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A Transformer-Based Model Trained on Large
Scale Claims Data for Prediction of Severe

COVID-19 Disease Progression
Manuel Lentzen , Thomas Linden, Sai Veeranki , Sumit Madan , Diether Kramer, Werner Leodolter,

and Holger Fröhlich

Abstract—In situations like the COVID-19 pandemic,
healthcare systems are under enormous pressure as they
can rapidly collapse under the burden of the crisis. Machine
learning (ML) based risk models could lift the burden by
identifying patients with a high risk of severe disease pro-
gression. Electronic Health Records (EHRs) provide crucial
sources of information to develop these models because
they rely on routinely collected healthcare data. However,
EHR data is challenging for training ML models because
it contains irregularly timestamped diagnosis, prescription,
and procedure codes. For such data, transformer-based
models are promising. We extended the previously pub-
lished Med-BERT model by including age, sex, medica-
tions, quantitative clinical measures, and state informa-
tion. After pre-training on approximately 988 million EHRs
from 3.5 million patients, we developed models to pre-
dict Acute Respiratory Manifestations (ARM) risk using the
medical history of 80,211 COVID-19 patients. Compared to
Random Forests, XGBoost, and RETAIN, our transformer-
based models more accurately forecast the risk of devel-
oping ARM after COVID-19 infection. We used Integrated
Gradients and Bayesian networks to understand the link
between the essential features of our model. Finally, we
evaluated adapting our model to Austrian in-patient data.
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Our study highlights the promise of predictive transformer-
based models for precision medicine.

Index Terms—COVID-19, precision medicine, trans-
former-based models.

I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19) is an infectious
disease caused by severe acute respiratory syndrome coro-

navirus type 2 (SARS-CoV-2) that arose in December 2019.
Since its emergence, 628 million people have been infected, and
6.58 million have died (https://coronavirus.jhu.edu/map.html,
accessed 25.10.2022). In such pandemic circumstances, health-
care systems face a tremendous challenge as they can quickly
collapse under the burden of this unprecedented crisis. Despite
taking countermeasures such as testing, lockdowns, and vacci-
nations, the pandemic temporarily put immense stress on global
healthcare systems. The use of decision support systems such
as patient-level risk models can assist with the critical tasks of
quickly and efficiently identifying high-risk patients so that the
existing resources are best distributed and vulnerable patient
subgroups are effectively protected.

Structured Electronic Health Records (EHRs) offer great op-
portunities for the efficient development of such risk models
as they are routinely collected in many healthcare systems in
large quantities. They contain data on diagnoses, prescriptions,
procedures, and quantitative clinical measurements, such as vital
values from bedside monitoring. Additionally, demographic data
such as age, gender, and geographical region may be included.
Models trained on such data could be used to better understand
risk factors, such as comorbidities and medications, in addition
to predicting a patient’s risk of severe disease development.
However, these data present significant challenges due to their
high dimensionality, heterogeneity, temporal dependence, spar-
sity, and irregularity, making them difficult to fully exploit [1].

Furthermore, the coding of diagnoses is frequently biased
for economic reasons. Since there is no unique mapping of a
physician’s diagnosis to a coding scheme such as ICD, there is
a tendency to select the code that delivers the greatest economic
benefit from among several possible codes. Concerning medi-
cations, it is noteworthy that categorization often occurs at the
product level as opposed to the chemical substance level and that
several medications may contain the same chemical substance.
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TABLE I
COMPARISON OF EXMED-BERT WITH OTHER MODELS

In the past, many ML approaches have been taken to work with
structured EHR data. Simpler methods often limited the time
information and just worked with a one-hot encoding (OHE) of
diagnoses and prescriptions, which allowed the application of
standard ML techniques, such as logistic regression, random for-
est (RF), XGBoost (XGB), and Bayesian methods [2]. Recently,
more studies focused on the use of time-series information.
Methods for such an approach include autoencoders, convolu-
tional neural networks [3], or sequential models like recurrent
neural networks (RNN) [4] or transformer-based models [5], [6],
[7], [8], [9]. Transformer-based models originate from natural
language processing (NLP) and have recently gained much
attention since they have achieved excellent results in many
areas [10], [11], [12], [13]. A principal advantage of transformer
models is the ability to train them in a parallel fashion and to
weigh different parts of a time series differently due to their in-
built attention mechanism. Transformer-based models typically
undergo two-stage training: pre-training for generic representa-
tion learning and transfer learning (fine-tuning) for application-
specific prediction. This approach enables sharing pre-trained
models, often based on large datasets like the entire Wikipedia
or protein sequences, with a broader community. These models
can then be fine-tuned for various unforeseen tasks, highlighting
the transformer-based approach’s versatility and strength.

Variants of the Bidirectional Encoder Representations from
Transformers (BERT) [14] model have recently been applied
to structured EHR data. For instance, Shang et al. developed a
graph-augmented transformer model named G-BERT to encode
the medical history of single medical appointments and used
the generated embeddings for a medication recommendation
task [9]. Later, Li et al. developed BERT for EHR (BEHRT),
which generated a patient embedding based on the history of
diagnoses and used it for disease prediction in different time
windows [5]. Since BEHRT – like most transformer-based
models – is limited with respect to the maximum sequence
length, the authors later developed a hierarchical BEHRT variant
(HI-BEHRT), which can process longer medical histories [6].
Meng et al. presented another model in 2021, the Bidirectional
Representation Learning model with a Transformer architecture
on Multimodal EHR (BRLTM), which employed a strategy sim-
ilar to BEHRT but incorporated a larger vocabulary, including di-
agnoses, medications, and procedures [8]. Med-BERT, another
transformer-based model for structured EHR data, is closely

related to BRLTM, but it features an even larger vocabulary
and slightly different training objectives [7]. A comprehensive
comparison of these models is provided in Table I. Unfortu-
nately, none of the above-mentioned models is publicly avail-
able in a pre-trained form and thus not usable for the broader
community.

Our contribution is an extension of the Med-BERT approach
by including information about prescribed medications and
demographic information such as state of residence, gender,
and age as well as quantitative clinical measurements. We
pre-trained our model, named ExMed-BERT, on 987,846,612
EHRs collected between 2010 and 2021, stemming from 3.5
million US patients in the IBM Explorys Therapeutic dataset. As
a showcase, we subsequently used data from 80,211 COVID-19
patients to develop ML models for predicting the risk of acute
respiratory manifestation (ARM) within three weeks after a
confirmed COVID-19 diagnosis. This time frame was chosen
because, on the one hand, a COVID-19 infection typically
lasts 10 to 14 days. On the other hand, the timestamp of the
COVID-19 diagnosis provided in the data may only be accurate
up to a weekly resolution. The aim was thus to capture a serious
event that could be time-wise related to the previously reported
infection.

We compared our ExMed-BERT models with the three
baseline models, which included the RNN-based RETAIN
model [15], as well as two models (RF [16] and XGBoost [17])
that ignore time information. We then used explainable AI
methods to gain insights into the underlying mechanisms of our
models. A specific contribution is the use of Bayesian networks
(BNs) to disentangle the relationship between most predictive
features. Finally, we explored how our ExMed-BERT models
could be adapted to external data from an Austrian hospital
group (KAGes) via transfer learning strategies. Opposed to
previous work, we make our ExMed-BERT model available to
the scientific community.

II. MATERIALS & METHODS

A. General Overview

The work in this article consists of four phases (Fig. 1):
1) Pre-Training of transformer-based model for structured

EHR data: Initially, we prepared a dataset of large-scale
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Fig. 1. Study overview. First, we pre-trained a transformer model on about 988 million EHR records from 3.5 million patients. Then, we
developed patient-level risk models for COVID-19 disease progression. Next, we interpreted our developed risk models using Integrated Gradients
in conjunction with Bayesian networks. Finally, we evaluated the possibility of adapting the models to external data.

claims data and pre-trained a transformer-based model
called ExMed-BERT for structured EHR data.

2) Development of risk models for COVID-19 disease pro-
gression: Subsequently, we used our newly trained model
to develop risk models for predicting severe COVID-19
disease progression – namely ARM – and compared their
performances with RF, XGB, and RETAIN models.

3) Interpretation of developed risk models: Then, we used
the Integrated Gradients approach in conjunction with
Bayesian Networks to offer detailed explanations for
model predictions.

4) Evaluation of the adaptation of our models to data ob-
tained from an Austrian hospital group within a transfer
learning approach.

In the following, we describe our approach in more detail.

B. Data Preprocessing

1) Preparation of Data for Modeling: This study used the
IBM Explorys Therapeutic dataset (https://www.ibm.com/
products/explorys-ehr-data-analysis-tools), which comprises
EHRs and insurance claims from 4.5 million patients from all
over the USA from 2010 until mid of 2021. Records consist
of prescribed drugs, diagnoses, performed procedures, and a
few quantitative clinical measures (e.g., blood pressure). We
focused on demographic data and drugs, diagnoses, and avail-
able quantitative clinical measures. We excluded patients with
fewer than five observations. This led to a reduced dataset of
3.5 million patients with 987,846,612 recorded diagnoses and
drugs, which we used for pre-training a transformer model
(details described later). The intent behind the pre-training of a
transformer model is to learn a suitable vector representation of
timestamped structured EHRs, irrespective of any later clinical
use case. The fit of the model to a dedicated clinical endpoint is
then performed within a subsequent fine-tuning/transfer learning
step, for which we selected only patients with a confirmed
COVID-19 diagnosis defined by the use of the International
Classification of Diseases (ICD10) [18] code U07.1 or a set of
Logical Observation Identifier Names and Codes (LOINC) [19]
codes (see Supplementary Section A) (n = 80,211). We cor-
rected the diagnosis or observation dates of the records by
subtracting seven days to get an approximation of the index date
of infection. Then we focused on the ARM endpoint, which
was defined if at least one of the following diagnoses appeared
within three weeks after the COVID-19 infection was reported
(n = 10,743):

� Pneumonia due to coronavirus disease 2019 (J12.82)
� Acute bronchitis due to other specified organisms (J20.8)
� Unspecified acute lower respiratory infection (J22)
� Bronchitis, not specified as acute or chronic (J40)
� Acute respiratory distress syndrome (J80)
� Respiratory failure, not elsewhere classified (J96)
� Other specified respiratory disorders (J98.8)

For fine-tuning, we used one year of medical history of the
COVID-positive patients prior to their infection. Patients who
fulfilled these criteria for the ARM endpoint were labeled as
positives. Supplementary Fig. A.1 depicts the filtering process
in further detail.

To identify negatives while adjusting for the potentially con-
founding effects of age and gender, we used the technique of
Inverse Probability of Treatment Weighting (IPTW) [20], [21],
[22]. We used the Python package psmpy [23] (version 0.2.8)
to calculate propensity scores (PS), and subsequently, the IPTW
weights for each patient sample were calculated by the following
equation and used in the fine-tuning process.

IPTW =

{
1

PS if positive
1

1−PS if negative
(1)

2) Mapping of Drug and Diagnosis Codes: The IBM Ex-
plorys Therapeutic dataset includes information about diag-
noses encoded as ICD9 and ICD10 codes and administered or
prescribed drugs as RXNorm [24] identifiers. To harmonize
the two versions of ICD diagnosis codes, we mapped them
to Phecodes provided by the Phenome-wide association study
(PheWAS) [25]. Due to the lower number of Phecodes, the prob-
lem of a non-unique mapping between a physician’s diagnosis
and the ICD coding scheme is reduced. Hence, we reduced
potential coding biases and the feature space from 59,709 to
1,850 codes. Similarly, we mapped the provided RXNorm iden-
tifiers (RxCUI) to the fourth level of the Anatomical Therapeutic
Chemical (ATC) [26] classification system for chemical com-
pounds and thus addressed the sparse use of some RxCUIs by
reducing the feature space from 23,801 to 630 codes.

3) Input Representation for the Models: For the Random
Forest (RF) and XGBoost (XGB) models, we employed a one-
hot encoding approach to represent all categorical features. In
this scheme, a diagnosis or drug recorded in the one-year medical
history was denoted as one and zero otherwise. We applied
the same encoding technique to the state of residence and sex
variables. However, the data formatting requirements for the
RETAIN model and our transformer-based model significantly

https://www.ibm.com/products/explorys-ehr-data-analysis-tools
https://www.ibm.com/products/explorys-ehr-data-analysis-tools
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differ from those of the RF and XGB baseline models. Owing
to their design, which is tailored to handle sequential data, these
models necessitate the representation of each patient’s entire
medical history as a sequence. As illustrated in the lower part
of Fig. 2, we created separate sequences for each modality, with
each element of the sequence being an integer corresponding
to one vector of the embedding matrices. Quantitative clinical
measures were only considered during the fine-tuning phase.

C. Model Training and Evaluation

In this section, we provide a comprehensive overview of
the methods used in our study, detailing the pre-training and
fine-tuning of various models across multiple experiments. We
begin by outlining the structure and pre-training of our novel
transformer-based model before describing the development of
machine learning-based risk models using RF, XGBoost, RE-
TAIN, and our new model. However, we note that recent models
such as BEHRT or Med-BERT could not be included in our
comparison as the pre-training data and models are not publicly
available. Finally, we describe the integration of quantitative
clinical measurements with the patient’s medical history. While
previous works have extensively described the model architec-
tures, we refer interested readers to publications by Vaswani
et al. and Devlin et al. for Transformer-based models [14],
[27], Breiman for Random Forest [16], Chen and Guestrin for
further details on the XGBoost approach [17], and Choi et al. for
RETAIN [15].

1) Basic Model Structure and Pre-Training of ExMed-BERT:
We followed a similar strategy as the Med-BERT article and
focused on an extension of the BERT embedding layer. In
addition to the diagnoses that were included in the Med-BERT
model, we further extended Med-BERT by adding information
on prescribed drugs, the patient’s sex, state of residency, and age.
We denote our model as Extended Med-BERT (ExMed-BERT).
As shown in Fig. 2, we used different embeddings to accom-
modate the five feature modalities. Diagnoses and drugs were
represented in one embedding via Phecodes and ATC codes.
The sex and state embeddings contained static information. The
age sequence contained the patients’ age encoded in months, and
lastly, the visit sequence was used to distinguish between each
visit in a sequence. Since the order of drugs and diagnoses within
one visit was random, we passed on a serialization embedding.
Similar to Med-BERT, we did not use CLS and SEP tokens in
our input sequences.

We used the same hyperparameters and training objectives as
Med-BERT and pre-trained the model on the entire information
of the 3.5 million patients in the pre-training cohort. If sequences
exceeded the maximum sequence length of 512 diagnosis and
drug codes, we split the sequences and processed the samples
individually. We used the following joint training objectives to
pre-train our model:

� Masked language modeling (MLM): This task is identical
to the BERT approach and we followed the Med-BERT
strategy in masking only one of the codes at a time. In 80%
of the cases, the masked code was replaced with [MASK],

Fig. 2. Overview of the model structure. Compared to BERT or other
transformer-based models, we employed a multimodal embedding layer
for structured EHR data comprising drug, diagnosis and visit information
and information about a patient’s sex, state of residence, and age. After
embedding, the input is passed through 6 transformer layers before a
final representation of a patient’s medical history is generated with an
FFN, LSTM, or GRU head. Subsequently, these patient representations
were either concatenated with the quantitative clinical data or directly
passed through an FFN head for classification.
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in 10% it was replaced with another code and in the
remaining 10%, it remained unchanged. The model’s task
was to predict the correct code based on the information
provided by the remaining sequence.

� Prediction of prolonged length of stay (PLOS) in hospital:
As Rasmy et al. [7], we also predicted whether a patient
had a prolonged stay in a hospital (>7 days) throughout
his or her medical history. This task requires assessing the
severity of a patient’s health condition throughout their
medical history.

2) Machine Learning-Based Risk Models: In this study, we
aimed to predict severe COVID-19 disease progression by de-
veloping ML-based risk models to determine whether a patient
would develop ARM within three weeks of their COVID-19
diagnosis. To achieve this, we utilized one year of the patient’s
medical history prior to diagnosis. To adjust for potential con-
founding effects of age and gender, we employed the IPTW
approach described before.

During the fine-tuning of our ExMed-BERT model, we eval-
uated different classification head variants. We trained three
different models using a feed-forward network (FFN), long
short-term memory (LSTM), and gated recurrent unit (GRU)
head. We split the data into training, validation, and testing sets
in a stratified manner (70/10/20%) and used Bayesian hyperpa-
rameter optimization (optuna [28], version 2.10.0) to tune model
parameters such as the learning rate, batch size, warmup ratio,
weight decay, and in the case of RNNs, also the number of RNN
layers. Similarly, we trained RF, XGB, and RETAIN classifiers
and optimized several model hyperparameters. A detailed list of
all optimized parameters can be found in Supplementary Table
B.1.

For RETAIN, we used a Keras-based implementation1 with
slight modifications described in the next section. The input was
similar to our ExMed-BERT model, using PheWAS and ATC
codes and visit/date information but excluding a patient’s age,
sex, and state of residency, as these were not part of the original
RETAIN approach.

3) Combination With Quantitative Clinical Measurements:
In this study, we also assessed the integration of diagnosis and
prescription codes with numerical clinical data, such as blood
pressure readings. Our analysis focused on data documented in
the two weeks leading up to the revised index date, excluding
features with over 60% missing data. Given the considerable
sparsity of this data, we were left with only eight features for
our investigation: weight, body mass index (BMI), body surface
area (BSA), height, body temperature, diastolic and systolic
blood pressure, and heart rate. The number of patients with
available numerical data for each feature is displayed in Table II
(n = 23,949). To impute the numerical data for all patients, we
employed a Random Forest (RF)-based approach, utilizing only
the training data (missingpy [29], version 0.2.0).

The imputed numerical clinical features were combined with
one-hot encoded (OHE) data for the RF experiments. In the case
of the XGBoost (XGB) model, no prior imputation was carried

1[Online]. Available: https://github.com/Optum/retain-keras

TABLE II
CHARACTERISTICS OF THE PRE-TRAINING AND FINE-TUNING DATASETS

out. Instead, we fused the numerical clinical features with the
OHE data, relying on the imputation mechanism built into XGB.

In terms of model modifications, no alterations were required
for the RF and XGB models. However, we needed to adjust
the ExMed-BERT and RETAIN model architectures to accom-
modate numerical clinical features. Specifically, we utilized the
same ExMed-BERT model as before to produce a patient’s med-
ical history embeddings. We then combined these vector-based
representations with the numerical input before feeding it into
a final classification head. The overall model architecture and
the concatenation approach are detailed in Fig. 2. Similarly,
we produced the latent encodings in the RETAIN model and
combined them with the numerical clinical features before the
classification layer.

D. Model Interpretation

1) Feature Importance: To better understand the ExMed-
BERT models, we used the Integrated Gradients (IG) [30]
approach to determine which drugs and diagnoses had the
strongest influence on the model predictions. The IG method is
an axiomatic model interpretability technique that awards, in the
case of the ExMed-BERT models, an attribution score for each
diagnosis or drug in the medical history. Next to an input sample
(x ∈ Rn), the IG method requires a baseline input (x′ ∈ Rn),
which we constructed using a sequence of padding tokens. The
IGs are then approximated by summing the gradients at points
along the path from the specified baseline to the input using the
following formula:

IGi(x)
approx := (xi − x′

i)×
∫ 1

0

∂F (x′ + α× (x− x′))
∂xi

dα

(2)
Here, F is a differentiable function (F : Rn ⇒ [0, 1]) that rep-
resents our ExMed-BERT model. We performed 50 steps to
approximate the integrated gradients.

https://github.com/Optum/retain-keras


LENTZEN et al.: TRANSFORMER-BASED MODEL TRAINED ON LARGE SCALE CLAIMS DATA 4553

Initially, we computed IG attributions for all patients in the
test dataset. Based on these, we calculated the mean absolute
attribution for each diagnosis and drug that occurred at least ten
percent of the time to identify the top features for each model.
Subsequently, we calculated partial dependency scores using the
top 20 features. To do so, we first calculated the probability for
each patient for a specific endpoint using our fine-tuned ExMed-
BERT models; we refer to this probability as pr. The data for
each of the top 20 features were then permuted individually by
exchanging the respective diagnosis or drug codes with a PAD
token. Subsequently, the modified data was used as input for our
models to calculate the probability pm. Finally, a fold change
for each feature was calculated using the probabilities obtained
for actual (pr) and modified data (pm) to estimate the effect (fold
change; FC) of certain features on the model’s prediction:

FC =
pr
pm

(3)

2) Unraveling Feature Dependencies: To better comprehend
the numerous interactions and dependencies between the most
influential features, we developed BN models. BNs are proba-
bilistic graphical models that can represent complex multivari-
ate distributions with many variables. They can be graphically
depicted with nodes representing random variables and edges
expressing conditional statistical relationships. Let G = (V,E)
be a directed acyclic graph and {Xv|v ∈ V } a set of random
variables indexed over nodes in V. Then for any BNB = (X,G):

p(X|G) =
∏
v∈V

p (Xv|pav) (4)

where pav denotes the parents of v ∈ V according to the graph
structureG. Because of their ability to model (potentially causal)
relationships between variables, BNs are frequently employed in
many areas of science, including system biology and medicine.
In this work, we learned the graph structure G of a BN for the 100
most important features (according to the IG method) using the R
package bnlearn [31] (version 4.7). We used a one-hot encoding
for the respective features to indicate whether it was present
in the one-year medical history, similar to the data preparation
for the tree-based models. We also provided the patients’ age,
sex, and endpoint status. The tabu algorithm [32], [33] was
used for BN structure learning. This was performed within
a non-parametric bootstrap sampling scheme: We randomly
subsampled n = 80,211 patients with replacement for 1000
times, and for each bootstrap sample we performed a complete
network structure learning. We then focused on edges occurring
in over half of the 1000 network architectures acquired from the
non-parametric bootstrapped samples.

E. Transfer Learning on Austrian Hospital Data

1) Overview of the Data: Data from the Austrian hospital
group consisted of pseudonymized in-patient records of 6,335
COVID-19-positive patients, out of which 385 suffered from
ARM within a 3-week follow-up period after the initial visit to
the hospital. The medication prescriptions were already encoded
in ATC, but as ICD9/10 codes were used for diagnoses, these

were mapped to Phecodes, akin to the procedure described
earlier for the IBM Explorys dataset.

2) Transfer Learning of ExMed-BERT: We continued train-
ing the ExMed-BERT model for the ARM endpoint for only
five epochs on the Austrian hospital data. This was done due
to computational constraints. For the same reason, we did no
substantial hyperparameter tuning but used the optimal hyperpa-
rameters discovered on the IBM Explorys data. We used 5-fold
cross-validation to account for the small amount of available
data. Alongside the ExMed-BERT model, we trained a new RF
model for comparison.

III. RESULTS

In this study, we predicted severe COVID-19 disease progres-
sion based on a patient’s medical history. We begin by presenting
the pre-training results of our newly created ExMed-BERT
model. Then, we show the performances of the developed risk
models, and lastly, we interpret our models using an explainable
AI methodology.

A. Model Pre-Training

We utilized MLM and PLOS as training objectives for pre-
training of the ExMed-BERT model. After 4.5 M steps (epoch
37), the MLM accuracy increased to around 51% and the PLOS
F1 score to 70%. Following the inclusion of 61 missing ATC
codes and the corresponding changes to the embedding, we
began training for 750 K steps. Finally, we achieved an MLM
accuracy of 67% and a PLOS F1-score of 66% (epoch 42,
Supplementary Fig. B.1).

B. Evaluation of Risk Models

Following pre-training, we developed and evaluated risk mod-
els for predicting the ARM endpoint. Initially, we considered
only the medical history without additional quantitative clinical
measures. As shown in Table III, all ExMed-BERT models per-
formed better than the RF, XGB, and RETAIN variants on unseen
test data. Without quantitative clinical data, the ExMed-BERT
models scored roughly 78% AUROC for the ARM endpoint, and
the AUPR varied between 36.7% and 38.2%. The RF model,
on the other hand, only achieved an AUROC of 73.4% and an
AUPR of 29.1%. The XGB model had a slightly lower AUROC
of 72.4% and AUPR of 28.2%. The RETAIN model achieved the
lowest performance, with an AUROC of 68.5% and an AUPR
of 26.8%.

The results of nearly all models improved when quantita-
tive clinical measurements were integrated. The ExMed-BERT
model with the GRU classification head integrating quantitative
data gave the overall best result, with an AUROC of 79.8% and
an AUPR of 38.7%, which is significantly higher than all other
models.

When only patients with fully recorded quantitative clinical
measurements were used, all models performed worse. That
means the potential negative effect of imputing missing values
was far less than the benefit of including additional data.
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TABLE III
EVALUATION RESULTS OF THE RISK MODELS FOR PREDICTING ARM

C. Model Explanation

To better understand model predictions, we used an explain-
able AI methodology – namely IG – to calculate attribution
scores for all features in the best-performing ExMed-BERT
model. We calculated the IG attributions and used them to
identify the 20 most important features by ranking them based
on their mean absolute value. Fig. 3 shows all the IG attribu-
tions and FC scores, which are in agreement with each other.
We found that the presence of diagnoses for chronic airway
obstruction, congestive heart failure, cough, dementia, edema,
obesity, shortness of breath, spondylosis, and type 2 diabetes in
the medical history has a large impact on the prediction of a pa-
tient’s risk for ARM. Similarly, the prescriptions of angiotensin
II receptor blockers, biguanides, dihydropyridine derivatives,
and thiazides have a substantial positive impact on our models’
predictions.

Of course, these prescriptions and diagnoses could be cor-
related with each other, and thus, not all of them might have a
direct impact on the ARM endpoint. Hence, we learned the graph
structure of a BN to determine how the significant diagnoses
or drugs could be related to one another. The overall network
structure is provided as a graphml file, an XML-based data
format for graph representation, as supplementary material to
this article. Fig. 4 shows two excerpts of the BN graph structure.
Fig. 4(a) focuses on Angiotensin II receptor blockers and their

TABLE IV
FEATURES WITH A SIGNIFICANT STATISTICAL EFFECT ON ARM

relationship to other drugs and diagnoses. Angiotensin II recep-
tor blockers are used to treat hypertension, kidney diseases, and
heart failure [34]. Furthermore, our graph shows a connection
to essential hypertension and several ATC subgroups, namely
ACE inhibitors, Dihydropyridine derivates, HMG CoA reduc-
tase inhibitors, and Thiazides.

Fig. 4(b) depicts morbid obesity and other diagnoses and
drugs in its immediate neighborhood. There is a link to the class
of Biguanides, which includes the drug Metformin, commonly
used to treat diabetes [35]. Furthermore, morbid obesity is linked
to hypertension, type 2 diabetes, obstructive sleep apnea, and
obesity.

We aimed for an understanding of the statistical and potential
causal effects of those features on the endpoint, which were
either among the 20 most important features or sink nodes
in the BN. The latter are nodes without outgoing connections
and, therefore, do not influence any other features, according
to our BN analysis. For each of those features, we performed
a univariate logistic regression analysis while using IPTW case
weights to correct for potential confounding effects of age and
gender. Our analysis shows significant effects of several prior
diagnoses on the ARM onset, namely, type 2 diabetes, obesity,
dementia, cardiovascular diseases, and respiratory diseases (see
Table IV). These morbidities have previously been reported
as risk factors for severe COVID-19 disease progression [36],
[37], [38], [39], [40], [41], and also the underlying molecular
mechanisms have been discussed [42], [43]. Besides, we found
significant effects between constipation, screening for malignant
neoplasms, and infectious/parasitic diseases and the ARM onset.
This might be explained by the fact that such procedures are more
frequently executed in older patients with bad health conditions,
resulting in a higher risk of severe COVID-19 progression. In the
same type of patients, constipation is also a frequent problem,
e.g., due to lifestyle.

D. Transfer Learning on Austrian Hospital Data

Fine-tuning of Ex-MedBERT on a small set of pseudony-
mized in-patient data from an Austrian hospital group resulted
in a prediction performance almost identical to the one observed
for an RF trained de novo on the same data (Supplementary
Table B.2). At the same time, prediction performances were
significantly lower than the ones observed on IBM Explorys



LENTZEN et al.: TRANSFORMER-BASED MODEL TRAINED ON LARGE SCALE CLAIMS DATA 4555

Fig. 3. Integrated Gradients Attributions for ExMed-BERT GRU. Depicted are all calculated fold changes (FC) and IG attributions for the 20 most
important features for the prediction of ARM onset. The dashed blue lines indicate neutral attributions. Everything greater than the neutral value
positively affects the prediction and vice versa.

Fig. 4. Selected features and the direct neighborhood in the inferred Bayesian network. The numbers indicate the bootstrap strength of the
respective edges in percentage. That means a bootstrap strength of 100 indicates that the corresponding edge has been found in each of the 1000
BN reconstructions learned from different bootstrap samples.

(AUC ≈ 60%). We will elaborate on potential reasons in the
subsequent discussion.

IV. DISCUSSION

Pandemics such as COVID-19 pose immense challenges to
global healthcare systems. Utilizing patient-level risk models
to support doctors and clinics is one way to maximize the
use of available resources. Following previous research, we
trained a transformer-based model on structured EHR data in
this study. In contrast to the prior approaches, such as BEHRT
or Med-BERT, we incorporated additional data modalities and
developed risk models for COVID-19 disease progression.
Prediction performances achieved by our ExMed-BERT model
are altogether superior to those reported by Lazzarini et al. [44]
for the closely related endpoint of acute respiratory distress

syndrome (ARDS) [44]. The authors trained an XGB based
on US administrative claims data from 290,000 patients and
achieved an AUROC of 69% and an AUPR of 7%. For com-
parison, using data from intensive care units (ICUs), Bendavid
et al. reported an AUROC of 83% for an XGB trained to
predict the initiation of invasive mechanical ventilation [45],
and Singhal et al. achieved an AUROC of 89% for predicting
the onset of ARDS [46]. Importantly, ICU data are structurally
and content-wise very different from the data used in our study,
which comprises in-patient as well as out-patient information
over a more extended period (here: one year), but only contains
limited quantitative information. Altogether, our findings align
with previous studies [5], [7], [8], showing that transformer-
based models are well-suited for structured EHR data simi-
lar to ours. Even without additional quantitative information,
our ExMed-BERT outperformed the RF, XGB, and RETAIN
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models. With the inclusion of quantitative clinical measures,
our ExMed-BERT models further increased in prediction per-
formance. For that purpose, we proposed a novel approach to
combine quantitative clinical measures with the embeddings
of EHR codes learned by ExMed-BERT, which resulted in the
overall best-performing model. Our results thus demonstrate the
importance of combining diagnosis and prescription codes with
quantitative clinical measures for developing risk models. Even
though these quantitative clinical measures were only taken at
a single time point in the two weeks preceding the COVID-19
infection and not for every patient, using these data could provide
better performance.

Using a combined strategy consisting of feature importance
analysis, BN structure learning and statistical hypothesis testing,
we were able to identify diagnoses and prescriptions that have a
significant impact on model prediction and may causally influ-
ence the endpoint. Our analysis supports that socioeconomic and
psycho-social health risks play an important role in addition to
well-known risk factors such as obesity, diabetes, cardiovascular
diseases, and dementia, which have already been reported as
known risk factors for severe COVID-19 disease progression
in several studies [36], [39], [47], [48], [49]. This confirms the
validity of our approach, which can be applied to other datasets
as well.

Our work demonstrates the potential of a transformer-based
pre-training/fine-tuning strategy to develop risk models for pre-
cision medicine. This strategy provides the chance to perform
transfer learning of our model on data from other organizations
and thus use the pre-trained ExMed-BERT as a basis for future
model development. Our experiment with data from an Austrian
hospital group demonstrated the potential as well as the limita-
tions of such an approach: The data from the Austrian hospital
group only comprises in-patient information, and the number
of patients is far smaller than during the fine-tuning phase
on the IBM Explorys data (6,335 patients instead of 80,211).
Furthermore, the ratio of ARM-positive patients is significantly
lower (6.1% instead of 13.4%). Notably, there could also be
different medical coding practices in the two countries. Finally,
constraints on the technical equipment within the Austrian hos-
pital group only allowed us to fine-tune our model for a small
number of epochs and without hyperparameter tuning. Due to all
these factors, our ExMed-BERT model fine-tuned on the Aus-
trian data achieved a performance that was comparable to an RF
model trained de novo on the same data but significantly lower
than prediction performances achieved on US data. We thus
conclude that having a sufficiently large dataset with a number
of patients in a range comparable to the IBM Explorys data
would be a prerequisite to obtaining better models in a transfer
learning setting. Furthermore, appropriate technical equipment
is important. Finally, the integration of in-patient and out-patient
data is required, at least for our model.

Another limitation is the lack of previously published
transformer-based models, such as BEHRT or Med-BERT, and
the associated data, which hindered direct comparison with
our model. As the pre-training of transformer-based models is
computationally extremely expensive, it is often not feasible to
run comprehensive ablation studies. Despite these limitations,

our model was rigorously assessed by comparing it against
established approaches (RF, XGBoost, and RETAIN), and its
potential was adequately demonstrated. By making our model
publicly available, future studies can use it as a foundation for
further development.

V. CONCLUSION

Our work demonstrates the potential of customized
transformer-based models for analyzing structured EHR data.
We showed that it is possible to integrate quantitative clin-
ical data into such models, which can significantly improve
prediction performance. Furthermore, we introduced a gen-
eral approach for explaining ExMed-BERT model predictions.
Transfer learning strategies open the possibility of leveraging our
pre-trained ExMed-BERT model for the prediction of clinical
endpoints different from the one addressed within this article.
For that purpose, we allow users to apply for access to our
pre-trained ExMed-BERT model on https://doi.org/10.5281/
zenodo.7324178 or by sending an email to the correspond-
ing author. Our code is available at https://github.com/SCAI-
BIO/ExMed-BERT.
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