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Analysis of Weight-Directed Functional Brain
Networks in the Deception State Based

on EEG Signal
Sihong Wei, Junfeng Gao , Yong Yang, Neal Xiong , Jiaqi Zhang , Jian Song , Qianruo Kang ,

Yaqian Li, and Haoan Lv

Abstract—Although analyzing the brain’s functional and
structural network has revealed that numerous brain net-
works are necessary to collaborate during deception, the
directionality of these functional networks is still un-
known. This study investigated the effective connectivity
of the brain networks during deception and uncovers the
information-interaction patterns of lying neural oscillations.
The electroencephalography (EEG) data of 40 lying persons
and 40 honest persons were used to create the weight- di-
rected functional brain networks (WDFBN). Specifically, the
connecting edge weight was defined based on the normal-
ized phase transfer entropy (dPTE) between each electrode
pair, where the network nodes involved 30 electrode chan-
nels. Additionally, the signal connectivity matrices were
constructed in four frequency bands: delta, theta, alpha,
and beta and were subjected to a difference analysis of
entropy values between the groups. Statistical analysis of
the classification results revealed that all frequency bands
correctly detect deception and innocence with an accuracy
of 92.83%, 94.17%, 85.93%, and 92.25%, respectively. There-
fore, dPTE can be considered a valuable feature for identi-
fying lying. According to WDFBN analysis, deception has
stronger information flow in the frontoparietal, frontotem-
poral and temporoparietal networks compare to honest
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people. Furthermore, the prefrontal cortex was also found
to be activated in all frequency ranges. This study examined
the critical pathways of brain information interaction during
deception, providing new insights into the underlying neu-
ral mechanisms. Our analysis offers significant evidence
for the development of brain networks that could potentially
be used for lie detection.

Index Terms—Deception detection, effective con-
nectivity, electroencephalography (EEG), normalized
phase transfer entropy (dPTE), weight-directed functional
brain networks (WDFBN).

I. INTRODUCTION

A WHITE lie is not malicious or profitable and is mind-
ful of others. However, some lies are said to conceal

the truth for personal advantage and advancement, which is
known as deception [1]. Deception detection is an essential
scientific issue investigating the psychological and physiological
changes that occur when people lie. Specialists have worked
hard to develop effective approaches to detecting lies [2], [3],
[4]. Although polygraph detection’s authenticity and validity
are debatable, it is crucial in criminal investigations, airport
security, anti-terrorism, and other domains [5]. The polygraph
study examined the subject’s verbal and nonverbal activities [6]
and a multichannel polygraph technology was devised to detect
participants’ physiological signs like blood pressure, pulse, and
skin electricity [7]. Various studies indicate that the nature of
lying is a complex cognitive process involving the transmission
of information between neurons in different brain regions [8],
[9]. It is difficult to accurately distinguish the differences be-
tween the honesty group and the lying group solely based on
physiological indicators.

A recent advance in lie detection investigates the distinct
components of event-related potentials (ERP) based on brain
cognition [10]. Unlike a multichannel polygraph, ERP does not
detect physiological signs of the human body but instead ana-
lyzes real-time functional changes in the human brain. Through
superposition technology, Picton et al. found the P300 [11] com-
ponent of endogenous evoked potentials induced by rare stimuli
for the first time and illustrated that this ERP component is
related to memory and thinking and reflects the brain’s cognitive
processing [12]. According to a significant number of research
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findings, the P300 components are more likely to be induced
by familiar objects than new things [13], where the amplitude
of P300 is higher [14]. However, the results of Labkovsky et
al. [15] demonstrated that the false positive rate of deception
detection utilizing P300 remains significant. Based on this, re-
searchers used nonlinear analysis techniques to extract features
from multi-channel ERP and machine learning to identify and
classify features, which not only facilitates further decoding
of the information processing mechanism of the brain during
deception, but also further improves the accuracy of deception
detection [2], [16], [17].

Numerous research works highlight that neural mechanisms
inherent in lying are different from truth-telling [18], [19]. lying
may cause increased activity in critical loop of brain, leading
to changes in conflict and attention distribution [20], [21]. This
is because executing lying behavior requires more attention to
control language and behavior to produce stronger memory and
attention focus. These changes can be detected using techniques
such as electroencephalography (EEG), functional magnetic
resonance imaging (fMRI) and functional near-infrared spec-
troscopy (fNIRS) technology and serve as a basis for detecting
deception. In 2013, Ding et al. [22] used fNIRS to explore the
neural responses of spontaneous deception and found that the
left superior frontal gyrus was involved in indicative deception.
They pointed out that lying involves more cognitive processes as
it requires simultaneous working memory and task switching. Li
et al. [23] conducted a study on deception using EEG and found
that intentional deception caused smaller P300 and larger N200
compared to the honesty group during the decision-making
stage. They also confirmed that deception involves executive
control processes. Yu et al. [24] used fMRI to explore the
neural mechanisms underlying deception and false memory and
found that the deception task was associated with enhanced
activation in the right superior frontal gyrus, right superior
temporal gyrus, and left inferior parietal lobule. Their research
results demonstrated that executive control processes, especially
working memory, play an essential role in deception. Compared
with fMRI and fNIRS, EEG has a millisecond-level time resolu-
tion, easy collection and low-cost advantages. Considering that
the frequency components of signals are functionally related
to information processing, we choose to use EEG, which is
more focused on brain neural oscillations, to study the neural
mechanisms of lying.

Since the cognitive processing of deception involves moving
from motivation generation to cognitive decision-making and
constructing an action response [25], [26], research should not
only focus on the brain regions activated during lying, but also
on the functional connections between different brain regions.
Various studies have demonstrated that brain networks can be
used to investigate the structural and functional relationships
between distinct brain regions. Brain network theory has been
used to examine brain mechanics as well as other cognitive
processes like emotion recognition, motor imagery, and lan-
guage processing [27], [28], [29], offering a comprehensive
perspective on EEG-based deception detection. Previous works
indicated that neural circuits established by brain regions such
as the anterior cingulate cortex, superior frontal cortex, anterior

parietal cortex, premotor and motor cortex, and premotor and
motor cortex comprise a crucial brain network system for decep-
tion [17], [30]. Numerous studies constructed the structural and
functional brain network applying nonlinear interdependence
because EEG signals have typical non-stationary characteris-
tics [31], [32], [33]. The study of EEG has revealed that the
connectivity between the upper and middle frontal gyrus in
the left hemisphere is enhanced during lying [34]. Another
study used cross-coherence, phase synchronization, and mutual
information nonlinear feature extraction methods to compare
different functional connectives. The results revealed that the
brain network under deception has a “small world” quality and
that the functional connections between the two subjects in the
frontal, central, and parietal areas are significantly different [21].
Those studies demonstrated that functional connectivity patterns
induced by a deception task differ from those induced by honest
behavior, and brain network features are extracted and applied
in a pattern recognition polygraph system on multichannel EEG
signals, improving lie detection accuracy.

Although EEG has been used to decode the whole brain’s
functional connectivity for deception purposes, the direction-
ality of these connections in large-scale functional networks
remains unknown. The human brain system is so complicated
that investigating the direction of the information flow across
brain areas can reveal more about the deception’s brain neu-
ral activity mechanism [35]. Therefore, it is necessary to use
an effective connectivity method that can analyze the direct
causal influence of one brain region on another. Phase transfer
entropy (PTE) is a causal nonlinear analysis method based
on information theory, which can assess the direction of in-
formation transfer in real-time between two time series, and
has the advantages of accuracy, interpretability, and handling
asymmetric data [36]. Although a similar approach is used in
the study of Alzheimer’s disease and major depressive disorder
[35], [37], [38], there has been no research employing PTE
to investigate the effective connectivity of the brain during
deception.

To reveal the interactive relationship between brain regions on
four sub-bands (delta, theta, beta, and alpha) during deception,
this study constructed weight-directed functional brain networks
(WDFBN) based on EEG by normalized phase transfer entropy
(dPTE) [37]. To explore the ability of extracted network features
in deception detection, the dPTE features obtained from four
sub-bands were inputted into CatBoost, linear regression (LR),
and support vector machine (SVM) classifiers, respectively.
Eventually, the information flow patterns of the human brain in
deception and honesty states were analyzed based on the statis-
tics and classification results, and the neural activity mechanism
of lying in the four sub-bands were analyzed in detail according
to the differences between the two patterns. This research aims
to evaluate the feasibility of the proposed unique approach by
utilizing an EEG-based lab deception detection experiment. The
remainder of this article is organized as follows: Section II
describes the experimental protocol and methodology, presents
the employed data preprocessing, uses dPTE as the feature ex-
traction method, and conducts statistical tests and classification
analysis. Section III presents the performance analysis results,
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and Section IV discusses the corresponding results. Finally,
Section V concludes this work.

II. MATERIALS AND METHODS

A. Subjects

This study involved 80 healthy university students
(Male/Female: 48/32, Mean age: 19.6±4.8 years old), all right-
handed, with normal vision and hearing, and no history of
psychological disorders. The subjects (students) were randomly
assigned to one of two groups: honesty or lying. The hon-
esty group served as the experimental control group, allowing
researchers to investigate the specific information interaction
patterns in brain areas during the deception. When the Wilcoxon
rank-sum test was used to compare the honesty and deception
groups, the p-values for gender (p = 0.25) and age (p = 0.32)
suggested no significant difference between the two groups.
The subjects had to refrain from drinking, smoking, and taking
any medicine for four hours before the deception detection.
Before the experiment, the researchers double-checked that the
participants were free of symptoms such as cough, cold, or
fever. The goal of this experiment and the complete protocol
was explained to all participants, who then signed an informed
permission form. The Cognitive Neuroscience Research Com-
mittee of the School of Biomedical Engineering, South-Central
Minzu University, examined and approved the study, which
followed the ethical norms of the World Medical Association’s
Declaration of Helsinki for medical research involving humans.

B. Experimental Protocol and Task

Participants had to undertake a simulated crime scenario and
then made a dishonest or honest response in a subsequent lie
test to analyze the functional connections pattern of neural
oscillations in the brain during deception. This study adopted
Farwell and Donchin’s three-stimulus experimental model for
the Guilty Knowledge Test (GKT) [39]. GKT is a method for
detecting a priori knowledge of crime scene details using psy-
chophysiological means, and it is frequently used to determine if
someone is lying about something. In GKT, subjects are typically
exposed to three stimuli categories: 1) Probe stimulus (P): linked
to a concealed message that only the guilty subjects are aware of.
2) Target stimuli (T): unrelated to the hidden message, where all
participants are familiar with them and responsible for attracting
the subject’s attention during the GKT. 3) Irrelevant stimuli (I):
this stimulus was unknown to all subjects and was irrelevant to
the hidden message. Fig. 1 illustrates the experimental protocol
design flow based on the principles of the GKT experimental
paradigm.

The researcher prepared two safes (#1 and #2), six bracelets,
and an image corresponding to each bracelet. For the deception
group, the researcher placed two selected bracelets in safe #2
and designated the remaining four bracelets as I stimuli. The
experiment required subjects to take two bracelets prepared from
the safe and, after carefully observing the shape, color, size,
and other information about the bracelets’ appearance, randomly
select one to be stolen and informed the experimental researcher,

Fig. 1. Experimental protocol. Prior to the start of the experiment,
subjects were required to observe or steal the bracelet. P,T, and I stimuli
were shown in red, blue and yellow rectangle, respectively.

who then labeled the bracelet to be stolen by the subject as P stim-
uli and the other bracelet as T stimuli. For the innocent group,
one bracelet was selected and placed in safe #1 and marked as
T stimuli, another bracelet was randomly selected and marked
as P stimuli, and the remaining four bracelets were marked as I
stimuli. The honest people had to take the only bracelet from the
safe and record the information about the bracelet’s appearance
in terms of color, shape, and size. All stimuli (bracelet pictures)
were edited and controlled in a pseudo-random sequence using
software (E-prime, 2.0) so that six different bracelet pictures
appeared on the computer screen a total of 30 times during each
experiment, with the P stimuli appearing 5 times (16.7%), the T
stimuli appearing 5 times (16.7%), and the I stimuli appearing
20 times (66.7%).

Following the above setup, the subjects were instructed to sit
in a chair one meter away from the computer screen, focus on
the computer screen during the experiment, and finish the task
with their eyes in the center of the screen. It is worth noting
that the head could not move freely during the operation, the
number of blinks should be kept to a minimum, and the hands
should only be used to click the mouse. During the task, the “+”
sign appeared for 0.3 s before the bracelet (stimulus) picture
appeared, reminding the subject that the stimulus would appear
soon and to focus on it. Immediately after, the stimulus picture
appeared and stayed for 0.5 s, followed by the line “Have you
seen this bracelet?” for 0.5 s, and the participant had to respond
as quickly and accurately as possible by clicking the mouse
(Fig. 2(a) Experimental task). If the subject had seen the bracelet,
he clicked the left (L) mouse button (Yes). Otherwise, click the
right (R) mouse button (No). When the P and I stimuli appeared
on the computer screen, the subject clicked the R mouse button,
and when the T stimulus occurred, the subject pressed the L
mouse button (Fig. 2(a) EEG recording). Thus, the deceiver had
only to lie in response to the P stimulus, while the honest person
had to act honestly in all situations. Each participant completed
10 experiments. Each trial lasted 1.6 s, and each experiment
was separated by five minutes. Before the experimental start, all
subjects were trained in the test to attain a click accuracy of at
least 95%.

C. EEG Recording and Preprocessing

The EEG cap has 64 standard scalp electrodes conforming
to the International 10-10 system. The EEG data were recorded
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Fig. 2. Methodology overview. (a) Experimental procedure. (b) The schematic procedure of WDFBN of the EEG signal. PTE represents computing
the connectivity matrix of the signal using the phase transfer entropy algorithm. WDFBN: weight-directed functional brain networks.

using a 32-channel Synamps amplifier. The sampling frequency
was 500 Hz, and the lead impedance was less than 5 kΩ. The par-
ticipant was given a few minutes to relax with their eyes closed
until they confirmed they were ready to start the experiment,
after which their EEG signal was recorded for five minutes at
rest. Furthermore, EEG raw data from the subject’s lie detection
experiment was collected. The EEG data were preprocessed
using the EEGLAB toolkit. Specifically, a band-pass filter (0
to 35 Hz) was used to remove artifacts from the signal, and
the bilateral mastoid leads (TP9 and TP10) were chosen for
electrode re-referencing of the data. Independent component
analysis (ICA) was applied to the data, and the Adjust plug-in
was used to reduce artifacts caused by blinking, muscle tension,
and other factors. According to the mark, the data 300 ms before
P stimulation and 1000 ms after stimulation were extracted,
comprising an epoch. The data 300 ms before the P stimulus
was employed as the baseline for baseline correction per epoch
to investigate the influence of the P stimulus on individuals.

ERP was obtained for both types of subjects through stacked
averaging across every 5 epochs. Fig. 3 shows the ERP of a ran-
domly selected liar and a truthful individual on three electrodes.
It can be observed that the signal-to-noise ratio has increased
and the ERP waveform of the lying subject has become more
prominent. This suggested that simple time-domain averaging
might be beneficial for subsequent feature extraction and clas-
sification. Fig. 2(b) depicts the signal pre-processing, where all
experimental data were judged valid in this study, and the raw
EEG data were preprocessed to obtain 400 30 × 650 datasets
for the deception and innocent groups, respectively.

D. WDFBN Construction

1) Normalized Phase Transfer Entropy: Before constructing
a brain network, the network’s nodes and the strength of the

Fig. 3. Comparison of the ERP waveforms of the two types of subjects.
The blue curve and the orange curve represent the signal before and
after stacking averaging, respectively.

connecting edges must be determined. This study considered
the EEG electrode channels as network nodes, and PTE was
used to estimate the strength of the information flow between
different nodes as the strength of the connecting edge. PTE and
transfer entropy (TE) [40] algorithms share the same princi-
ple of studying the causal relationship of information transfer
between the variables. In the information-theoretic criterion,
the information transfer from both the source and the target
signal’s past results in a more significant reduction of target
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signal uncertainty than the reduction of target signal uncertainty
by the target signal’s past information. This can be interpreted
as a causal relationship between the source and target signals.
Measuring the causal relationship between the variables of a
nonlinear system is widely used in the nonlinear analysis of
neural signals. If the uncertainty of the target signal Y (t) at
delay δ is represented by Shannon Entropy, then the TE from
the source signal X(t) to the target signal Y (t) can be expressed
as:

TExy=H(Yt+δ, Yt)+H(Xt, Yt)−H(Yt)−H(Yt+δ, Yt, Xt)

=
∑

p(Yt+δ, Yt, Xt) log

(
p(Yt+δ |Yt, Xt)

p(Yt+δ |Yt)

)
(1)

where Shannon Entropy is defined as: H(Yt+δ) = −∑
p(Yt+δ) log p(Yt+δ), this requires estimating the probability of
all data with a discrete time step of t. However, directly esti-
mating the probabilities of the observed data is time-consuming.
Thus, Staniek and Lehnertz [41] estimated TE by turning the ob-
served time series into a symbolic series to solve this challenge.
Similarly, the signal’s amplitude and instantaneous phase can be
utilized to define the time series, and the transfer entropy can
then be approximated from the instantaneous phase time series,
resulting in the PTE algorithm. PTE is robust and offers high
computational efficiency, suitable for estimating the directed
connections in large-scale brain networks. For a source signal
X(t) the analytical signal to obtain its instantaneous phase θx(t),
is defined as:

S(t) = X(t) + i
∼
X(t) = A(t) exp(i θx(t)) (2)

where A(t) is the instantaneous amplitude of the signal X(t)

and the function
∼
X(t) is the Hilbert transform of X(t), defined

as:

∼
X(t)=

1

π

∫ +∞

−∞

X(τ)

t− τ
dτ (3)

Similarly, (2) and (3) are used to calculate the instantaneous
phase θy(t) for the target signal Y (t). In this study, the Hilbert
transform was applied to the signal to obtain the instantaneous
phase using MATLAB’s algorithm. After obtaining the signal’s
instantaneous, PTE of the signal X(t) to Y (t) is defined as:

PTExy = H(θy(t+ δ), θy(t)) +H(θy(t), θx(t))

−H(θy(t))−H(θy(t+ δ), θy(t), θx(t))

=
∑

p(θy(t+δ), θy(t), θx(t))log

(
p(θy(t+δ)| θy(t), θx(t))

p(θy(t+ δ)| θy(t))
)

(4)

where θy(t+ δ) is the instantaneous phase time series of the
target signal Y (t) at delay δ. The probability of the data is
calculated through a histogram that splits the interval spanned
by the data values into equal sub-intervals, places the data values
in each sub-interval, counts their frequencies, and calculates the
probability of each sub-interval. The histogram’s width was set
to: binsize = 3.49 ∗mean(std(θ))∗Ns

∧(−1/3) and the pre-
diction delay δ was set to: δ = (Ns ×Nch)/N±, where Ns and
Nch are the number of samples and channels respectively, and

N± is the number of phase reversals. θ is the instantaneous phase
matrix of the signal. To eliminate inaccuracy and better represent
the difference in information intensity between the two types of
participants’ zones of interest, the PTE was normalized as:

dPTExy =
PTExy

PTExy +PTEyx
(5)

dPTE [37] has a maximum value of 1 and a minimum value
of 0. When the dPTE ranges within (0.5, 1], it signifies that
information flows from signal X(t) to signal Y (t), with signal
X(t) being the cause and signal Y (t) the effect. When the range
of dPTE is [0, 0.5), it means that the information flow is from
signal Y (t) to signal X(t), with the former being the cause
and the latter the effect. When the value of dPTE is 0.5, the
information flow between the two leads is in equilibrium.

2) Feature Preprocessing: To positively identify lying EEG
signals, the signal processing should also include feature extrac-
tion, feature selection, smoothing, and dimensionality reduction
of the features. The instantaneous phase of a time series can be
determined more precisely if a signal band is narrow [42]. The
frequency range of the preprocessed EEG data in this investiga-
tion was 0–35 Hz, which encompassed the delta band (0–3 Hz),
theta band (4–7 Hz), alpha band (8–13 Hz), and beta band
(14–30 Hz), as illustrated in the second row of Fig. 2(b). The
EEG signal was band-pass filtered to obtain the four sub-band
signals. The Hilbert transform [43] was used to represent the
EEG signal in the complex plane to extract the instantaneous
phase of each frequency sub-band, and the phase angle was
then calculated from the original signal and the transformed
analytic signal. After calculating the instantaneous phase of the
time series, a MATLAB code was written to compute the PTE
between the phases of each pair of electrode channels using
the histogram and the delay parameters δ. Finally, from (5), the
acquired PTE was normalized to obtain the dPTE. The above
approach extracted features from the honesty and lying groups’
EEG signals and constructed 400 30 × 30 effective connectivity
matrices, respectively.

After calculating each channel and band for all samples, 870
channel combinations in each sub-band required analysis, and
most of these features were not statistically different, so we had
to select the features, as depicted in the third row of Fig. 2(b). The
entropy values of the channel combination features in the matrix
were compared between the groups to identify meaningful,
connected features with statistical differences. A non-parametric
permutation test (Np = 10000) [44] was performed on the dPTE
values for all channel combinations to find the ones that were
statistically substantially different, to reduce the effect of com-
putational bias. After the permutation test, only the significant
values were considered, while the inconsequential values were
set to zero.

The feature sets with significant differences contain all vital
information and may have redundant information, degrading the
classifier’s performance [45]. In practical applications, feature
dimensionality reduction improves the convergence speed and
the classifiers’ stability [46]. Therefore, to avoid feature redun-
dancy and reduce the number of inputs to the classification model
features and accelerate network convergence, this study reduces
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TABLE I
HYPERPARAMETERS FOR THE OPTIMAL MODEL

Fig. 4. Flow chart of classification. Performance indicates the effect of
the lying predictive model. CV: cross-validation.

the feature dimensionality based on L1-regularized logistic re-
gression [47] and searches for the subset of features that are
most relevant to predicting whether a subject is lying or not.
This method’s core principle is to train all features using a
logistic regression algorithm, model them with an L1 parity
as the penalty term, obtain the weight coefficients for each
feature, and select the features based on the coefficients from
the largest to the smallest. Since the smaller the penalty term
coefficient C, the fewer features are selected, this article set C
to 0.1, considering that a large number of features increases the
difficulty of the brain network analysis.

3) Building the Lying Predict Model: A proficient classifier
determines the difference between individuals who lie and those
who are truthful. This work applied the CatBoost [48] machine
learning classification method for deception detection. In ad-
dition to addressing the gradient and prediction bias problems.
The algorithm has the advantages of resilience (cutting the need
for significant hyperparameter tuning) and great performance.
Table I reports the ideal hyperparameters of the prediction model
for CatBoost based classification prediction of deception and
innocence on Python 3.6. During classification, the features
selected after the dimensionality reduction process were added
to the classifier. Fig. 4 reveals that a nested cross-validation (CV)
[49] scheme was used to estimate the prediction model’s weights
and hyperparameters. A 6-Folds CV strategy was applied to
each feature subset, with the samples randomly divided into
training and test sets, where Dtra and Dtes adopted a 5:1
ratio. Then, 9-Folds CV was applied on the training set, with

Fig. 5. Comparison of group average dPTE effectivity connection ma-
trix for all bands. Each electrode channel is represented by a row and
column in the matrix. The link weight from the horizontal electrode
channel to the vertical electrode channel is measured by each node
element, which is color coded. Solid vertical lines separate the brain
areas corresponding to the electrode channels in the matrix, which are
the frontal (FRO), temporal (TEM), parietal (PAR), and occipital (OCC)
lobes, from left to right.

Dtra randomly partitioning into training subset Dtra_sub and
validation set Dval in an 8:1 ratio. In the inner loop of the
nested cross-validation, the hyperparameters were continuously
updated to construct six classifiers, and the classifier’s output
was the average value of Dtes predicted by the classifier. To test
CatBoost’s ability to predict lying and honesty, the model pa-
rameters of the LR [50] and SVM [51] classifiers were adjusted
to optimize the model, and their performance were compared
using the same training set as CatBoost.

III. RESULTS

A. dPTE as Metrics of Identifying Lies

1) dPTE Effectivity Connection Matrix: The group average
connection matrix of the four bands was generated by extracting
the features of each band using the dPTE. The adjacency matrix
of all the samples was illustrated in Fig. 5. The darker the grid
color in the diagram, the stronger the information interaction
between the channels. In the delta band, we found stronger
information interaction between the temporal lobe and other
brain regions in the lying group than in the honesty group.
The difference in the occipital lobe between the two groups
of subjects in the Alpha band was more evident. Considering
the theta and beta bands, the dPTE values of the honesty group
connectivity matrix converged to 0.5, indicating that the infor-
mation flow between the channels was in balance, implying that
the subjects’ brains responded honestly in these two bands were
not significantly activated.

2) Statistical Analysis of Classification Results: This study
used feature preprocessing to find the statistically significant
dPTE values between the frequency groups. The non-parametric
replacement was tried on all features in the four frequency
bands of the two subject groups, and only the statistically differ-
ent features were chosen. Furthermore, feature dimensionality
reduction was performed on the selected features based on
an L1-regularized logistic regression. After this operation, the



4742 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 10, OCTOBER 2023

Fig. 6. Comparison chart of classification accuracy of linear regression
(LR), support vector machine (SVM) and CatBoost. The white dots on
the violin chart indicated the median. The black box plot indicated the
range of test accuracy.

number of feature dimensions remaining in the delta band was
7, the theta band was 3, the alpha band was 2, and the beta band
was 4.

The selected features were added to the feature set as classifi-
cation features for the LR, SVM, and CatBoost classifiers. The
output values of all classifiers were used to assess the model’s
prediction performance. Fig. 6 illustrates the test accuracy of the
three classifiers in the four frequency bands, highlighting that
the accuracy of the two comparison models, LR and SVM, was
concentrated between 85% and 90% in the delta and theta bands
and between 80% and 85% in the alpha and beta bands. Com-
pared to the comparison models, the accuracy of the CatBoost
model was concentrated between 90% and 95% in the delta,
theta, and beta bands and between 85% and 90% in the alpha.
Additionally, the black box range demonstrates that the accuracy
of CatBoost fluctuates is inferior to the other models, implying
that the classifier is more efficient and robust. Therefore, the
CatBoost was chosen as the feature classifier for this article.
Indeed, the average classification accuracy was 92.83% for the
delta band, 94.17% for the theta band, 85.93% for the alpha
band, and 92.25% for the beta band.

B. WDFBN Analysis

According to the classification statistics mentioned above, the
features selected for this study can be distinguished between
honest and lying subjects. The mean dPTE group difference of
the classification features was illustrated in Fig. 7, revealing that
the difference in dPTE exceeds 0.1 for all bands except for the
beta band.

To more intuitively highlight the brain’s information flow
patterns in different frequency bands during the deception state
and to explore the relevant information of the cerebral cortex
functional areas, mapping the scalp EEG data to the cerebral
cortex is required. Currently, there are two commonly used
mapping methods in research: source localization method [52],
[53] and automatic mapping EEG signal to cortex method [54],

Fig. 7. Difference of group mean of the dPTE in each frequency band.
The horizontal coordinate indicated the name of the lead pair and the
vertical coordinate indicated the dPTE value.

[55]. The source localization method determines the source
position of the signal by analyzing the features in the EEG data,
but the calculation complexity is high and the mapping results are
not very intuitive. In comparison, the method of automatically
mapping the EEG signal to the cortex utilizes the correspondence
between the electrode position and the three-dimensional struc-
ture of the brain cortex to map the EEG data to the brain cortex,
which is simple and straightforward, and the mapping results are
intuitive. Therefore, this study chose the method of automatic
mapping to map the EEG data onto the Brodmann area of
cerebral cortex (the corresponding band and brain region names
are shown in Table II) and plotted the information flow maps
of the WDFBN for the four bands using BrainNet Viewer [56]
(Fig. 8). As illustrated in Fig. 8, the information flow is primarily
transferred from the inferior parietal and superior frontal gyrus
to the inferior temporal gyrus in the delta band. Indeed, the theta
band was more complicated and involved more brain regions,
but the primary pattern of information flows originated from the
superior temporal gyrus to the inferior parietal gyrus and from
the prefrontal cortex to the middle temporal. In the alpha band,
the information flows mainly from the middle frontal gyrus to
the postcentral gyrus and from the precuneus to the cuneus. The
information flows mainly from the inferior parietal gyrus to other
brain regions in the beta band.

IV. DISCUSSION

This study aims to investigate the patterns of information
interaction in the brain during deception. To our knowledge,
WDFBN was exploited for the first time in lie detection using
the dPTE algorithm. dPTE is a phase-based information flow
method used to estimate the directional connection between the
signals of each lead. It is a valuable tool for studying the brain’s
functional network in the process of lie cognition. This research
revealed the functional connections between active brain regions
and the information flow patterns between distinct brain re-
gions, allowing researchers to investigate cognitive differences
between deception and truth in specific frequency sub-bands,
and the mechanics of neural activity in the brain during deception
conditions.

The neural oscillations driving lying and integrity were eval-
uated based on the effective network connections to recognize
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TABLE II
EACH FREQUENCY BAND ELECTRODE AND ITS CORRESPONDING PROJECTION CORTICAL AREA

Fig. 8. WDFBN for each frequency band. Color of the nodal con-
nection line in the brain area corresponds to the group average dPTE
difference value for each frequency band, indicating the strength of
information flow. Direction of the arrow denotes the preferred information
flow direction. Nodes indicate the selected electrode channel, and the
node color indicates the brain area. Purple, green, yellow and pink
denote the frontal, temporal, parietal and occipital lobes.

functional connectivity patterns and information transfer be-
tween brain areas during deception. The experimental results
provide direction for future research on the information flow in
the human brain during lie detection. Here, we analyzed different
frequency bands, and found that the dPTE in the brain was

significantly higher in the lower frequency bands (delta and
theta) than in the higher frequency bands (alpha and beta)
(Fig. 8), particularly in the information flow pattern of the
prefrontal-temporal pathway. Previous research has also ob-
served an increase in this pathway activity during lying [17],
[21]. The prefrontal lobe was activated in all frequency sub-
bands, and the information interaction between the frontal lobe
and the rest of the cortex better reflected the difference between
lying and honesty, indicating that the frontal lobe performed an
essential role in the neural circuitry of deception. The linkages
connected with the frontal-parietal network and the temporopari-
etal junction were the most discriminating. This demonstrated
that various brain parts were active throughout lying, and the
connections between these areas were enhanced, while the infor-
mation interchange increased more frequently. Previous fMRI
research has confirmed that lying increases activity in the frontal,
temporal and parietal cortices compared to speaking the truth
[24], [57], and this study confirm these main results in those
research.

A. Delta

Currently, there are two main origins of delta identified: one
is thalamus, which is more researched and linked to sleep [58],
and the other is cerebral cortex, which may be linked to higher
cognitive processes in humans. P300 [12], [23] is one of the
most well-known ERP components, with delta low-frequency
oscillations contributing the most to the P300 [59]. P300 has
been proven to reflect higher cognitive human skills, such as
perception, attention, comprehension, and judgment [60], [61].
As a result, delta oscillations play an essential role in human
attention. When lying, a person’s brain will allocate attention to
suppress the exposure of false information [62]. If the liar feels
uneasy or nervous about the lie they are telling, attention dis-
tribution becomes more focused, resulting in the liar exhibiting
certain specific neural physiological features, such as the delta
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oscillations energy increases [17], [31]. Our results also showed
this phenomenon, compared to the honesty group, the delta band
oscillation was enhanced and the information interaction was
more obvious when lying.

The act of lying often requires the liar to conceal information
and manipulate the truth [63]. This requires significant cognitive
effort, such as increased brain activity in regions related to
attention and decision-making, to activate the brain’s conflict
detection system. During cognitive activities, the frontal lobes,
especially the prefrontal cortex and dorsolateral prefrontal cor-
tex (DLPFC), can be flexibly linked to other brain networks
and involved in a wide range of cognitive processes, making
them an essential part of deceptive cognitive tasks [64], [65].
Recent neuroimaging studies have revealed that the DLPFC is
involved in attention-related cognitive processes and monitors
salient motivational stimuli, particularly in decision-making
responses [66], [67]. The findings of another study suggested
that there may have been a relation between the increase in
delta amplitude in the odd paradigm and decision-making re-
sponses [68]. Consistent with these prior studies, our results
suggested that an increase in delta band dPTE was particularly
noticeable, especially the connection between the frontal and
temporal regions. The angular gyrus was assumed to have a role
in attentional mechanisms, and the temporal area was considered
vital for long-term memory. Some studies have already proven
that the prefrontal-temporal pathway is primarily responsible
for functions such as memory, attention, and decision-making
[69], [70]. As a result, the information flow from the SFG (10L),
SFG (10R), and IFG (45R) to the ITG might indicate that the
deception group inadvertently paid attention and remembered
the crime procedure or specifications whenever they came across
something related to the stolen object or the crime scene. Fur-
thermore, activation of the frontal and temporal lobe areas of the
brain enhances the exchange of information between these areas,
which may be related to the need to allocate more executive
control and attentional resources to monitoring and resolving
conflicting information. This helps ensure that the brain pro-
cesses lying information consistently and meaningfully.

In the delta band WDFBN, the interaction of information
between the parietal and temporal lobe was also relatively
strong during deception. Suzuki et al. [71] have shown that the
posterior parietal cortex is engaged in memory updating. The
P300 component of endogenous ERP produced by the deception
test was most visible in the parietal lobule [11]. Processing
the social environment and psychoanalyzing the intentions and
mental states of others involved temporal and parietal areas
[72], [73]. Combined with the results of previous studies, an
information flow pattern from the IPG (7R) and IPG (40R)
to ITG (37L), PoCG (123L) to ITG (37R) might demonstrate
that choosing to say something false and making decisions
involves a mental differentiation between truth and untruth. It is
critical to make a concerted effort to convince people to believe
falsehoods, which is risky. As a result, the subject must bear
a greater psychological burden and display meaningful brain
activity in their temporoparietal control network. This adds to
the growing evidence that the temporoparietal area was activated
and revealed the this area’s information transmission pattern

during deception. It also confirms that the delta oscillation is
linked to higher cognitive activities like attention and judgment.
The results of the analysis of the delta band showed that, at
least two distinct interactive critical loop play a role in lying:
the frontotemporal circuitry involved in conflict-monitoring and
the temporoparietal circuitry involved in self-related mental
simulations.

B. Theta

The study found that the connectivity between ITG (19R)
and MTG (21R) in the theta sub-band was strengthened in the
deception condition. Memory processes, the temporal lobe and
theta oscillations have now been connected in numerous studies
[74], [75], [76], revealing that working memory activities cause
theta oscillations [77]. As a result, this effective connectivity in
the temporal lobe may indicate that familiar P stimuli elicited
people’s visual attention, and then subjects recalled and pro-
cessed the memory information stored in the brain. Additionally,
it could be found a pattern of information flow from SFG (10L)
to MTG (21R) and STG (22L) to IPG (7R). This suggested that
the brain adjusts the activity of the frontal, temporal and parietal
to control emotional expression, evaluate risks and conceal true
information when subject chose to lie. Since the network was
built based on dPTE, it could be considered that the links were
indicators of the flow of information between nodes. Therefore,
the findings of theta band might be considered as a sign of more
information transfer from frontal to temporal and temporal to
parietal in liars. Another explanation of this result was that, in
the process of lying. First, the prefrontal lobe collaborated with
the medial temporal lobe in making decisions and in assessing
risks for the content to be lied about. Second, the temporal
lobe collaborates with the inferior parietal gyrus in suppressing
the truth and in updating memory, thus forming a prefrontal—
medial temporal—inferior parietal gyrus neural circuit, which
was closely related to the processing of lie information.

C. Alpha

Alpha rhythms might be classified into two types based
on the cortical areas where they occur: alpha oscillations in
sensory-motor cortical areas [78] and alpha rhythms in the visual
cortex or occipital lobe [79]. Previous research has indicated that
increasing alpha activity is beneficial for suppressing distracting
input [80], [81]. Langleben et al. used the GKT paradigm and
found increased activity at the intersection of the prefrontal
and anterior parietal cortices when subjects exhibited deceptive
responses by pressing a button. They suggested that this may be
related to increased demands on motor control [82]. Zhou et al.
have found that alpha oscillation phase in the parietal, frontal,
and occipital regions of the brain prior to stimulus presentation
can modulate perceptual accuracy in visual tasks [83]. In this
study, an increased information flow in the alpha band was
observed between MFG (6R) and PoCG (123L), which might
indicate that participants will predict an impending stimulus, and
when the observed object matches the predicted object, the com-
munication between the midfrontal gyrus and postcentral gyrus
of the brain became more efficient, which in turn contributed to
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supporting cognitive control processes of visual attention and
response inhibition.

Early studies [84], [85] found that alpha band activity is
strongly modulated during working memory tasks, with an in-
crease in alpha being a result of functional inhibition. Palva et al.
[86] further observed that increasing task load leads to enhanced
phase synchrony, with the most prominent effects observed in
alpha band oscillations. Additionally, considering that alpha
oscillation is the dominant EEG activity in the occipital region,
an increased connectivity was observed between PCUN (18L)
and Cuneus (18M) during the processing of P stimuli, indicating
the activation of the occipital cortex. It can be speculated that
enhanced alpha band oscillations observed during high cognitive
demand tasks may contribute to increased connectivity between
brain regions, which may have allowed the occipital cortex to
jointly inhibit conflict memory with the precuneus to achieve
deception.

D. Beta

In a visual task for predicting trust, Wang et al. found that
the trust condition led to an increase in beta-band activity in
the frontocentral cortex and suggested that this may be related
to cognitive inhibition [87]. Huster et al. investigated cognitive
control processes using a stop signal and go/no-go paradigm, and
found increased beta-band activity in the inferior frontal gyrus
and primary motor cortex during the stop trials, likely reflect-
ing the continuation of the previous motor response when the
stop signal appears and no response is made [88].Additionally,
Andreas et al. suggested that stronger beta oscillations in the
primary motor cortex were associated with maintaining activity
related to current sensorimotor or cognitive states [89]. Ob-
serving the beta WDFBN, the dPTE connection involving the
premotor and supplementary motor cortex was: MFG (6L) to
MFG (6R). Therefore, we could infer that when the criminal
signal appeared, the response made by the lying group needed to
be consistent with the other stimulus signals, so it was necessary
to inhibit the previous memory information and maintain the
previous sensory motor state. This process was achieved by
enhancing the information interaction between the left and right
middle frontal gyrus in the beta frequency band.

The other three connections in the WDFBN involved the
middle frontal gyrus, inferior parietal gyrus, middle temporal
gyrus, and precuneus. Husain et al. speculated that many classic
parietal functions are provided by different regions within the
frontoparietal network, and that visual selective attention may
also be impaired when this network is damaged [90]. Corbetta et
al. suggested that when salient stimuli appear, temperoparietal
junction will reallocate attention in a stimulus-driven manner
[91]. Treserras et al. explored how the brain transitions from
rest to movement and found that the precuneus is a key area
in preparing for movement. Additionally, functionally, the pre-
cuneus works in conjunction with the medial superior parietal
cortex to initiate motor encoding [92]. Therefore, compared with
the honesty group, the information flow from IPG (40R) to MFG
(6R), MTG (21R), and PCUN (18L) were increased in the lying
group, which might indicate that when the P stimulus (salient

stimulus) appears, the brain directs attention to the salient event
through the frontoparietal and the temporoparietal network,
followed by the cooperation between the inferior parietal lobule
and the precuneus to initiate the button response. In general,
the WDFBN in the beta band showed that multiple functional
networks were involved in completing the lying behavior, es-
pecially the selective attention network and the motor control
network.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

This work proposed an intelligent lie detection system based
on EEG signals. This study intended to see whether there were
any variations between the WDFBN of dishonest and honest
persons. First, the dPTE values between the lead pairs were
calculated, and the dimensionality of feature values was reduced
by logistic regression with L1 regularization terms. Following
that, nested cross-validation was used to train and test classifiers,
including SVM, LR, and CatBoost, and satisfactory classifi-
cation results were obtained. In comparison to SVM and LR,
CatBoost achieved higher classification accuracy. This study
revealed that using a machine learning classifier with phase
transfer entropy feature extraction methods to analyze EEG sig-
nals was appealing for detecting honesty and lying. The findings
in the WDFBN revealed strong information interactions among
the frontotemporal network in the delta and theta bands, and the
frontoparietal network in the alpha and beta band, indicating
that these two networks play an important role in deception
processing. The analysis of various frequency bands found that
the increased information exchange between the delta, alpha,
and beta band brain regions may be related to executive control of
attention, visual attention, and selective attention, respectively.

Exploring cognitive activity in the brain during deception
can enhance our understanding of the phenomenon of lying in
cognitive psychology and shed light on the information pro-
cessing mechanisms of the human brain. This study aimed to
create a WDFBN for the EEG data elicited by P-stimulation
in the deception state and investigate the causal links between
brain regions based on the network’s information flow patterns.
Our findings largely corroborated the findings of prior lying
studies and provided new insights into brain oscillations during
deception.

Although our findings provide insight into the information
interaction pattern of lying neural oscillations, our research has
some limitations. First, this study only conducted cross-group
analysis and confirmed differences between the two groups of
liars and truth tellers, but it is unsure whether these results are
consistent in cross-time studies. Therefore, future research goal
is to combine cross-group studies with cross-time studies to vali-
date the robustness of our conclusions. Second, the computation
of the brain functional network in this study is based on the entire
time before and after the stimulus, therefore the frequency band
analysis cannot locate the event-related processing in different
time stages of the brain. Future work could adopt clustering or
hidden Markov methods to construct an event-related dynamic
brain functional network and better explore the event-specific
temporal variations in brain processing. Third, although EEG
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can capture instantaneous changes in brain electrical activity,
its spatial resolution is poorer compared to fNIRS and fMRI.
Therefore, future studies can combine EEG and fNIRS or EEG
and fMRI to more study the relationship between brain activity
and lying behavior accurately. Finally, this study only intuitively
mapped the scalp EEG signals to the cortex, and future work
should use source analysis to study the directional connections
of the functional network in the brain cortex and conduct more
in-depth research on the mechanisms of lying.
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