21 tools.

HeiCo: The dataset contains ten laparoscopic videos from
each proctocolectomy, rectal resection, and sigmoid resection
procedure [99]. All 30 operations are recorded at Heidelberg
University Hospital and annotated for surgical phase recog-
nition, binary and multi-instance segmentation tasks. Video
frames are originally recorded at 1920 × 1080 resolution and
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TABLE II
SUMMARY OF PUBLICLY AVAILABLE DATASETS FOR SURGICAL WORKFLOW ANALYSIS

downsampled to 960 × 540. For the anonymization of videos,
frames captured outside of the operated body area are manually
replaced with blue frames. In addition to video frames, 14 sensor
data streams, annotations for surgical phases, and segmentation
masks for tool segmentation tasks are given. All operation types
are covered with total 14 surgical phases.

Cataract-101: The dataset contains 101 microscope videos
from cataract surgeries performed by four surgeons with two dif-
ferent experience levels in Klinikum Klagenfurt, Austria [100].
Videos are recorded 25fps and with 720 × 540 resolution.
Average duration of a surgery is 8.3 minutes, maximum and
minimum durations are 17 and 4 minutes respectively. Surgeries
are defined by ten phases.

CATARACTS: The dataset contains 50 cataract surgery videos
from Brest University Hospital, France [101]. For each surgery
microscope and surgical tray videos together with surgical action
and 21 binary tool annotations are available. Tools are consid-
ered in use when they touch the eyeball. Phase annotations are
not provided in this dataset, authors in [28] created annotations
with medical experts using the 14 phases.

PSI-AVA: The dataset contains eight radical prostatectomy
operations performed in Fundación Santafé de Bogotá Univer-
sity Hospital, Colombia [62]. Annotations are structured for
high-level analysis in phase and step recognition levels and for
low-level analysis in instrument detection and action recognition
levels. Total duration of dataset is 20.45 hours and the operation
is defined with 11 phases and 21 steps.

THADataset: The dataset contains recordings from five total
hip arthroplasty operations performed in Balgrist University
Hosiptal, Switzerland [65]. During the data collection an air-
borne shutgun microphone is used. The recordings are then
manually cut to have recordings without overlapping classes
and background talks. Resulting 568 recordings are then labelled
with six classes.

VI. DISCUSSION

In this section, the progress in the contemporary SWA field is
discussed under model and data based topics.

A. Model-Based

Like other computer vision approaches, CNNs are the promi-
nent methods for feature extraction. They put significant rep-
resentation capability to use and became the standard choice

in video-based models. The importance of aggregating long-
time temporal information for better recognition performance is
shown to be vital [23], [27], [33], [41], [42] and considered in
almost all selected studies. The intuitive CNN-RNN models are
the most frequently used method to leverage temporal relations
in our review and these models achieved decent results. Their
usage is limited by the fact that RNNs are non-parallelizable and
can not preserve memory from a distant time in practice. This
problem is approached by using CNN-based 3D-CNNs or TCN
models, attention-based non-local networks or Transformers,
memory networks, or hierarchical segmentation designs. In sim-
ilar computer vision fields such as temporal action segmentation,
temporal action detection, or sequence segmentation, these mod-
els are successfully utilized [102]. However, their effectiveness
in the SWA can be affected by the limited amount of avail-
able data. Although impressive results are observed with these
architectures as in Table III, difficulties in the comparison of
different proposed models make it challenging to draw concrete
conclusions.

Table III presents studies utilizing the most common pub-
licly available dataset Cholec80. Comparing studies on this
dataset shows that the respective training/testing strategies vary.
Training and test data split, online/offline settings, and post-
processing algorithms have an effect on the overall performance.
In Table III, a 40:40 data split is most commonly used following
previous work [80]. Moreover, if a cross-validation method is
used, averaging is generally performed over average results of
each training run, thus, standard deviation shows consistency of
the model with different data splits rather than standard devia-
tion over operations. Also, not all studies in Table III reported
standard deviations in their results. During the evaluation, used
metrics, their calculation steps, and reasons for their choices
should be explicitly reported. Finally, relatively high standard
deviation results in several studies indicate that proposed models
perform differently among some operations in the test set. This
could be a result of overfitting.

Difficulties of the class-imbalance problem arise due to the
unequal phase distribution. Recognizing longer phases is easier
for learning algorithms due to the large number of data samples
and may lead to higher recognition accuracy easily. Similarly,
the misclassification of short phases may have little effect on
the overall performance. Because all phases of an operation are
vital, such systems would not be clinically preferred. Moreover,
the unequal distribution of phases might obstruct the learning
capabilities of the model. The misclassification of major phases
would contribute to the loss function significantly, and the
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TABLE III
PHASE RECOGNITION RESULTS OF DIFFERENT STUDIES UNDER SUPERVISED LEARNING REGIME ON CHOLEC80 DATASET

model would mainly optimize for these phases. Depending on
the operation type and phase distribution characteristics, the
class-imbalance problem should be considered during model
design, training, and evaluation processes.

The video modality is the major source of information in SWA
encompassing the strong majority of all selected studies. Only
two studies used additional sensor data and two studies used the
speech modality. Every modality presents unique challenges and
opportunities for surgical workflow analysis. Hence, endoscopic
videos are captured from inside body cameras, thus, do not pro-
vide any information about the operating room [17]. Similarly,
microscopic videos provide a view only from a limited aspect
of the eyes. These might be limiting factors for recognizing
the occurrence of out-of-sequence events. Furthermore, it is not
possible to cover all surgeries with these modalities. Therefore,
it is necessary to investigate other possible data sources in future
research to extend the usability of surgical workflow analysis.
The new data modalities can be utilized solely or together with
existing sources. Including an additional modality can enhance
algorithm performance and robustness.

Common medical imaging methods for surgeries or inter-
ventions like ultrasound, X-Ray, or Computed Tomography
may provide useful information and these data can be captured
similarly to endoscopic videos. Ambient monitoring of the OR
with RGB or depth cameras could provide similar or even richer
information [17]. Pose estimation of medical personnel, object
recognition, or activity recognition algorithms can be employed
to extract further information with this modality. Zia et al. [29]
use kinematic data generated by the surgeon console during
robot-assisted surgery. They report inferior results compared
to image-based models. Investigating the combination of two
modalities is pointed out as future work. Additionally, devices
such as insufflators, irrigation pumps, or light sources can be
utilized similar to kinematic data. Speech and audio recordings
are the final types of data used for phase recognition among
selected studies and are only utilized in [45], [65]. Despite the
growing interest in surgical phase recognition, the use of speech
and audio in these models has received little attention. Thus,

the challenges and opportunities of using speech and audio
sources can only be fully understood after more research is
conducted. The main reasons for the limited usage of speech
and audio can be difficulties in data acquisition and process-
ing. Using Automatic Speech Recognition (ASR) and language
understanding systems to extract simple clinical knowledge is
already discussed [105]. In the same way, speech and audio
data combined with language models can be used for phase
recognition and the development of interactive surgical devices
in the future.

B. Data-Based

The key obstacle in the SWA field is that publicly available
data are limited by annotation, amount, variation, data type,
and operation type. Operations in OR are complex procedures,
and automatically analyzing these procedures is a difficult task.
Therefore, large, diverse, and representative data is necessary
for robustly solving this task [2]. Collection of high-quality large
annotated surgical datasets with many variables is an expensive
process and sharing these data with all researchers in the field is
often challenged by local laws, patient data security concerns,
or physical limitations. This bottleneck may cause developed
models to perform at the desired level within only the same
dataset and the same operation type.

Generalization problems stem from inadequate variable repre-
sentation in datasets and require further investigation. Proposed
models are often trained with data obtained from a single or few
medical centers. The variable parameters such as used instru-
ments, lightning conditions, complications, style of physicians,
or their experience levels could have an effect on the algo-
rithms’ performance [26], [37], [57]. Bar et al. [106] investigated
generalization with their private laparoscopic cholecystectomy
dataset. Using 1243 videos from four medical centers, they
demonstrated successful phase recognition in a new medical
center by fine-tuning their network with 200 videos. Neimark
et al. [79] used a pretrained network from Bar et al. [106]
and reported high frame-wise accuracies when their network
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trained on 100–200 videos from a new surgery type. The
authors have included three other laparoscopic surgeries in
their dataset: Right Hemicolectomy, Sleeve Gastrectomy, and
Appendectomy.

An ideal intelligent system implemented in an OR should be
able to assist physicians, not in a specific procedure but in all
possible operation types regularly performed by them. Currently,
publicly available datasets represent only the most common
operation types in respective medical departments. The majority
of selected studies focused on LC and cataract procedures be-
longing to the most common operation types in general surgery
and ophthalmology [28], [107]. New difficulties, challenges, and
opportunities will arise when operations in other branches are
considered. Even using the same modalities, different surgery
types would posses various challenges. Operational variances
such as working area size, natural duration of predefined phases,
used surgical tools, phase transition order, frequency, or the num-
ber of participating medical personnel would require dedicated
approaches to achieve desired performance. It is impossible to
fully foresee the unique challenges of each procedure. Thus,
it is necessary to experiment with various procedure types.
Table I shows that distinct operation types are considered more
frequently, pointing a trend in this direction. We, therefore,
suggest that future studies should expand to different types of
surgeries. Moreover, the data collection process will be more
expensive and difficult when rare operation procedures are
investigated.

Specific to each procedure, clinical knowledge-based statis-
tical models can be designed and fused to existing models to
boost performance. That is considered in [27], [35], [41], [44],
[51], and considerable improvements in accuracy are reported.
For example, Jin et al. [27] used the order of phases to calibrate
misclassified frames. Zhang et al. [44], [51] used order, duration,
and incidence of phases. In future applications, it is reasonable
to consider operation-specific prior knowledge and medical
experience to design more robust architectures. In the design
of such domain-specific models, the online/offline setting of the
model should be considered.

The annotation work has two discussion points for future
work: granularity and ambiguity. By using finer granularity
levels, studies aim to have a more detailed understanding of an
operation. In Nwoye et al. [39], [61], the authors annotated part
of the Cholec80 dataset with surgical action triplet. The action
triplet includes a combination of instrument usage, performed
verb, and target anatomy. Similarly, Valderrama et al. [62]
provided annotations in RAPD surgery for phases, steps, in-
strument usage, and atomic actions which refers to the finest
body movements or object manipulation. The second point is the
possible ambiguity in phase transitions. The annotation is always
prepared or validated by medical experts. However, expecting
them to choose the exact same time point as the phase transition
is unrealistic and ground truth annotations of multiple medical
experts can show a variance [96]. Instant stops, breaks, talks,
or behaviors that can occur during neighboring surgical phases
contribute to ambiguity. The problem is often addressed by
finding a common point with personal discussion or averaging
individual annotations. Moreover, varying length relaxation pe-
riods between phases are introduced recently with an additional
Not a Phase label to take ambiguities into account [44]. In
this case, relation periods should be reported during the eval-
uation of the models. That is relevant to a valid comparison of
models.

VII. CONCLUSION

In this article, we presented a comprehensive review of re-
cent research works in surgical workflow analysis, focusing
on surgical phases and steps. That is an essential topic for
building intelligent context-aware systems for ORs, and there
has been an increasing interest in recent years. We analyzed
challenges in the field of SWA in two groups: challenges in the
design of algorithms and the creation of datasets. During the
design of algorithms, modeling temporal relations, facilitating
effects of noisy inputs, and achieving desired online/offline
settings are considered in most of the studies, and impressive
improvements are reported. Class-imbalance problem is focused
in several studies, and strong variations in different operation
types are observed. The effects of using different modalities are
under-investigated and could be an interesting future direction.
Details of the evaluation steps should be explicitly given, and
comparisons should consider these details. A standardized and
comprehensive evaluation method would help compare mod-
els and correctly assess advancements. Within the data-based
challenges, limited size and variation of the datasets is the
current bottleneck in the SWA. Collection and publication of
large datasets are restricted by necessary laborious recording
processes and legal procedures. Generalization and challenges
in different operation types are still open for more research.
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