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Abstract—Fetal congenital heart disease (FCHD) is a
common, serious birth defect affecting ∼1% of newborns
annually. Fetal echocardiography is the most effective and
important technique for prenatal FCHD diagnosis. The pre-
requisites for accurate ultrasound FCHD diagnosis are ac-
curate view recognition and high-quality diagnostic view
extraction. However, these manual clinical procedures have
drawbacks such as, varying technical capabilities and in-
efficiency. Therefore, the automatic identification of high-
quality multiview fetal heart scan images is highly desirable
to improve prenatal diagnosis efficiency and accuracy of
FCHD. Here, we present a framework for multiview fetal
heart ultrasound image recognition and quality assessment
that comprises two parts: a multiview classification and
localization network (MCLN) and an improved contrastive
learning network (ICLN). In the MCLN, a multihead en-
hanced self-attention mechanism is applied to construct
the classification network and identify six accurate and in-
terpretable views of the fetal heart. In the ICLN, anatomical
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structure standardization and image clarity are considered.
With contrastive learning, the absolute loss, feature rela-
tive loss and predicted value relative loss are combined to
achieve favorable quality assessment results. Experiments
show that the MCLN outperforms other state-of-the-art net-
works by 1.52–13.61% when determining the F1 score in six
standard view recognition tasks, and the ICLN is compara-
ble to the performance of expert cardiologists in the quality
assessment of fetal heart ultrasound images, reaching 97%
on a test set within 2 points for the four-chamber view
task. Thus, our architecture offers great potential in helping
cardiologists improve quality control for fetal echocardio-
graphic images in clinical practice.

Index Terms—Contrastive learning, fetal congenital heart
disease, fetal echocardiography, view recognition, quality
assessment, multihead enhanced self-attention.

I. INTRODUCTION

F ETAL congenital heart disease (FCHD) is a common,
and serious congenital malformation worldwide and is the

greatest birth defect-related contributor to infant mortality [1],
[2], [3]. Recently, the global prevalence of FCHD at birth has
been 9.4‰, and the reported prevalence of FCHD is increasing
[3], [4]. Early diagnosis of FCHD is essential to improving
the prognosis [5]. Fetal echocardiography is the most effective
and important technique for the prenatal diagnosis of FCHD
[6]. The prerequisite for accurate ultrasound diagnosis of the
fetal heart is accurate view recognition and the identification of
high-quality diagnostic views [7], [8], [9], [10]. Clinically, the
view recognition and quality assessment used to diagnose FCHD
is usually performed manually, which has some drawbacks. For
example, the process is labor intensive and subjective, technical
capabilities vary greatly and it has low efficiency. As shown in
Fig. 1, fetal echocardiography has six guideline-recommended
standard views for the diagnosis of FCHD, including the four-
chamber view (4CV), the left and right ventricular outflow
tract (LVOT, RVOT) views, the three-vessel view (3VV), the
three-vessel and trachea (3VT) view, and the transverse abdom-
inal view (TAV) [11], [12]. The combination of multiple views
can greatly improve the detection rate and diagnostic accuracy
of FCHD [13], [14], [15]. However, based on the commonly
used 4CV scan, each extra view takes at least twice the time
corresponding to each 4CV scan [13]. Moreover, the acquisition
of multiple standard views requires sonographers to master the
spatial correspondence betweenthe three-dimensional structure
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Fig. 1. Six fetal cardiac ultrasound image views, where the main anatomical structures comprise the stomach bubble (St), descending aorta
(DAO), liver and inferior vena cava (IVC) in TAV; left atrium (LA), left ventricle (LV), right atrium (RA), right ventricle (RV) and descending aorta
(DAO) in 4CV; left atrium (LA), left ventricle (LV), right ventricle (RV), aortic root (Ao) and descending aorta (DAO) in LVOT; pulmonary artery (PA),
superior vena cava (SVC) and aorta (AO) in RVOT-1; right ventricle (RV), pulmonary artery (PA), left atrium (LA), right atrium (RA) and aorta (AO)
in RVOT-2; pulmonary artery (PA), aorta (AO), superior vena cava (SVC) and descending aorta (DAO) in 3VV; and pulmonary artery (PA), aorta
(AO), superior vena cava (SVC) and trachea (Tr) in 3VT.

of the heart and the two-dimensional ultrasound views while
obtaining the standard views required for diagnosis within a
limited examination time and acoustic window. This capacity is
difficult to acquire with short training sessions, and centers that
can perform the training are scarce. Overall, there are very few
physicians who can master fetal cardiac examination of multiple
views for FCHD; such expertise cannot be cultivated in a short
period of time but is urgently needed. Therefore, exploring
artificial intelligence (AI) inference models and methods that
can address automatic view recognition and quality assessment
in fetal heart ultrasound scans is highly desirable.

With the development of AI techniques, an abundance of
studies on echocardiographic images have recently been con-
ducted to optimize the scanning process, obtain the standard
view and enhance image quality [16], [17], [18], [19]. For
instance, Narang et al. [20] used AI techniques to guide nurses
without any ultrasound experience to successfully obtain 10
echocardiographic views of diagnostic value. Wu et al. [21] pro-
posed a deep learning network based on knowledge distillation
to identify 23 standard echocardiographic views commonly used
automatically and effectively for the diagnosis of congenital
heart disease in children and obtained a good recognition effect.
Abdi et al. [22] classified the image quality of adult four-chamber
views into five grades, assessed the image quality by adding
noise for distortion simulation, and then used a deep neural
network to perform regression prediction of echocardiographic
image quality. Thus, AI is an effective tool for echocardiographic
image analysis. In contrast to the adult heart, fetal heart ultra-
sound images need to be collected through the mother’s uterus.
The fetal heart has the characteristics of being small in size

and fast beating and has different and changing positions with
different gestational ages, which increases the difficulty of fetal
heart image analysis.

Recently, there have been several attempts at quality control
of fetal echocardiography, which can be roughly divided into
structure-based, and image-clarity based methods [23], [24],
[25]. However, the current state of the research has several
limitations. First, a structure-based quality assessment network
gives scores based on the results identified by the object detection
network. The target of network optimization is to identify as
much of this view as possible, even if a substructure is miss-
ing or unclear. This is contrary to the optimization of clinical
applications. Clinical fetal heart examination is a video sweep,
and the same view has a large number of video frames. We
hope to extract the standard plane with the most complete struc-
ture and the clearest image quality for diagnosis. In addition,
a structure-based quality assessment network requires experts
to annotate the amount of structure in each view to meet the
high data volume requirements of the detection network, which
is a repetitive and laborious manual operation with a heavy
labeling workload. Second, image quality evaluation methods
based on image clarity ignore the importance of the anatomical
structure, and distortion simulations of ultrasound image quality,
which consider factors such as blur, image compression and
other artificially added distortions, are not applicable to medical
images. Finally, most of the studies are based on a single view
and a single task, and there is no whole-process research to
address the problem of view extraction and quality assessment
from the clinical reality of the cardiac panorama. Therefore, the
difficulties we face can be divided into the following two points.
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First, we must synchronously achieve view identification and
quality scoring in one process. Second, images with the same
score are derived from different features, including different
maternal bodies, different gestational ages, and different posi-
tions. In this case, for the desired scope, a structured method to
process and project all the different features into a unique hidden
representation is needed.

In this article, we consider both the anatomical structure of the
fetal heart and the image clarity to address the view classification
and quality assessment of fetal heart views in a complete method,
realize the automatic view recognition and quality assessment
of the six views of the fetal heart and improve the diagnostic
efficiency and accuracy of FCHD in clinical practice. Further-
more, automatic view recognition and quality assessment of fetal
echocardiographic images also provide the basis for automatic
diagnosis of FCHD.

In summary, the contributions of this article are as follows:
First, we introduce multihead enhanced self-attention

(MESA) mechanisms into the analysis framework for fetal
cardiac ultrasound scans to increase the structural focus in the
view identification process and improve the view classification
accuracy.

Second, we propose a multiple iterative regression strategy
to locate the optimal bounding box, achieving an outcome
equivalent to that of strongly supervised learning models. This
approach allows us to identify crucial anatomical structure re-
gions in fetal heart ultrasound images, eliminate interference
regions, and acquire images containing only the areas-of-interest
for performing quality assessment.

Third, we propose an improved contrastive learning net-
work with a new strategy and optimize the characteristics of
the absolute space that are not well measured by the relative
space metric to provide a more reasonable score, and better
evaluate the quality of the fetal heart ultrasound images. In
addition, the loss function incorporates the relative loss of the
input pair of samples, thus further constraining the distribution
of the sample features.

II. RELATED WORK

A. Automated Fetal Echocardiography Analysis

Fetal echocardiography enables the collection of detailed
information on a baby’s heart before birth; however, the fetal
heart is small and beats fast in utero, and its structure changes
with gestational age, which makes it difficult to analyze fetal
echocardiography automatically. Moreover, in contrast to other
imaging modalities, ultrasound devices cannot automatically
acquire images. The data acquisition process heavily depends on
the sonographer’s knowledge of the fetal heart. Therefore, the
quality of fetal echocardiographic images varies considerably,
which has a substantial impact on FCHD diagnoses.

Recently, convolutional neural networks (CNNs) have shown
good performance in automatic analyses of fetal echocardiog-
raphy data, including optimizing the scanning process, obtain-
ing standard views, and assessing image quality. For example,
Yang et al. [26] used postmortem fetal heart and cardiovascular
casts combined with CT scans and fetal echocardiography data
to determine the pose relationship between each section and
optimize the data acquisition process. Chen et al. [25] explored

a neural network to automatically detect standard views from
fetal heart ultrasound scan videos and selected different views by
using a threshold value. Baumgartner et al. [27] proposed a CNN
method called SonoNet to detect 13 standard views of fetuses in
2D ultrasound data and locate the key anatomical structures on
the plane. Structure-specific quality assessment has also been
investigated through the detection of fetal echocardiographic
structures. Dong et al. [23] proposed an automated quality
control framework based on structural detection for achieving
the identification of a standard 4CV scan for fetal cardiac ultra-
sounds. Wu et al. [24] developed a deep convolutional neural
network to evaluate the image quality of the fetal abdominal
plane and regressed the image quality score by detecting key
anatomical features of the stomach bubble and umbilical vein.
However, previous studies focused on only single views of the
fetal heart or single tasks, which differs from actual clinical
decision-making processes. In addition, the accuracy of iden-
tification of multiple views of the fetal heart is too low to be
suitable for clinical application.

Quality assessment networks for fetal echocardiography im-
ages usually model quality scoring as a classification or re-
gression problem and input data to learn the mapping between
the input and the output [28], [29]. This method is simple and
intuitive but ignores the psychological cognitive mechanism
of humans. In cognitive psychology, it is asserted that there
is actually a relative aesthetic mechanism in the process of
human aesthetics [30], and it is similar in the quality scoring
of images, which is called the relative scoring mechanism. This
means that when humans score images, they tend to refer to
other images and give a score by comparing the images with
each other. The scoring process is more like a ranking process
rather than a process that directly produces an absolute score.
Each image xi, has a reference image xj . If the quality of xi is
considerably better than that of xj , xi is given a higher score; if
the quality of xi is notably worse than that of xj , xi is given a
lower score. Therefore, humans score by comparing two images
with each other. If we simply input an image into a CNN and
model it as a classification or regression problem, we ignore this
relative scoring mechanism. For the modeling of the relative
scoring mechanism, the input is usually sample pairs, and then
the features are extracted for comparison.

B. Attention Mechanism

Attention mechanisms have been involved in the human visual
system as a way to direct attention to the most important regions
while ignoring irrelevant parts. It has been successfully used
in natural language processing tasks. This has also inspired
researchers to introduce attention mechanisms into computer
vision systems to improve the performance of image processing.
Self-attention, as an effective attention mechanism, was first
proposed in [31] and rapidly provided great advances in vari-
ous fields, which correlates different locations to calculate an
interactive representation for long-range dependency modeling.
Wang et al. [32] first introduced self-attention to computer vision
tasks and demonstrated great success in video understanding
and object detection with nonlocal modeling. Zhang et al. [33]
proposed SAGAN, which incorporates a self-attention mecha-
nism into the generative adversarial framework, achieving better
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Fig. 2. Proposed architecture for fetal heart multiview recognition and quality assessment. The proposed approach consists of a multiview
classification and localization network (MCLN) and an improved comparative learning network (ICLN). MCLN is presented in (a), while ICLN is
presented in (b).

generation details with higher parameter efficiency. Unlike self-
attention, multihead attention uses the information from multiple
subspaces at different positions and acquires the short- and
long-range dependence of each single-head attention jointly to
enhance the important image features. Zhang et al. [34] proposed
an improved version of multihead self-attention called multihead
enhanced self-attention (MESA) and achieved impressive fea-
ture extraction and reconstruction results in one-class classifica-
tion experiments. However, whether MESA can be applied in a
multiview recognition network based on fetal heart ultrasound
images remains to be determined. In this work, we employed a
multihead enhanced self-attention mechanism incorporated in a
deep residual classification network to improve the classification
accuracy and interpretability.

C. Contrastive Learning

Contrastive learning focuses on learning the common features
between similar instances and distinguishing the differences
between nonsimilar instances. The input to the contrast network
is usually from different images, and the comparability is de-
termined by the pretext task. The pretext task usually involves
some rules that define which images are similar or not, thus
providing supervision to train the model. This methodology has
been widely used in vision tasks and has achieved promising
performance. For instance, Wu et al. [35] introduced contrastive
learning to an object detection network to detect smoke im-
ages, which aims to obtain the internal consistency between
augmented images of the same smoke image. Wang et al. [36]
employed contrastive learning in a histopathological image

classification network to learn global and local image repre-
sentations. Sun et al. [37] used contrastive learning for a thyroid
nodule classification network to improve the accuracy of di-
agnosis and specificity of biopsy recommendations. However,
these contrast learning networks perform random augmentation,
such as flipping, rotating, and cropping, on the original image to
generate input pairs, which may lead to too low or too high input
image similarity and are difficult to directly apply to the analysis
of fetal heart ultrasound images. In this article, we propose an
improved contrastive learning network to evaluate the quality
of fetal heart ultrasound images using a new contrast strategy
and optimizing the features of the absolute space by the relative
spatial metric. To the best of our knowledge, we are the first to
explore contrastive learning for the quality assessment of fetal
heart ultrasound images.

III. METHODOLOGY

The pipeline of the proposed framework is illustrated in Fig. 2.
First, we propose a multiview classification and localization
network (MCLN) to realize view recognition and key region
extraction. The MESA mechanism enables the MCLN to focus
more on target information, suppress other information, and lo-
cate areas of interest in the image for quality assessment. Second,
we propose an improved contrastive learning network (ICLN)
to evaluate the quality of recognized and extracted images in
each view. Specifically, the ICLN uses the input image pair to
learn the absolute and relative scores. The network considers
not only the absolute loss but also the relative loss of the input
sample pairs. When the absolute loss is difficult to optimize, the
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distribution of the sample features can be further constrained by
the relative loss. According to the output of the two networks, the
overall quantitative score and the view category of each image
are obtained.

A. Multiview Recognition and Localization

The transformation of multiple views during fetal heart ultra-
sound scans is very rapid, and the manual extraction of views
and locations of anatomical structures is very time-consuming
and labor intensive. Therefore, automatic view recognition and
extraction is a key step for FCHD diagnosis. In addition to
the cardiac structure, ultrasound images usually contain other
information, such as artifacts, speckle noise, noncardiac struc-
tures, and various parameters marked by sonographers, which
are not valuable for quality assessment. Due to different pa-
rameters, such as zoom settings, there are also large individual
differences in the proportion of the fetal heart structure in the
overall image. However, FCHD diagnosis mainly focuses on
the cardiac region and does not pay much attention to other
areas. Therefore, extracting the anatomical structural regions of
the fetal heart ultrasound images that we require, instead of the
noise components, is crucial.

The MESA mechanism can capture both short-range and
long-range correlations in various subspaces, allowing the model
to concentrate on specific features that carry essential infor-
mation about the input image. Moreover, it can merge the
correlations to enhance important correlations while suppressing
unimportant correlations. Therefore, this attention mechanism
enables the view classification results to focus on the most
important structural differences instead of the interference area.
Moreover, due to its ability to focus on the key regions, from
coarse to fine levels of detail, we extract only the key areas to
score the quality and ignore the interference regions. Specifi-
cally, the class activation map reflects the activation of a certain
class in the feature map of a CNN. It is typically used for the
visualization of the neural network feature map and can also
be used for weak supervision target location [38]. The quality
assessment of fetal heart ultrasound images mainly focuses on
the anatomical structure in each view while paying no attention
to other background information during scoring. Too much
background information may affect the scoring results, so it is
necessary to identify the fetal heart region for a more accurate
quality evaluation.

To generate surrounding boxes for the heart region, we em-
ployed MESA-enhanced class activation maps. However, the
accuracy of the generated boxes was challenging to determine
due to the difficulty in setting appropriate threshold values for
the class activation maps. The surrounding boxes were consid-
ered accurate if they covered the entire heart structure region
with minimal background information. Conversely, surrounding
boxes were considered inaccurate if they did not fully cover the
heart region or were excessively large. The pseudo supervised
object localization (PSOL) network proposed by Zhang et al. im-
proves the object localization accuracy by using a regression
model to regress the generated pseudo bounding boxes [39].
Inspired by the PSOL network, we propose a multiple itera-
tive regression strategy to select the surrounding boxes for the
fetal heart region. This strategy involves conducting several

Algorithm 1: Multiple Iterative Regression Strategy.
INPUT: Training set T, threshold γ
1. The training set T is randomly divided into A and B,

where A and B represent different cases;
2. Model MA is trained based on training set A, and

model MB is trained based on training set B;
3. Model MA is used to predict the training set B, and

model MB is used to predict training set A to obtain
new pseudo surrounding boxes;

4. For each sample in A, if IoUp&o < γ, the predicted
value of the sample is used as the new pseudo
surrounding box. If IoUp&o ≥ γ, the original pseudo
surrounding box is used. If the fetal heart region is not
identified, the original pseudo surrounding box is used.
The updated pseudo surrounding box for A is A′, and
the same operation is performed with dataset B to
obtain B′. IoUp&o represents the overlap between the
predicted and the original pseudo surrounding box;

5. A′ and B′ are combined as a new training set T ′ to
train a new heart localization model Mtemp;

6. Set T = T ′ and repeat the process in steps 1-5
multiple times to obtain the final model output Mout;

OUTPUT: The inferential cardiac localization model Mout.

regression optimizations before training the final localization
model using pseudo bounding boxes. The dataset is randomly
divided into two (or more) mutually exclusive sets, and one set
is used to train the model to predict the other set. If the pseudo
bounding box predicted for the other set deviates considerably
from the original box (i.e., a small IoU between the predicted and
original boxes), the predicted pseudo bounding box is used as
the new pseudo bounding box. The specific algorithm is shown
in Algorithm 1.

Theoretically, ultrasound structures of fetal hearts with weak
noise lead to better network feature extraction results and more
accurate structural focus. Conversely, samples with high noise
levels are more difficult to learn and fit. Suppose that the input to
the regression model is X and that the labeled box surrounding
the target under accurate annotation conditions, that is, with-
out noise, is represented as Ygt. The pseudo- surrounding box
generated by thresholding the class activation map is Yp. We
assume that Yp is obtained by adding noise ε to Ygt, that is,
Yp = Ygt + ε. Since the noise ε added to Ygt varies in intensity,
we assume that ε includes both strong noise εs and weak noise
εw. Therefore, if the training data X contains samples with both
strong and weak noise, the mathematical expectation of the noise
should be calculated as follows:

E (εw) < E (ε) < E (εs) (1)

If the predicted pseudo surrounding box deviates only slightly
from the original pseudo surrounding box, the sample is likely a
weak noise sample, and its label should not be updated. However,
if there is a significant deviation between the predicted and
original surrounding boxes, the sample is likely a strong noise
sample, and its label should be updated. Since E(ε) < E(εs),
updating the labels should reduce the overall noise in the dataset.
By training with dataset A and making predictions based on
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dataset B, the noise level in dataset B can be reduced. Similarly,
training with dataset B and making predictions based on dataset
A can reduce the noise level in datasetA. When datasetsA andB
are combined, the overall noise level can be reduced. Therefore,
during the next iteration, training is performed at a lower noise
level, and the noise level should converge to the lower limit of
εw.

Therefore, we propose a multiview classification and local-
ization network by introducing the MESA mechanism into view
classification to simultaneously recognize multiple views of fetal
heart ultrasound images and extract key structural regions. In this
approach, the structural focus and recognition accuracy of view
recognition are first improved. Then, the surrounding boxes can
be generated based on the threshold selection and multiple itera-
tive regression strategy to identify anatomical structure regions
of interest for quality scoring. Furthermore, due to the nature
of CNNs, they are usually black boxes. Thus, CNNs are very
unfriendly from a clinical perspective. With the embedding of
the MESA mechanism, we can highlight the feature map of view
classification through the activated feature map, making the view
classification of the fetal heart ultrasound images interpretable.
The details of our proposed MCLN are depicted in Fig. 2.

B. Image Quality Scoring

Contrastive learning is applicable to the task of similarity
measurement to determine the distance between augmented
pairs. In general, the fundamental framework of contrastive
learning involves selecting a data sample known as an ‘anchor’,
a data point from the same distribution as the anchor, referred
to as a ‘positive’ sample, and another data point from a different
distribution, referred to as a ‘negative’ sample [40]. The goal
of the contrastive learning model is to minimize the distance
between the anchor and positive samples in latent space while
maximizing the distance between the anchor and negative sam-
ples. Since there are no quantitative indicators, the relationship
between positive and negative samples must be defined. There-
fore, we borrow the idea of contrastive learning and propose an
improved contrastive learning network to deal with quantitative
score learning in quality assessment of fetal heart ultrasound
images. The feature distance between samples with small quality
score differences is also close, and the feature distance between
samples with large quality score differences should be larger.
Here, we changed the contrast learning strategy to use image
pairs and their corresponding quality scores to compose input
pairs instead of simple data augmentation. In addition to the
original absolute loss function, we propose the feature relative
loss function and the predicted value relative loss function to
optimize the network. The relative feature loss measures the
feature differences between samples to approximate the score
difference between samples. This avoids the error of the absolute
loss, and instead of directly calculating the similarity measure
between two features to determine whether they are matched,
the relative quality score is used for regression calculation. The
predicted value relative loss represents the fact that the relative
difference between the predicted value of two samples and the
relative difference between the ground truth value of the two
samples are consistent; otherwise, there is loss. This can be
interpreted as a ranking loss for two samples. The sign of the

score difference indicates the order of the quality scores for
the two images. The network considers not only the absolute
loss but also the relative loss of the input sample pairs. When
the absolute loss is difficult to optimize, the distribution of the
sample features can be further constrained by the relative loss.

We suppose that the input image pair is xi and xj , the corre-
sponding quality scores are yi and yj and the convolutional neu-
ral network with shared parameters can extract featuresGW (xi)
and GW (xj), respectively. The network learns the mapping
relationship of features to scores, so it passes the features through
the fully connected (FC) layer. Here, it is assumed that the FC
mapping of the predicted absolute score is Fcabs(x), the FC
mapping of the predicted relative score is Fcrela(x), and the
predicted absolute quality scores of images xi and xj are y′i and
y′j , respectively. This can be expressed as:

y′i = Fcabs (GW (xi)) (2)

Here, the relative features of images xi and xj are GW (xi)
-GW (xj), and the predicted relative score is:

y′rela(i,j) = Fcrela (GW (xi)−GW (xj)) (3)

In the training process, the ICLN combines absolute lossLabs,
feature relative loss Lrela−f , and predicted value relative loss
Lrela−p. Lrela−f encourages the feature differences between
samples to approximate the score difference between samples,
which considers the relationship between samples. Lrela−f can
be seen as a ranking loss for two samples, because the sign of the
score difference indicates the score order of two images.Lrela−f

considers both the magnitude and sign of the score difference.

Labs =
1

N

∑
i

|y′i − yi| (4)

Lrela−f =
1

Np

∑
(i,j)

∣∣∣y′rela(i,j) − (yi − yj)
∣∣∣ (5)

Lrela−p =
1

Np

∑
(i,j)

∣∣(y′i − y′j
)− (yi − yj)

∣∣ (6)

where N is the batch size, Np denotes the number of paired
samples (i, j), so that the total loss function L becomes

L = Labs + λ1Lrela−f + λ2Lrela−p (7)

where λ1 > 0 and λ2 > 0 are tradeoff hyperparameters that
control the relative importance of the three terms.

IV. EXPERIMENTAL SETUP

A. Dataset

We collected data from pregnant women who underwent
B-mode fetal echocardiography examinations between 2018 and
2021. Our dataset consisted of 3596 2D ultrasound data samples
obtained at a single center and 2421 2D ultrasound data samples
obtained at multiple centers. For each scan we had access to
freeze-frame images saved by the sonographers during the exam.
The standard view was obtained according to the guidelines, and
the specific schematic diagram is shown in Fig. 1. Furthermore,
we established a category labeled as “other” for non-cardiac
views, such as arms, hands, feet, bladder, diaphragm, coronal
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face and placenta views. Overall, our dataset consists of 60,526
images of standard views and 10,400 images of “other” views,
including 41,899 standard view images obtained from a single
center and 18,627 standard view images obtained from multiple
centers, as well as 7,200 “other” view images from a single center
and 3,200 “other” view images obtained from multiple centers.
To train the components in the MCLN, up to 47,699 images from
3,596 cases were used. All training sets were acquired from
the Key Laboratory of Maternal Fetal Medical Research and
provided by Anzhen Hospital. Two datasets independent from
the training dataset were used to evaluate the MCLN model
performance. The two test sets were 1,400 single-center test
sets and 21,827 multicenter test sets. The single-center data
came from Anzhen Hospital and the multicenter data came
from 38 medical institutions in the 13th Five-Year National Key
Research and Development Plan (2018YFC1002300). The study
protocols and procedures followed the protocols of the Decla-
ration of Helsinki and were approved by the ethics committee
of Beijing Anzhen Hospital (Approval No.2019030). The data
were obtained from pregnant women aged 17–47 at a gestational
age of 17–40 weeks. The median age at pregnancy was 29.8 ±
4.14 years, while the median gestational age was 27.43 ± 3.88
weeks.

For the datasets in the ICLN, we randomly selected 1,000
cases for each slice for expert annotation, with a total of 6000
images, 80% of which were used as the training set, and the re-
maining 20% were used as the test set. Fivefold cross-validation
was conducted. The total score for each view is 10 points, and
the assessment criteria for six planes has been validated by
experts for many rounds. Here, we developed a complete clinical
evaluation system for each view of the fetal heart that considers
various factors such as the anatomical structure of fetal heart
ultrasound, image clarity, and parameter settings.

For data annotation, we independently developed an anno-
tation system to annotate the view classification and quality
scoring results. The system has been well-designed to take into
account the standardization and systematization of annotations.
A double confirmation mechanism is adopted, first completed
by senior echocardiographers, and then further verified by cer-
tified cardiologists. The process design includes data upload,
grouping, annotation, review, approval, rejection, etc., achieving
standardized and efficient completion of annotations. Therefore,
the actual annotation process is a rapid process, where for view
classification, each expert only needs to select the label for the
data, which takes approximately 10 seconds per image. Quality
evaluation only requires scoring each image, which takes an
average of about 2–3 minutes per case.

B. Training

The experiments in this article comprise two parts: MCLN
and ICLN. To train the MCLN, we deployed a relatively high
momentum of 0.9. The learning rate was set to 0.0002, with a
gradual decrease of 0.5 every 1000 iterations. The batch size
was set to 64, and each image was resized to 224∗224 before
being input into the network. Moreover, to select more accurate
bounding boxes containing the heart structure, we selected an
optimal threshold and performed multiple iterations according to
the Algorithm 1. The optimal number of iterations was selected

to identify the best bounding box for quality assessment task in
the ICLN.

For the ICLN, we used random sample pairs to conduct
contrastive learning network training and learn the absolute and
relative differences between samples. We also considered the
sampling balance in the ICLN. Since the actual data scores are
distributed according to a normal distribution, there are fewer
samples with particularly high and low scores and more sam-
ples with intermediate scores. Therefore, during sampling, we
can assign larger sampling probabilities to samples with small
sample numbers and smaller sampling probabilities to samples
with large sample numbers to balance the quality of sample
pairs. Furthermore, data augmentation strategies were applied
to samples with small sample sizes. To maintain the quality
of the images, only left-right flipping and rotation operations
were utilized for data augmentation. We trained the ICLN with
different loss functions, which are shown in (4), (5) and (6).

All the reported results are from our implementation that used
the Pytorch framework [41] and Python running on an Nvidia
v100. The learning rate was decayed with a factor of 0.5 when
the training loss did not decrease within 5 consecutive epochs.
If the MAE based on the validation set did not decrease within
20 consecutive epochs, training was stopped.

C. Evaluation Metric

We selected the precision, recall and F1 score as the main
evaluation metrics for view classification, and we used the
average F1 score over different classes because this approach
increases the sensitivity to imbalances between classes. The F1
score is calculated as follows:

F1 score =
2Recall × Precision
Recall + Precision

(8)

where recall is the ratio of correctly predicted positive obser-
vations to all observations in the actual class and precision is
the ratio of correctly predicted positive observations to the total
number of predicted positive observations. In Section V, we used
the F1 score to measure the performance for view recognition.

We have plotted a confusion matrix for the multi-classification
results, which allows us to clearly see the accuracy of view
classification. For the ICLN, we selected the PCC and MSE
as the main evaluation metrics. The PCC is a variable used
to measure the “degree of linear correlation” of two variables,
which is defined as the quotient of the product of the covariance
of the two variables and the standard deviation of the two
variables.

Typically, the total covariance and the standard deviation of
the variables are difficult to obtain, and the sample covariance
and the sample standard deviation of the variables are used for
alternative estimation. PCC values range from −1 to 1, with a
negative sign indicating a negative correlation, a positive sign
indicating a positive correlation, an absolute value closer to
1 indicating a stronger linear correlation, and a PCC value of
0 indicating no correlation between two variables.

When PCC is used to measure the quality assessment algo-
rithm, usually, the closer to 1 the PCC is, the better the quality
of the assessment algorithm.

We assume that the two variables are X,Y , and the observed
values of the sample are x1, x2, . . . , xN and y1, y2, . . . , yN ,
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Fig. 3. Quality score changes with added Gaussian noise and missing structures. The structure includes the left atrium (LV), left atrium (LA), right
ventricle (RV), right atrium (RA), and descending aorta (DAO).

where N is the sample size; then, the PCC calculation formula
can be expressed as follows:

PCC =

N ×∑N
i=1 xiyi −

∑N
i=1 xi

∑N
i=1 yi√

N ×∑N
i=1 x

2
i −(

∑N
i=1 xi)

2
√

N ×∑N
i=1 y

2
i −(

∑N
i=1 yi)

2

(9)

The MSE represents the average of the squared difference
between two variables. Assuming that the two variables are
X,Y and the observed values of the sample are x1, x2, . . . , xN

and y1, y2, . . . , yN , where N is the sample size, the calculation
formula for the MAE can be expressed as follows:

MSE =
1

N

N∑
i = 1

(xi − yi)
2 (10)

For the purpose of verifying the effect of the ICLN in clinical
practice, we used the proportion of the absolute errors between
the predicted value and the ground truth value less than 1 point,
less than 2 points, and less than 3 points. Here, let the number of
samples in the test set be N, the ground truth quality scores be
y1, y2, . . . , yN , and the quality scores predicted by the model be
y′1, y

′
2, . . . , y

′
N . Pε≤1, Pε≤2, and Pε≤3 represent the proportion

of absolute errors between the predicted value and the ground
truth value less than 1 point, less than 2 points, and less than 3
points, respectively. The expression of each measurement index
can be denoted as follows:

Pε≤1 =
1

N

N∑
i = 1

1|yi−y′
i|≤1 (11)

Pε≤2 =
1

N

N∑
i = 1

1|yi−y′
i|≤2 (12)

Pε≤3 =
1

N

N∑
i = 1

1|yi−y′
i|≤3 (13)

V. RESULTS AND ANALYSIS

A. Integrity Verification of the Proposed Network

To verify the effectiveness of our proposed method for struc-
tural integrity and image quality and clarity, we conducted

experiments by occluding anatomical structures and adding
Gaussian noise. As illustrated in Fig. 3, we selected 4CV for the
experiment, in which the anatomical structure included the left
ventricle (LV), left atrium (LA), right ventricle (RV), right atrium
(RA), and descending aorta (DAO). We increased the intensity
of Gaussian noise by changing the value of sigma, which ranged
from 0 to 1. Fig. 3 shows that structural occlusions and decreased
quality score are positively correlated; that is, more structural
occlusions lead to lower quality scores. Furthermore, the loss of
the ventricle is even more pronounced than the loss of the atrium.
This may be due to the relatively large size of the ventricle, which
has a greater impact on the quality score. For Gaussian noise,
we see that the image quality score gradually decreases with
increasing noise value. The maximum decrease is at the node
where the noise is first added. We see that the quality score of
the descending aorta occlusion decreases less than in the other
structures, probably because this structure is a relatively small
part of the overall structure of the fetal heart. For the combination
of Gaussian noise and missing structure, we used Gaussian noise
with sigma = 0.1, and the quality score of the combination was
lower than that of missing structures and adding noise alone.

B. Verification of Multiview Recognition

Experimental validation of multiview recognition was per-
formed on single-center and multicenter datasets. Here, preci-
sion, recall, and the F1 score were used to evaluate the view
classification accuracy. We conducted experiments based on the
MCLN model to verify the improvement in classification accu-
racy with seven classes, several typical CNN models, including
AlexNet [42], DenseNet [43], ResNet [44] and specifically de-
signed for echocardiograms such as, SonoNet [27] and SEVDR
[21] were reimplemented for comparison. As shown in Fig. 4,
we observe that the proposed network showed the best perfor-
mance in all seven categories and was followed by DenseNet,
SEVDR, ResNet, and SonoNet, with AlexNet performing the
worst in multiview recognition. This is attributed to the MESA
attention mechanism better capturing information in multiple
subspaces during feature extraction and obtaining more global
information within the attention range. Therefore, this approach
is more sensitive to the relatively fixed structural relationship
of various views of fetal heart ultrasound images. These im-
provements make the classification results more focused on
the structural information of the fetal heart rather than noise
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Fig. 4. Confusion matrix between different fetal echocardiographic views from different methods based on multicenter data.

and other interference factors. For data from a single center,
the normalization process is effective, resulting in high image
classification accuracy. However, for the multi-center classifi-
cation results, our network improved significantly, especially
for the right ventricular outflow tract view (RVOT), three-vessel
view (3VV) and three-vessel tracheal view (3VT), of which the
RVOT improved by 4.53∼11.33% in terms of F1-score, the 3VV
improved by 4.98∼13.61% in terms of F1-score. The 3VT was
improved by 5.09∼10.08% in terms of F1-score. Compared to
the model performance for TAV, 4CV, LVOT, and other view,
the performance of all models for RVOT, 3VV, and 3VT has
decreased. The most obvious decline was in RVOT, which may
be due to its inclusion of two kinds of views, and the large differ-
ence in data acquisition of multiple centers, which increases the
difficulty of identification. From the Fig. 4, we can also observe
that the 3VV and RVOT view were easily classified as 3VT, the
3VV also was easy to get misclassified as RVOT. These mis-
classifications mainly occur because these views are relatively
close to each other. In addition, during the scanning process,
the fetal heart moves, and the image slices capture transitions
between views, making misclassification more likely. Through
further analysis of the misclassified images, we found that most
of the misclassifications in RVOT are between RVOT-1,3VV
and 3VT images. Moreover, the training dataset for the 3VV
section was small, which may be the reason for the generally
low recognition accuracy of the 3VV section. In the future, we
will add more training data to improve the performance of the
proposed model.

C. Verification of Anatomical Structure Localization

To validate whether each view is applicable for clinical feature
classification and verify the effectiveness of the MESA mecha-
nism in classifying each view of the fetal heart, we performed

gradient-weighted class activation mapping (Grad-CAM) exper-
iments [45]. We used the features of the penultimate convolu-
tional layer of the classification network of each view of the fetal
heart. Both experiments show that the view classifier makes its
decisions based on clinically relevant image features, and the
MESA mechanism makes the classification more focused on
the anatomical structure. Fig. 5 shows the Grad-CAM maps of
the images based on original ResNet model and the model with
the embedded MESA mechanism network. The figure shows
that the embedded MESA mechanism causes the model to focus
more on key anatomical structures, and the scope of the atten-
tion area is more accurate. In addition, the weight outside the
anatomical structure is lower. For example, in the first column,
ResNet focused on a larger area, even including the area outside
the thoracic cavity, while the network with the embedded MESA
mechanism focused more on the stomach bubble, umbilical vein
and other key anatomical structures, which was also verified in
other views. This is because the attention mechanism extracts
the important information from the global features and ignores
interference information such as noise and background, which
makes the classification network pay more attention to the most
important regions and improves the classification performance.

D. Verification Results of the Loss Function

Table I shows the results of each evaluation metric of 4CV
of the fetal heart. Among them, ICLN with Labs, Lrela−f and
Lrela−p showed the best performance, followed by ICLN with
Labs and Lrela−f and ICLN (only Labs), and the single network
had the worst performance. The 4CV showed that more than
97% of the samples having been predicted and ground truth
values within 2 points, and the mean absolute error was less
than 1 point, indicating the effectiveness of the ICLN. This
may be because the anatomical structure of the four-chamber
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Fig. 5. Comparison of the Grad-CAM map between different methods, (a) is raw data of six views. (b) Is the original ResNet [42], and (c) is the
ResNet incorporating the enhanced multihead self-attention mechanism.

TABLE I
COMPARISON OF DIFFERENT INDEXES OF DIFFERENT LOSS FUNCTIONS IN MULTIPLE VIEWS

heart view is numerous and easy to identify, with relatively
obvious characteristics. The expert annotation also increased
the difficulty, which had an impact on the accuracy of the ICLN.
In addition, the model using the contrastive network achieved
better results than the model using the single network because
the contrastive network takes the sample pair composed of the
two samples as the input during training, which can optimize the
relative error as well as the absolute error, which is equivalent to
introducing the human relative aesthetic mechanism. Moreover,
the feature relative loss and predicted value relative loss were
increased to further improve the performance of the ICLN.

E. Comparison With Deep Learning Algorithms

We selected state-of-the-art image quality assessment net-
works and a comparative learning network for comparison to
verify the effectiveness of the ICLN. Table II provides a com-
parison between the proposed network, typical deep learning
networks and specifically designed netoworks for echocardio-
grams (IQA-CNN [28], DeepIQA [46], B-CNN [47], CMC
[48], SupCon [49], AES [22], D-CNN [23]).The results show
that the highest PCC and lowest MSE were obtained using the
ICLN model with Labs, Lrela−f and Lrela−p; that is, the best
quality assessment performance was obtained with the fetal heart
ultrasound images. In addition, our proposed network had higher
values than the other networks in terms of the proportion of
absolute errors between the predicted value and the ground truth

value for all views of fetal heart ultrasound images, and the ICLN
model with Labs, Lrela−f and Lrela−p performed better than the
other networks. The Pε≤1 of our proposed method was better
than that of the other methods in 4CV, reaching 9.1%–29%. In
addition, the lowest PCC and highest MSE for the 3VT view
was obtained using SupCon, while for 4CV, the performance
rankings of the other networks were, in sequence from best to
worst performance, B-CNN IQA-CNN, AES, CMC, D-CNN,
DeepIQA and SupCon.

VI. DISCUSSION AND CONCLUSION

We proposed a framework comprising two CNN-based
networks (MCLN and ICLN), which were used to perform
multiview recognition and quality assessment, respectively.
Experiments on a multiview fetal cardiac ultrasound dataset
demonstrated the effectiveness of the proposed framework. In
addition, a comparison with other state-of-the-art deep learning
networks demonstrated the generalization and adaptability of
the proposed framework. The proposed MCLN outperformed
other state-of-the-art networks in fetal heart six standard view
recognition. To our knowledge, this is the first time that six views
of the fetal heart have been classified and interpretable effects
have been achieved based on attention mechanisms. This has
great potential for the study of other fetal organs.

Actually, the proposed ICLN addresses the problem of how
to automatically select the most standard view from a fetal heart
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TABLE II
COMPARISON OF DIFFERENT METRICS BETWEEN OUR PROPOSED NETWORK AND OTHER STATE-OF-THE-ART NETWORKS IN MULTIPLE VIEWS

scan to diagnose FCHD. This is meaningful for the clinical
setting because the standard view appears quickly during fetal
heart scanning, which makes it difficult for the sonographer to
obtain the image manually; this increases the scan time and is
not pleasant for the pregnant woman. Different from previous
structure-based detection networks, we do not need to annotate
each structure or substructure. By adding the relative score and
the relative loss, we reduce the error of the image quality as-
sessment. In addition, embedding MESA and proposed multiple
iterative regression strategy in the first step are helpful for quality
scoring and makes the classified views more accurately focus on
the anatomical structure rather than the interference information,
such as acoustic shadows and noncardiac structures. In addi-
tion, the ICLN considers both the standardization of anatomical
structures and the quality clarity of images, achieving results
comparable to those achieved by experts with little annotation
expense, which has great implications for clinical application.

In the data collection process, we included six cardiac-related
views and views of other organs examined by prenatal ultrasound
examinations, such as the head, face and limbs, etc. In our
dataset, we defined these views as “other”, and 7000 “other”
cases were included in the training set, and 3200 “other” cases
were included in the external test set. However, we cannot cover
all non-cardiac views during the training process. Some scholars
have carried out relevant research to address the uncertainty
problem in view classification. For example, Gu et al. proposed
that the Efficient-Evidential Network could provide uncertainty
prediction based on input samples [50]. Therefore, clinicians
can be prompted to conduct interactive operations such as re-
collecting data. Liao et al. modeled the intra-observer variability
caused by the uncertainty of the annotated data and demonstrated
the effectiveness of their model in ultrasound image quality
assessment [51]. Moreover, the prerequisite is that all views have
been collected in the process of fetal heart scanning, which has
certain requirements for sonographers. Therefore, to fundamen-
tally resolve the clinical problem of data acquisition of the fetal
heart, it is essential to establish automatic navigation of fetal
heart ultrasound scanning, that is, the automatic positioning of
the fetal heart views and the transformation relationship between
the views. In addition, the view recognition result and the image
quality scores can be fed back to the navigation to guide the most

standard view of the fetal heart. Thus, the problem of obtaining
fetal cardiac ultrasound can be truly resolved, and a good data
basis can be provided for the screening and diagnosis of FCHD.
Meanwhile, the gestational age of the data in this article was
17–40 weeks, but there is a lack of data in the first trimester,
such as 11–16 weeks. Extracting standard views of diagnostic
quality in the first trimester is of great significance for the early
detection of FCHD. In addition to view-level sectional recogni-
tion and quality assessment, disease-level image analysis, such
as multiview automatic screening and automatic diagnosis of
major FCHDs, is the direction of future work.
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