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Cuffless Blood Pressure Measurement Using
Smartwatches: A Large-Scale Validation Study

Zeng-Ding Liu™, Ye Li

Abstract—This study aimed to evaluate the performance
of cuffless blood pressure (BP) measurement techniques in
a large and diverse cohort of participants. We enrolled 3077
participants (aged 18-75, 65.16% women, 35.91% hyperten-
sive participants) and conducted followed-up for approxi-
mately 1 month. Electrocardiogram, pulse pressure wave,
and multiwavelength photoplethysmogram signals were si-
multaneously recorded using smartwatches; dual-observer
auscultation systolic BP (SBP) and diastolic BP (DBP) refer-
ence measurements were also obtained. Pulse transit time,
traditional machine learning (TML), and deep learning (DL)
models were evaluated with calibration and calibration-free
strategy. TML models were developed using ridge regres-
sion, support vector machine, adaptive boosting, and ran-
dom forest; while DL models using convolutional and re-
current neural networks. The best-performing calibration-
based model yielded estimation errors of 1.33 4+ 6.43 mmHg
for DBP and 2.31 + 9.57 mmHg for SBP in the overall popu-
lation, with reduced SBP estimation errors in normotensive
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(1.97 £ 7.85 mmHg) and young (0.24 4+ 6.61 mmHg) subpop-
ulations. The best-performing calibration-free model had
estimation errors of —0.29 4 8.78 mmHg for DBP and —0.71
4 13.04 mmHg for SBP. We conclude that smartwatches are
effective for measuring DBP for all participants and SBP
for normotensive and younger participants with calibra-
tion; performance degrades significantly for heterogeneous
populations including older and hypertensive participants.
The availability of cuffless BP measurement without cali-
bration is limited in routine settings. Our study provides
a large-scale benchmark for emerging investigations on
cuffless BP measurement, highlighting the need to explore
additional signals or principles to enhance the accuracy in
large-scale heterogeneous populations.

Index Terms—Benchmark, cuffless blood pressure, deep
learning, large-scale validation study, machine learning.

|. INTRODUCTION

YPERTENSION is a major risk factor for cardiovascular

disease [1], [2], affecting more than 1 billion adults world-
wide [3]. Despite the increasing attention given to the control
of hypertension, fewer than half of adults with hypertension are
diagnosed and treated appropriately [3]. Regular monitoring of
blood pressure (BP) plays a vital role in the early detection of
hypertension. However, clinical BP may be inaccurate due to the
masked and white coat effects [4]. Ambulatory BP monitoring
(ABPM), in which BP is assessed over a 24-hour period to
achieve a timely and accurate hypertension diagnosis, has been
proven to be superior to clinical measurements in predicting
cardiovascular mortality [5], [6]. However, existing ABPM tech-
niques rely on an inflatable cuff, which can disturb the sleep and
daily activities of users [7], thus limiting their usage.

Cuffless BP measurement approaches have been proposed to
overcome the limitation of cuff-based ABPM techniques [8],
enabling unobtrusive and continuous monitoring of BP through
wearable devices [9], [10]. Over the past two decades, the
development of BP measurement techniques has evolved from
mechanism-driven solutions [11], [12], [13], [14], [15] to data-
driven solutions [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29]. In mechanism-driven solutions,
formulas for estimating BP are developed based on specific
indicators reflecting BP changes from known hemodynamic
principles and/or autonomic regulation functions. The most
popular indicator is arterial pulse transit time (PTT), which
is the time it takes an arterial pulse wave to travel from one
arterial site to another [30]. Arterial PTT can be obtained as
the time span between an electrocardiogram (ECG) signal and
a pulse wave or as the time delay between two pulse waves [8].
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Various pulse waves-based techniques, such as photoplethys-
mogram (PPG) [11] and pulse pressure wave (PPW) [18], [31]
techniques, have been proposed for arterial PTT calculations.
Although pioneering mechanism-driven solutions have yielded
promising results for cuffless BP measurement, their accuracy
varies greatly along with different population characteristics and
follow-up duration.

To improve the accuracy of BP estimation, many researchers
have shifted their focus from mechanism-driven solutions to
data-driven solutions in recent years. In data-driven solutions,
the features leading to BP changes are manually defined or
automatically learned. Data mining algorithms are then used
to construct a mapping between these features and BP. On the
basis of the feature extraction method, data-driven solutions
can be further categorized into traditional machine learning
(TML)-based [16], [17], [18], [19], [20], [21] and deep learn-
ing (DL)-based [22], [23], [24], [25], [26], [27], [28], [29]
approaches. In TML-based approaches, physiological features
associated with BP are manually extracted from raw signals
and then translated into BP values using TML algorithms, such
as ridge regression [21], support vector machine (SVM) [17],
adaptive boosting (AdaBoost) [16], and random forest (RF) [19].
With the advances in end-to-end feature learning techniques in
DL, many researchers have shifted their focus from traditional
feature-engineering-based approaches to DL-based approaches
for BP measurement. Various DL algorithms, such as recurrent
neural network [23], [24], convolutional neural network [25],
[28], and transfer learning [26], [27], have been used in such
approaches.

Despite considerable advances in cuffless BP measurement
techniques have been made, their performance has not been
fully validated, and thus these techniques are not universally
accepted [32], [33]. First, many cuffless BP models were vali-
dated in small, young, and healthy populations under controlled
experimental settings. Therefore, these models may not be gen-
eralizable to large-scale heterogeneous populations. Moreover,
some models have performed sub optimally in real-world tests
involving patients with hypertension [13], [15]. Second, whether
the calibration-based models remain usable over the long-term
is the most important concern; however, this issue has not been
fully validated. Third, the reference employed in many studies is
oscillometric BP or Finapres BP [8]; nevertheless, dual-observer
auscultation BP is the gold reference depending on the Ameri-
can National Standards Institute/ Association for the Advance-
ment of Medical Instrumentation/ International Organization for
Standardization (ANSI/AAMI/ISO) guidelines [34]. Imprecise
reference would result in biased models [21]. Thus, an equitable
evaluation platform is necessary for cuffless BP measurements.

In consideration of the aforementioned problems, in this
paper, a large-scale cuffless BP dataset named CAS-BP! is first
constructed. A benchmark for evaluating cuffless BP measure-
ment methods is then developed. Our work has the following
advantages: 1) This is the largest known validation study for
evaluating the performance of smartwatch-based cuffless BP
measurement techniques with dual-observer auscultation sys-
tolic BP (SBP) and diastolic BP (DBP) as the reference; 2)
The protocol and participant classification were designed exactly
according to the ANSI/AAMUI/ISO standard and thus have good
generalizability to real-world settings; 3) Six-channel signals,
including ECG, PPW, and multi-wavelength PPG (MWPPG),

ICAS-BP dataset is available at [Online]. Available: https://github.com/
zdzdliu/CAS-BP.

were simultaneously recorded using smartwatches and evaluated
for BP estimation.

[I. RELATED WORKS

Cuffless BP measurement methods can be generally cate-
gorized into mechanism-driven and data-driven solutions. In
the following paragraphs, we will review some related works
regarding these categories.

A. Mechanism-Driven Approaches

The arterial PTT-based model constitutes the most popular
mechanism-driven approach for cuffless BP measurements. Ac-
cording to the Moens-Korteweg and Hughes equations [35], in-
creased arterial stiffness results in faster pulse wave propagation
in arteries (i.e., decreased arterial PTT) and increased arterial
BP. Therefore, arterial BP is inversely proportional to arterial
PTT. Many arterial PTT-based BP estimation models have been
developed based on this principle [8]. In 2005, Poon et al. [11]
proposed a widely cited arterial PTT-based algorithm for SBP
and DBP estimation, as expressed in (1):

2 [ PTT,
DBP_MBPO—i-ln( 0) +

PP, <PTT0 > 2

v PTT 3 PTT
(Ta)
PTT,\?
BP = DBP + PP, - 1b
S + PPy (PTT) (1b)

where PT'T is arterial PTT, MBP, = (SBPy + 2DBP,)/3,
PPy=SBPy— DBP,, and SBP,, DBP,, and PTT, are
measured values that are used for calibration; + is the subject-
dependent coefficient. Experimental results obtained from 85
individuals indicated that the algorithm performs well in BP
measurement according to the ANSI/AAMI/ISO standard [34].
In 2016, Ding et al. [12] reported that PPG intensity ratio (PIR)
can capture variations in arterial diameter, enabling tracking low
frequency BP, i.e., DBP. They proposed a BP model that fuses
arterial PTT and PIR, as expressed in (2):

PIR,

DBP = DBPy- o (2a)
PTTy\?

SBP = DBP + PP, - ( T ) (2b)

where DBPF,, PPy = SBFPy, — DBPF,, PI'Ty, and PIR are
measured values for calibration. Experimental results for 27
healthy individuals revealed that their proposed method out-
performed conventional arterial PTT algorithms, achieving es-
timation errors of —0.37 + 5.21 mmHg for SBP and —0.18
+ 4.13 mmHg for DBP. Furthermore, because arteriolar PTT
calculated from MWPPG can be used as an indicator of sys-
temic vascular resistance, Liu et al. [13] proposed an arteriolar
PTT-based model for BP measurement, as described in (3):

MBP =HR- (k1 - ePTT + ko) (3a)
t
PP = MBP - <k2-HR—|-b2> (3b)

where M BP and PP are mean BP and pulse pressure, re-
spectively, which can be converted into SBP and DBP by
MBP = (SBP + 2DBP)/3 and PP = SBP — DBP; ki,
b1, k2, and b, are individualized parameters and can be obtained
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by least squares regression; H R is heart rate; e P11 is arteriolar
PTT; ¢ is atime constant and can be extracted from a PPG wave-
form [13]. Experimental results for 20 individuals demonstrated
that the proposed arteriolar PTT-based model has better accuracy
in tracking BP than the conventional arterial PTT-based method.

Although PTT-based methods have been gradually refined by
introducing new physiological features, they still typically have
low accuracy and robustness [8] primarily because PTT-based
methods are based on a fixed hypothesis; and only include a
small part of factors affecting BP. However, the factors leading
to the variation of BP is complex in real-world settings, including
cardiac output, vascular tone, and physiological status.

B. Data-Driven Approaches

Data-driven approaches can achieve greater BP estimation
accuracy than mechanism-driven approaches by applying TML
or DL algorithms to automatically construct the complex re-
lationships between physiological signals and BP values. For
TML-based BP estimation, meaningful handcrafted features
are extracted to develop the model. In addition to PTT, pulse
morphological features calculated from a pulse wave (PPG or
PPW) waveform and its derivatives have been proven useful for
BP estimation [36]. Thus, various pulse wave features, such as
time-, slope-, and area-related features, have been proposed in
the BP estimation literature [16], [17], [18], [19], [20], [21].

Miao et al. [18] estimated SBP and DBP by inputting 35 fea-
tures extracted from ECG and PPW signals to a multi-instance
regression algorithm, achieving estimation errors of 1.62 =+
7.76 mmHg for SBP and 1.49 4+ 5.52 mmHg for DBP on
85 individuals. Yang et al. [19] utilized 42 features extracted
from ECG and PPG signals to estimate SBP and DBP with
various TML algorithms, including linear regression, RF, ar-
tificial neural network (ANN), and recurrent neural network.
Their lowest estimation errors for SBP and DBP in a database
of surgical patients were 0.05 + 6.92 mmHg and -0.05 £
3.99 mmHg, respectively. These methods required two-channel
signals. However, to reduce the sensing burden of BP devices,
several studies have developed BP models based on one-channel
signals. Haddad et al. [20] presented a linear regression model
to estimate BP by using 27 features that were calculated only
from PPG and its derivatives and achieved favorable accuracy
on the public Medical Information Mart for Intensive Care
(MIMIC) database. Yao et al. [37] proposed a multi-dimensional
feature combination method based on basis demographics [age,
height, weight, body mass index (BMI), and gender] and three
groups (time-domain, morphological, and statistical) of PPG
features input to an ANN algorithm. Their constructed model
was examined on a dataset of 33 individuals and achieved good
accuracy for both SBP and DBP estimation. Recently, Microsoft
Research team evaluated the performance of tonometry, PPG,
and ECG signals for estimating BP by using ridge regression
on a relatively large population (1125 participants) [21], [33].
Their findings suggested that tonometry-derived features were
superior to other features calculated from PPG and ECG for
estimating BP. However, the performance of all these methods
is strongly affected by signal preprocessing process (i.e., pin-
pointing the location of feature points in the signal) due to the
need to calculate handcrafted features, especially in real-world
setting with strong noise.

In recent years, DL-based cuffless BP estimation approaches
have attracted the interest of researchers [22], [23], [24], [25],
[26], [27], [28], [29]. These approaches automatically learn

representative features from raw signals, avoiding handcrafted
feature extraction. Liu et al. [22] verified the possibility to
estimate BP from PPW signals with the VGGNet architecture
on a dataset of 89 individuals. Fan et al. [24] presented a bidirec-
tional long short-term memory network (BiLSTM) to estimate
BP values from one-channel ECG signals, achieving estimation
errors of 0.18 4= 10.83 for SBP and 1.24 + 5.90 mmHg for DBP
on the MIMIC database. Similarly, Miao et al. [25] proposed a
hybrid network that fused a residual network and long short-term
memory (ResLSTM) for cuffless BP estimation using only ECG
signals. Kim et al. [28] proposed a DL architecture combining
self-attention and U-Net for estimating BP from PPG signals,
reporting estimation errors of 1.23 + 5.40 mmHg for SBP and
—0.53 4+ 2.81 mmHg for DBP on the MIMIC database. Wang
et al. [26] introduced a transfer learning approach for cuffless
BP measurement based on short-duration PPG signals. They
created images from PPG signals using visibility graphs and
applied pretrained deep convolutional neural networks to extract
features from these images to estimate BP. In experiments on the
MIMIC database, the proposed method yielded estimation errors
of 0.00 £ 8.46 mmHg and —0.04 £ 5.36 mmHg for SBP and
DBP, respectively. Although these studies had favorable results
on the MIMIC database, it is worth noting that the database was
acquired in a particular setting (i.e., intensive care units) with
physiological signals collected by medical instruments. Hence,
itis unclear whether these results can be replicated in large-scale
heterogeneous populations in routine settings using wearables.

IIl. MATERIALS AND METHODS

Fig. 1 presents the framework diagram of the BP model
construction in this study. The steps comprise data collection,
data preprocessing, and the construction and evaluation of BP
model. The details are described in the following sections.

A. Experimental Protocol

This study recruited 3077 individuals without severe car-
diovascular diseases or behavioral disorders to participate in
a follow-up experiment lasting approximately 1 month. ECG,
MWPPG (four-channel PPG with varying wavelengths), and
PPW signals were simultaneously acquired by a smartwatch.
The smartwatch was a prototype supplied by Huawei Tech-
nologies, equipped with an ECG sensor, a PPW sensor, and an
MWPPG sensor. Fig. 2(a) (right) shows the placement of these
sensors to obtain the signals. Specifically, two ECG electrodes
located on the back of the dial should be attached to the left wrist,
while the third electrode pressed by the participant’s right thumb.
The MWPPG sensor should be pressed by the participant’s right
index finger. The PPW sensor, fitted with piezoelectric materials
on the strap, should be placed at the radial artery to measure
PPW signal. A detailed description of the PPW measurement
principle can be found in our previous study [18], [31]. Note
that the MWPPG sensor comprised four LEDs with wavelengths
of 940 nm (infrared), 650 nm (red), 590 nm (yellow), and
470 nm (blue); the four channels were thus denoted PPGIR,
PPGR, PPGY, and PPGB, respectively. Corresponding reference
BP values were measured using a cuff-based, clinically val-
idated dual-stethoscope mercury sphygmomanometer (Yuwell
YE670AH, Yuwell Medical Equipment Co, China).

The experimental procedure was carried out in the following
steps (Fig. 2(b)). i) Preparation: The participant was asked
to sit quietly for 5 minutes before the measurement. ii) First
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Fig. 2. Experimental protocol. (a) Dual-stethoscope mercury sphyg-

momanometer for cuff BP measurement (left) and smartwatch for signal
collection (right). (b) Recording collection process. (c) An example of
the collected signals. The MWPPG signals comprised four channels:
PPGIR, PPGR, PPGY, and PPGB, acquired from infrared, red, yellow,
and blue light, respectively. (d) Each participant underwent a total of 12
recordings over four different days: D, D+7, D+14, and D+21, with three
recordings (R1, R2, and R3) taken per day.

BP measurement: Two trained and mutually blinded observers
measured auscultation SBP and DBP from the left upper arm
using a standardized procedure [38]. If the difference in the
BP (SBP or DBP) values between the two observers was <
5 mmHg, the average value was used as the reference value.
Otherwise, the measurement was repeated. The SBP and DBP
measured in this step were denoted as SBP . and DBP .,
respectively. iii) Signal acquisition: After the BP measurement,
the participant wore a smartwatch on the left wrist for 2 minutes
to simultaneously acquire the ECG, radial PPW, and finger MW-
PPG signals (Fig. 2(c)). The sampling frequency was 200 Hz
for PPW signals and 1000 Hz for ECG and MWPPG signals.
iv) Second BP measurement: After measuring the signals, re-
peated step ii), and the measured SBP and DBP were denoted
as SBP.s¢ and DBP ., respectively. The average of the
BP values measured in step ii) and step iv) was used as the

TABLE |
PARTICIPANTS CHARACTERISTIC IN CAS-BP DATASET

Characteristics CAS-BP Dataset AI\II{SI/AAMI/ISO
equirement

Subjects, n 3077 > 85

Age, years 46.32 £+ 16.92 > 12

Male, % 34.84 > 30

Female, % 65.16 > 30

BMI, kg/m? 23.84 + 3.4 3

History of hypertension, % 3591

BP recordings, n 29568 > 255

SBP, mmHg 123.6 + 21.2 -

DBP, mmHg 834 + 12.1 -

SBP > 160 mmHg, % 5.53 >5

SBP > 140 mmHg, % 24.82 > 20

SBP < 100 mmHg, % 12.77 >5

DBP > 100 mmHg, % 4.27 >5

DBP > 85 mmHg, % 21.76 > 20

DBP < 60 mmHg, % 5.33 >5

final reference value; that is, SBP = (SBPe + SBPost)/2,
DBP = (DBPype + DBPpost) /2.

The above procedure was repeated three times with a 5S-minute
interval to acquire three recordings on each day. In total, 12
recordings were collected for each participant on four days
within one month: D (the first day), D+7, D+14, and D+21, as
shown in (Fig. 2(d)). During each recording, the time interval be-
tween the smartwatch measurements and cuff BP measurements
was no more than 60 seconds to ensure their consistency, in line
with the recommendations of the IEEE standard for Wearable
Cuffless Blood Pressure Measuring Devices (IEEE 1708) [39].
Furthermore, the synchronized ECG, PPGIR, and PPW signals
were displayed in real-time on the smartwatch dial during the
signal collection process, which helped the experimenter to
adjust the sensor position to obtain acceptable signals. After
the measurement, all recordings underwent manual double-
checking to ensure the quality. A recording was considered
acceptable if it was free of substantial artifacts and contained
distinguishable ECG R-waves, pulse wave peaks, and valleys.

In total, 30294 recordings were collected, of which 726
were excluded due to poor signal quality. Consequently, 29568
recordings with sufficient signal quality from 3077 participants
were included in subsequent analyses. Among the included
participants, 1105 had a history of hypertension as indicated by
previous clinical diagnosis or the use of antihypertensive drugs.

Table I summarizes the basic characteristics of the participants
and compares them with the ANSI/AAMI/ISO standard. The
standard requires more than 255 BP readings from at least 85
individuals to evaluate BP devices [34]. Specifically, for all
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Fig. 3. Example plots of signal processing. (a) Detection of relevant

characteristic points in ECG, rPPG, and rPPW signals for calculating
arterial PTT. (b) Detection of arterial PPG and PPGB peaks for calculat-
ing arteriolar PTT. (c)—(e) Detection of relevant characteristic points in
rPPG/rPPW, APPG/APPW, and VPPG/VPPW, respectively, to calculate
handcrafted features. (f) Signal segmentation for the DL-based models.

reference SBP readings, >5% must be >160 mmHg, >20%
must be >140 mmHg, and >5% must be <100 mmHg. As for
all DBP readings, >5% must be >100 mmHg, >20% must be
>85 mmHg, and >5% must be <60 mmHg. Table I reveals that
our dataset is in high agreement with the requirements of the
ANSI/AAMI/ISO standard.

The experiment was approved by the Ethics Com-
mittee of the Shenzhen Institute of Advanced Technol-
ogy, Chinese Academy of Sciences (IRB number: 210315-
HO0558). All participants signed informed consent before the
experiment.

B. Signal Processing

The ECG and pulse wave (i.e., MWPPG and PPW) signals
were preprocessed using bandpass filters with passbands of
0.5-40 Hz and 0.5-20 Hz, respectively. For each recording,
characteristic points of the ECG, the raw PPG (rPPG), the first
derivative of the rPPG (VPPG), the second derivative of the
rPPG (APPG), the raw PPW (rPPW), the first derivative of the
rPPW (VPPW), and the second derivative of the rPPW (APPW)
were detected for extracting handcrafted features. First, the R
(R) peak of each ECG cardiac cycle were detected (Fig. 3(a)).
Second, the peak (p) points of each arterial PPG and PPGB
cardiac cycle were detected (Fig. 3(b)), where the arterial PPG
was extracted from PPGIR, PPGY, and PPGB by using the
depth-resolved MWPPG technique proposed by Liu et al. [40].
Third, the feature points of each rPPG and rPPW cardiac cycle
were detected (Fig. 3(c)), including the offset (s), maximum
slope on the upward rise (m), peak (p), dicrotic notch (n), and
valley (v). Fourth, the offset (s), peak (p), and valley (v) points of
each VPPG and VPPW cardiac cycle were detected (Fig. 3(d)).
Finally, the offset (s), peak (p), valley (v) points, and three other
points (¢, d, and e) of each APPG and APPW cardiac cycle were

detected (Fig. 3(e)). Details for detecting characteristic points
in the pulse waveform and its derivatives can be found in the
previous study [41].

It should be noted that PPGIR includes arterial, arteriolar, and
capillary pulses because infrared light can cross the skin and
arrive at the arteries in the subcutaneous tissue [13]. Therefore,
PPGIR is a mixture of PPGB (containing only capillary pulse)
and PPGY (containing capillary and arteriolar pulses). To reduce
redundancy among MWPPG signals, only PPGIR was used to
determine rPPG during BP model construction.

C. Feature Extraction

Demographics and signal-based features employed in previ-
ous studies were used to develop the TML-based BP models,
as presented in Table II. Demographics included age, gender,
BMI, and history of hypertension. Signal-based features were
extracted from the ECG, rPPG, APPG, VPPG, rPPW, APPW,
and VPPW signals (Fig. 3). These features were classified as
arterial PTT, cardiac output, or total peripheral resistance fea-
tures based on their physiological mechanisms [42]. Numerous
signal-based features can be derived using various signals. For
example, feature ascending time can be obtained from the rPPG,
APPG, and VPPG and from the rPPW, APPW, and VPPW. The
calculation method for each signal-based feature is detailed in
Table Al.

D. BP Estimation Models

Both mechanism-driven and data-driven (TML and DL)
frameworks were implemented to achieve a comprehensive as-
sessment of cuffless BP models. Specifically, three widely used
PTT algorithms [as shown in (1)—(3)] were used to develop the
mechanism-based BP models. The arterial PTT in (1) and (2) was
set as PTT rys1 (Table A1), which was calculated from the ECG
and rPPG signals. Ridge regression, SVM, AdaBoost, and RF
were chosen for the TML algorithms due to their favorable ac-
curacy reported in the literature [16], [19], [21]. Since this study
aims to evaluate the cuffless BP measurement techniques in a
large-scale population, basic DL architectures commonly used
in the BP literature, including VGGNet16 [22], ResNet50 [25],
BiLSTM [24], and ResLSTM [25], were selected to build the
DL-based models.

The PTT algorithms are suitable only for constructing
calibration-based BP models, while the TML and DL algorithms
can build both calibration-based and calibration-free models.
A calibration-free model is a universal model trained on a
population dataset that does not require modification for each
individual. By contrast, a calibration-based model is a user-
specific model that can be obtained by either training on an
individualized dataset or by adjusting a universal model with
information regarding an individual. In our study, PTT-based
models were calibrated with the data of each participant on the
first day and then used to predict BP on subsequent follow-up
days.

To train and test the calibration-free models based on the
TML and DL algorithms, we adopted a fivefold cross-validation
method. All participants were randomly divided into five equal
subsets. Each subset was in turn selected as the test dataset,
and the remaining subsets were used for training group. The
results for each fold were then combined. After building a
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TABLE Il
SIGNAL-BASED FEATURES AND DEMOGRAPHICS
Features Reference  ECG PPG PPW
tPPG  APPG VPPG tPPW APPW  VPPW
ECG-PPG [19] v v .
Arterial PTT ECG-PPW [18] v v
PPG-PPW . v v
Ascending time [43] v v v v v v
Cardiac Descending time ) v v v v v v
output (CO) LASI (6l v v
P Pulse width [43] v v
Cardiac cycle v v
PIR (2] v . . . . .
Arteriolar PTT [13] v . . . . .
Ascending slope [44] v v v v v v
Total peripheral Descending slope v v v v v v
resistagcellzTPR) Ascending area v v v v v v
Descending area [36] v v v v v v
AID . v v . v v
DID . v v v v
Amplitudes of p, v, ¢, d, and e points [20] . . v . v
CO+TPR Pulse K value [17] v v
Age
Demographics g;x[lld r [37]
History of hypertension . . . . . . .
LASI, AID, and DID indicate large artery stiffness index, ascending intensity difference, and descending intensity difference, respectively.
calibration-free model, it was adjusted to create an individual- TABLE IlI
ized calibration-based model using the basal BP of each individ- INTERNATIONAL STANDAREASE :g‘SRF;;‘ELC;CS’OLS FOR EVALUATING BP
ual, where the basal BP is the average of BP on the first day. Let
Suncal(X) be the calibration-free model; then the corresponding pr———— p—
. s . ANSI/AAMI/ISO
calibration-based model f,,;(X) can be expressed as follows: MAE CPEs  CPEIO CPEIS
(X)) =(1—«a) - (X o - BaseBP 4 Grade A <5mmHg 60% 85% 95%
fear(X) = ( )+ funeat(X) + @ Grade B 5.6 mmHg  50%  75% 90%
. . . . Grade C 67 mmHg  40%  65% 85%
where X is the input features, Base B P is the base BP, and « is Grade D 27 mmHg  Worse than Grade C
a balance factor. The balance factor « was determined through ME < 5 mmHg; _ Grades A
RECT = ’ . Grades A and B

experimentation as the value that minimizes the estimation error
of the calibration-based model.

For the PTT-based and TML-based models, the signal features
listed in Table II were calculated from each cardiac cycle and
then averaged within each recording. These features were then
combined with the demographics listed in Table II as the input
for the TML-based models. For the DL-based models, each
recording (ECG, rPPG, and rPPW signals) was divided into
non-overlapping 5-second segments (Fig. 3(f)), and max-min
normalization was performed for each segment. The length of 5
seconds was chosen as it provides sufficient duration to capture
time-domain information about cardiac activity and has shown
promising results for BP estimation in previous studies [22],
[27]. Additionally, the demographics listed in Table II were
incorporated into the DL-based models for BP estimation us-
ing the method described in [25]. Each recording consisted of
approximately 24 segments of the same reference BP value.
During the evaluation phase, the BP estimates of segments from
the same recording were averaged to obtain the final BP estimate
for that recording.

The TML-based models were trained using the Scikit-learn
library [45], and their hyperparameters were optimized using a
Bayesian optimization package in Python [46]. The DL-based
models were developed on a computer with eight NVIDIA Tesla
K80 and using the PyTorch 1.9.1 framework. Each DL model
was trained using an Adam optimizer with a learning rate of
0.001 and a batch size of 128 for 200 epochs.

The performance of the smartwatch in measuring BP was
also verified by comparing the BP estimation models with the
baseline models. For the calibration-based models, the baseline
model was constructed by utilizing the AdaBoost algorithm

SDE < 8 mmHg B, and C

T Recommendation for clinical use.

with the initial BP values for calibration and demographic
information as the input. For the calibration-free models, the
baseline model was developed using the same algorithm with
only demographic information as the input.

E. Models Evaluation

The performance of the BP model was evaluated using inter-
national standards and protocols (Table III). First, the mean error
(ME) and standard deviation of the error (SDE) were computed
to assess the models in accordance with the ANSI/AAMI/ISO
standard [34], which requires BP devices with ME and SDE
values below 5 and 8 mmHg, respectively. Second, mean ab-
solute error (MAE) was calculated to evaluate the models with
regards to the IEEE 1708 standard [39], which classifies BP
devices according to the MAE with various thresholds. Finally,
the cumulative percentage of errors (CPE) within 5 (CPES),
10 (CPE10), and 15 (CPE15) mmHg was calculated to to as-
sess the models versus the British Hypertension Society (BHS)
protocol [47], which grades BP devices based on their CPE
at different thresholds. Statistical comparisons in the model
evaluation were all two-sided and a p value less than 0.05 was
considered statistically significant. Here, ME, SDE, and MAE
are defined as follows:

(&)
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TABLE IV

BP ESTIMATION PERFORMANCE OF CALIBRATION-BASED AND CALIBRATION-FREE MODELS WITH VARIOUS ALGORITHMS

. SBP DBP
Algorithms
MAE ME + SDE MAE ME + SDE
Calibration-based models

Baseline 8.46 3.87 £ 11.34 5.78 2.16 + 7.38
Arterial PTT [11] 9.20 4.04 £+ 12.01 6.74 2.36 £+ 8.53

PTT-based Arterial PTT+PIR [12]  9.26 3.92 + 12.07 6.78 2.28 + 8.61
Arteriolar PTT [13] 9.26 3.90 £ 12.30 6.59 2.19 £ 8.52

Ridge [21] 7.57 244 +£9.77 5.21 1.50 £+ 6.50

TML-based SVM [17] 7.41 221 £+ 9.62 5.13 1.33 + 643
’ AdaBoost [16] 7.38 2.31 + 9.57 5.30 1.76 £ 6.52

RF [19] 7.43 243 £+ 9.61 527 1.60 £ 6.54

VGGNet16 [22] 7.44 1.96 £ 9.67 522 1.27 £ 6.55

DL-based ResNet50 [25] 747 2.19 £+ 9.65 5.29 142 £ 6.59
’ BiLSTM [24] 7.90 1.63 £+ 10.35 545 1.20 £+ 6.82
ResLSTM [25] 7.55 2.11 +£9.73 5.38 1.16 £+ 6.78

Calibration-free models

Baseline 12.19 1.75 + 16.08 8.04 1.77 £+ 10.06
Ridge [21] 10.54 —039 + 13.70  7.06 0.13 £+ 9.08
TML-based SVM [17] 10.11  —093 £ 13.19 6.80 —0.29 + 8.78
; AdaBoost [16] 9.67 —0.71 £ 13.04 7.05 0.74 £+ 8.93

RF [19] 10.04 —0.41 4+ 1320 7.11 0.34 £ 9.10

VGGNetl6 [22] 10.13 —1.49 £ 13.10  7.08  —0.42 £+ 9.07

DL-based ResNet50 [25] 10.16  —0.89 £+ 13.16 720  —0.03 £+ 9.23
" BIiLSTM [24] 11.68  —2.64 + 1527 7.69  —0.76 £ 9.89
ResLSTM [25] 1033  —1.13 £ 1330 7.65 —0.68 £9.78

TABLE V

PERFORMANCE OF THE BEST-PERFORMING CALIBRATION-BASED MODEL FOR VARIOUS SUBPOPULATIONS

SBP DBP
MAE ME SDE CPE5 CPEI0 CPEIS MAE ME SDE CPE5 CPEI0  CPEIS
(mmHg)  (mmHg) (mmHg) (%) (%) (%) (mmHg)  (mmHg) (mmHg) (%) (%) (%)

All-participant 7.38 231 9.57 45.15  74.10 88.10 5.13 1.33 6.43 5737  87.62 97.47
Accuracy at different BP levels

Normotensive 6.17 197 7.85 51.15  81.60 93.25 4.85 112 6.06 59.51  90.07 98.30

Stage-1 HBP 8.10 342 10.07 40.61 69.48 84.87 5.05 2.06 6.17 5843  87.35 97.45

Stage-2 HBP 8.78 221 11.36 38.66  66.00 82.34 543 1.13 6.90 5479  84.89 96.78
Accuracy at different age levels

(18,35] 5.15 0.24 6.61 57.05  87.60 97.47 5.01 0.42 6.35 58.13  88.70 97.79

(35,55] 7.13 1.54 9.23 45.10 7538 89.87 5.05 1.06 6.48 5886 8825 97.30

(55,75] 9.21 4.42 11.12 3647  63.21 79.86 5.28 221 6.34 55.65  86.34 97.37

Stage-1 HBP and Stage-2 HBP indicate stage-1 hypertension and stage-2 hypertension, respectively.

1 n
SDE = | — ;(yi — 2 — ME)? ©6)
MAE =13 - @
n i=1 o
where {w1,22,...2,} are the estimated BP values,

{y1,92,...yn} are the reference BP values, and n is the
number of BP measurements.

V. RESULTS

A. Results for Calibration-Based and Calibration-Free
Models

Table IV presents the MAE and ME =+ SDE for BP estimation
errors for both calibration-based and calibration-free BP models
using various algorithms. The best-performing algorithms for
each model type are highlighted in bold. The balance param-
eter « in the models was set to 0.6 from the experimentation
(Fig. Al). The best-performing calibration-based model
achieved an estimation error of 2.31 +9.57 mmHg for SBP using
the AdaBoost algorithm and 1.33 4+ 6.34 mmHg for DBP using
the SVM algorithm. On the other hand, the best-performing

calibration-free model resulted in an estimation error of —0.71 £+
13.04 mmHg for SBP using the AdaBoost algorithm and —0.29
=+ 8.78 mmHg for DBP using the SVM algorithm.

B. Subpopulation Performance Evaluations

Tables V and VI show the performance of the optimal
calibration-based and calibration-free models for subpopula-
tions with different BP categories and age levels. Following
the 2017 American College of Cardiology and American Heart
Association hypertension guideline [48], the BP categories were
classified as normotensive (SBP less than 129 mmHg and
DBP less than 79 mmHg), stage-1 hypertension (SBP at 130-
139 mmHg or DBP at 80-89 mmHg), and stage-2 hypertension
(SBP higher than 140 mmHg or DBP higher than 90 mmHg).

As presented in Table V, the optimal calibration-based model
had the lowest estimation error for the normotensive subpopu-
lation (1.97 £ 7.85 mmHg for SBP and 1.12 + 6.06 mmHg for
DBP) and the highest estimation error for the stage-2 hyperten-
sion subpopulation (2.21 4+ 11.36 mmHg for SBP and 1.13 £
6.90 mmHg for DBP). Similarly, the estimation error was lowest
for the young subpopulation (age < 35; 0.24 & 6.61 mmHg for
SBP and 0.42 + 6.35 mmHg for DBP) and highest for the oldest
subpopulation (age > 55;4.42 + 11.12 mmHg for SBP and 2.21
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TABLE VI
PERFORMANCE OF THE BEST-PERFORMING CALIBRATION-FREE MODEL FOR VARIOUS SUBPOPULATIONS

SBP DBP
MAE ME SDE CPE5 CPEI0 CPEIS MAE ME SDE CPE5 CPEI0  CPEIS
(mmHg)  (mmHg)  (mmHg) (%) (%) (%) (mmHg)  (mmHg)  (mmHg) (%) (%) (%)

All-participant 9.67 —0.71 13.04 3333 60.19 77.79 6.80 —0.29 8.78 4570 76.69 91.90
Accuracy at different BP levels

Normotensive 8.55 4.45 10.20 3750  66.38 84.08 5.94 2.91 6.89 50.20  81.80 95.51

Stage-1 HBP 9.92 —2.52 12.42 32.31 58.86 7731 6.16 —1.75 7.56 4872 80.31 94.65

Stage-2 HBP 12.26 —7.47 14.07 27.68  51.06 68.01 831 —3.71 10.07 38.18  67.75 85.43
Accuracy at different age levels

(18,35] 7.16 0.01 9.40 4411 7458 90.03 5.93 0.30 7.49 50.63  81.89 95.26

(35,55] 10.71 —1.00 13.75 29.65 5557 74.92 7.67 —1.35 9.95 41.89 7177 88.13

(55,75] 11.40 —1.02 14.65 2824  53.19 71.46 6.76 0.11 8.60 45.04  76.69 92.36

Stage-1 HBP and Stage-2 HBP indicate stage-1 hypertension and stage-2 hypertension, respectively.

TABLE VII
PERFORMANCE EVALUATION OF THE OPTIMAL CALIBRATION-BASED AND CALIBRATION-FREE MODELS FOR VARIOUS INTERNATIONAL STANDARDS AND
PROTOCOLS UNDER SUBPOPULATIONS

Calibration-based SBP

Calibration-free SBP

Calibration-based DBP Calibration-free DBP

ANSY/ ANSI/ ANSI/ ANSI/
IEEE 1708  AAMI BHS IEEE 1708  AAMI BHS IEEE 1708  AAMI BHS IEEE 1708  AAMI BHS
/1SO /1SO /1SO /1SO
All-participant Grade D Fail Grade C Grade D Fail Grade D Grade B Pass Grade B Grade C Fail Grade C
Accuracy at different BP levels
Normotensive Grade C Pass Grade B Grade D Fail Grade D Grade A Pass Grade B Grade B Pass Grade B
Stage-1 HBP Grade D Fail Grade C Grade D Fail Grade D Grade B Pass Grade B Grade C Pass Grade C
Stage-2 HBP Grade D Fail Grade D Grade D Fail Grade D Grade B Pass Grade B Grade D Fail Grade D
Accuracy at different age levels
(18,35] Grade B Pass Grade B Grade D Fail Grade C Grade B Pass Grade B Grade B Pass Grade B
(35,55] Grade D Fail Grade C Grade D Fail Grade D Grade B Pass Grade B Grade D Fail Grade C
(55,75] Grade D Fail Grade D Grade D Fail Grade D Grade B Pass Grade B Grade C Fail Grade C

Difference BP(mmHg)

SBP d
50 70 20 110 130 150 40 60 80

DBP

100 120 140 160 180

Average BP (mmHg) Average BP (mmHg)

Fig. 4. Bland-Altman plots of estimated SBP from the optimal
calibration-based model against the reference for (a) normotensive and
(b) young subpopulations. The dotted lines in (a) and (b) represent ME
+1.96 x SDE.

=+ 6.34 mmHg for DBP). The results for the optimal calibration-
free model were similar (Table VI). These findings suggest that
the performance of cuffless BP measurement models degrades
in individuals with higher BP and age levels. Therefore, studies
focusing on a small cohort of young and healthy individuals
may not be generalizable to larger and more heterogeneous
populations.

Fig. 4 presents Bland-Altman plots of estimated BP values
from the best-performing calibration-based model compared to
the reference auscultated BP values for the normotensive and
young subpopulations; dashed lines indicate the 95% confidence
intervals (ME £+ 1.96 x SDE). The percentages of both the
SBP and DBP estimates met or were close to the 95% ratio
from the Bland—Altman analysis, suggesting that the smartwatch
measurements were generally consistent with the reference mea-
surements for these populations.

We compared the performance of the optimal calibration-
based and calibration-free models to the ANSI/AAMI/ISO and
IEEE 1708 standards, as well as the BHS protocol. Table VII

shows that the performance of the models evaluated by different
criteria was broadly the same in each group. The results obtained
by the IEEE 1708 standard were consistent with those obtained
by the ANSI/JAAMI/ISO standard and the BHS protocol in
terms of recommendations for clinical use. Specifically, the
DBP estimates of the optimal calibration-based model were
sufficiently accurate for both the overall population and different
subpopulations, meeting the clinical recommendations of the
ANSI/AAMI/ISO and IEEE 1708 standards and the BHS pro-
tocol. For SBP estimation, the optimal calibration-based model
performed well for the normotensive and young subpopulations
(satisfied the clinical recommendations of the ANSI/AAMI/ISO
and IEEE 1708 standards and the BHS protocol), but not for the
older individuals or individuals with hypertension. Except for
DBP estimation in the normotensive and young subpopulations,
the calibration-free model’s performance was unsatisfactory.

C. Robustness Evaluation

Calibration is generally required for cuffless BP models to
maintain the accuracy acceptable [8]. However, it is important
to investigate the robustness of calibration-based models, i.e.,
whether the model performance degrades over the follow-up
period after calibration [39]. We evaluated the absolute error of
BP estimation on days 7, 14, and 21 after calibration (Fig. 5(a)
and (b)). The absolute error of BP estimation increased signif-
icantly from D+7 to D+14 (mean £ SD of 7.41 £ 6.43 mmHg
vs. 9.07 £ 7.24 mmHg for SBP, 5.03 + 3.28 mmHg vs. 6.32 £
4.18 mmHg for DBP) but remained stable from D+14 to D+21
(mean + SD of 9.07 £+ 7.24 mmHg vs. 9.31 + 7.31 mmHg
for SBP, 6.32 + 4.18 mmHg vs. 6.24 + 4.18 mmHg for DBP).
We further analyzed the absolute change in BP relative to day
D (JABP|) on days D+7, D+14, and D+21, and found that the
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compared to their respective baseline models for SBP estimation.

|A BP| on D+14 was significantly greater than that on D+7,
but comparable to that on D+21 (Fig. 5(c) and (d)), suggesting
that model performance may fluctuate, but did not significantly
decline over the 1-month period after calibration.

D. Comparison With Baseline Models

Fig. 6 shows the comparison of the optimal calibration-based
and calibration-free models with the baseline models under dif-
ferent subpopulations, using the MAE as the evaluation metric.
Since DBP has lower variation than SBP, the results of SBP
estimation were presented as the example. As shown in Fig. 6,
both the optimal calibration-based and calibration-free models
exhibit lower errors in SBP estimation than their corresponding
baseline models across all subpopulations. Notably, the opti-
mal models demonstrate a more significant advantage over the
baseline models in the hypertensive subpopulations (e.g., MAE
= 8.10 mmHg versus MAE = 9.64 mmHg for SBP estimation
at stage-1 hypertension with calibration-based strategy). These
results suggest that the smartwatch can provide extra values in
estimating BP, particularly for individuals with hypertension.

Fig. 7. SBP estimation errors for various age groups (a) and BP levels
(b). SBP changes for various age groups (c) and BP levels (d). Abbre-
viations Norm, Stage-1 HBP, and Stage-2 HBP indicate normotensive,
stage-1 hypertension, and stage-2 hypertension, respectively. Asterisk
(*) indicates p < 0.05.

V. DISCUSSION

To our knowledge, this is the largest-scale study to validate
the feasibility of using smartwatches to measure BP by utiliz-
ing dual-observer auscultation BP as the reference measure-
ment. With the calibration-based strategy, the smartwatch pre-
sented high consistency with the reference device for measuring
DBP for diverse and heterogeneous participants and performed
well for measuring SBP for normotensive and young partici-
pants. Smartwatch performance for both calibration-based and
calibration-free BP measurements was influenced by age and
BP levels. This study provided key benchmarks for future inves-
tigations of cuffless BP measurement techniques.

A. Effects of Age and BP Level on Performance

The model’s performance decreased as age and BP increased
(Fig. 7(a) and (b)). These findings validate a previous hypothe-
sis [21] that because only a small cohort of young and healthy
participants were enrolled in the current cuffless BP models,
their performance would perform worse than initially reported
when applied to heterogeneous populations. Therefore, we can
conclude that if the testing dataset participants do not have the
BP distribution required by the ANSI/AAMI/ISO standard, the
performance results may be overly optimistic, and such studies
may not have clinical utility.

By analyzing BP change (defined as the |ABP| relative to
the basal BP) in different subgroups, we observed that older
participants and those with hypertension tended to have greater
BP variability than younger and healthier participants (Fig. 7(c)
and (d)). Indeed, young and healthy participants tend to have
strong reflex adaptations to stress and thus have a stable hemody-
namic state. By contrast, in the older individuals or patients with
hypertension, hemodynamic instability tends to occur due to
decreases in arterial elasticity and the effects of antihypertensive
drugs. Our results also suggest that signals that can be collected
by wearables, such as ECG, PPW, and MWPPG, may not fully
reflect BP changes during hemodynamic instability. Therefore,
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Fig. 8. Performance of AdaBoost-based calibration-free model for
SBP estimation with various signal combinations. Asterisk (x) indicates
p < 0.05.

it may be necessary to employ additional signals or principles
to improve the accuracy of BP estimation for these participants.

B. Multichannel Signals for BP Estimation

Several cuffless BP measurement approaches have been re-
ported, including those based on ECG and PPG [19], ECG and
PPW [18], [31], MWPPG [13], one-channel PPG [28], and even
one-channel ECG [24], [25]. However, it should be analyzed
whether multichannel signals could achieve better performance
to facilitate the design of wearable BP measurement devices.
Therefore, we analyzed the absolute errors of SBP estima-
tion for various signal combinations using the best-performing
calibration-free model (Adaboost) as an example. The detailed
results (mean £ SD) were presented in Table A2. Similar per-
formances were observed with one-channel signal from Table
A2, including PPW, PPIR, PPGR, PPGY and PPGB. However,
the combination of multi-channel signals can improve the per-
formance. Fig. 8 further illustrates the performance comparison
between models based on one-channel signal and multi-channel
signals, with statistical differences between pairs of groups
marked with an asterisk. Compared with PPGIR- and PPW-
based models, MWPPG-based model performed slightly better
due to arteriolar PTT involved. However, this difference was not
significant, likely due to the instability of arteriolar PTT mea-
surements caused by changes in the location and contact force of
the MWPPG sensor with the skin during long-term follow-up pe-
riods [49]. Additionally, the estimation errors were significantly
reduced by fusing of ECG, PPGIR, and PPW signals, indicating
that multichannel signal fusion could improve the BP estimation
model performance. However, further research is necessary to
investigate the trade-off between measurement performance and
the cost of wearable devices.

C. Comparison of BP Modeling Algorithms

Both mechanism-based (i.e., PTT) and data-driven (i.e., TML
and DL) solutions were used to develop BP models for a com-
prehensive assessment. The TML algorithm (with handcrafted
features) demonstrated optimal performance among these three
types of algorithms (Table IV). Specifically, compared with
the best-performing DL-based model (VGGNetl6), the best-
performing TML-based model (AdaBoost) had significantly
better performance for SBP estimation but comparable per-
formance for DBP estimation. These results suggest that the
extracted features with explicit physiological meaning (Table II)
play a critical role in SBP estimation. However, DL algorithms

have excellent potential to achieve better performance if more
complex frameworks were used; our study only investigated DL
algorithms with basic architectures.

PTT-based models showed decreased performance when ap-
plied to large, heterogeneous populations with a long-term
follow-up period (Table IV). The primary reason for this may
be that arterial PTT and arteriolar PTT reflect only one fac-
tor that induces BP changes, while the factors that influence
BP changes are complex for heterogeneous populations and
long-term follow-up periods [17]. Previous studies have also
shown that PTT algorithms might only be suitable for short-term
continuous BP tracking and require frequent calibration for
long-term use [50], [51].

D. Limitations

Although this study provides a large-scale benchmark for
emerging investigations on cuffless BP measurement, it has
some limitations. First, although the BP distribution of the
dataset met the ANSI/AAMI/ISO standard, it remains unbal-
anced, with a relatively small proportion of hypertensive (SBP
> 160 mmHg or DBP > 100 mmHg) and hypotensive (DBP <
60 mmHg) samples collected. Therefore, the application of data
augmentation or balancing techniques could further improve
the accuracy of BP models. Second, to provide a benchmark
for emerging investigations on cuffless BP measurements, we
only applied basic algorithms for BP estimation. However, more
complex algorithms, such as hybrid networks that fuse TML
and DL models or combine mechanism-driven and data-driven
models, could potentially achieve superior performance for cuf-
fless BP estimation. Third, the experimental procedure can be
more delicate. For example: BP interventions were not included
in the study due to potential ethical risks to individuals; the
model’s robustness was evaluated only for about a month, and
longer-term follow-up is required to ensure its reliability; the
recordings were collected in a controlled environment with
manually controlled signal quality, the performance of the smart-
watch may be affected in real-world scenarios.

VI. CONCLUSION

This is the largest validation study to date evaluating the per-
formance of cuffless BP measurement techniques using smart-
watches with dual-observer auscultation BP reference mea-
surements. Our findings reveal the following: 1) Smartwatches
exhibit reliable performance in estimating DBP for diverse and
heterogeneous participants and SBP for normotensive and young
participants with calibration, 2) The performance of smart-
watches in estimating BP decreases with age and higher BP
levels, 3) The availability of cuffless BP measurement without
calibration is limited in routine settings, and 4) When applied
to large heterogeneous populations and long follow-up periods,
data-driven BP models generally outperform mechanism-driven
BP models. These findings suggest that BP models trained on
small cohorts of young and healthy participants may exhibit
poor performance when applied to large-scale, diverse popu-
lations. The protocol and participant classification used in this
study were designed in strict adherence to the ANSI/AAMI/ISO
standard, and thus are likely to be generalizable in real-world set-
tings. Overall, this study provides critical benchmarks for future
investigations of emerging cuffless BP measurement techniques.
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TABLE A1
DEFINITIONS OF THE SIGNAL-BASED FEATURES

Feature Type _ Feature Definitions Feature Type _ Feature Definitions
PTTgs1 Time span between ECG R peak and raw PPG s point o Pulsc width Time span between points m and n
PTTRA Time span between ECG R peak and raw PPG m point : Cardiac cycle Time span between points s and v
PTTip1 Time span between ECG R peak and raw PPG p point PIR Ratio of p point intensity (o s point intensity

Atterial T PTTRS2 Time span between ECG R peak and raw PPW s point Arteriolar PTT Time span between the peaks of arterial PPG and PPGB (Fig. 3b)
PTTrar2 Time span between ECG R peak and raw PPW m point Total Ascending slope Slope between points s and p
PTTrps Time span between ECG R peak and raw PPW p point erivheral Descending slope Slope between points p and v
PTTss Time span between raw PPG s point and raw PPW s point l:e‘ifl,me Ascending area Area below the curve surrounded by points s and p
PTTarar Time span between raw PPG m point and raw PPW m point (bt Descending area Area below the curve surrounded by points p and v
PTTpp Time span between raw PPG p point and raw PPW p point AID Amplitude difference between points p and s

Cardize Ascending time  Time span between points s and p DID Amplitude difference between points p and v

output (Coy  Descending time  Time span between points p and v Amplitudes of p, v, ¢, d, and e points  Amplitudes of points p, v, ¢, d, and e relative to the baseline (Fig. 3¢)

LASI Time span between points p and n CO+TPR Pulse K value Defined in [17]

APPENDIX
TABLE A2

ABSOLUTE ERRORS OF ADABOOST-BASED CALIBRATION-FREE MODEL FOR

Fig. A1.

SBP ESTIMATION UNDER DIFFERENT SIGNAL COMBINATIONS

Signal combinations Absolute Errors (mmHg)

mean SD
PPGIR 9.99 8.85
PPGR 10.05 8.86
PPGY 9.98 8.89
PPGB 10.05 8.88
MWPPG 9.96 8.86
PPW 10.12 8.89
PPGIR+PPW 9.87 8.76
ECG+PPGIR 9.90 8.78
ECG+PPW 9.98 8.79
ECG+PPGIR+PPW 9.67 8.58
1
o @ BiILSTM
105 @ Ridge
10 ® ResLSTM
_ @ ResNets0
z 95 ® VGGNetl6
E 9 SVM
2 @ wr
S 85 AdaBoost
8
TS0 s
)
0 0.2 0.4 0.6 0.8 1
a value

MAE values of various calibration-based models at different

balance parameter « (with a step size of 0.05).

(1]
(2]
[3]

[4]

(51

(6]

(71

REFERENCES

F. D. Fuchs and P. K. Whelton, “High blood pressure and cardiovascular
disease,” Hypertension, vol. 75, no. 2, pp. 285-292, 2020.

K. T. Mills, A. Stefanescu, and J. He, “The global epidemiology of
hypertension,” Nature Rev. Nephrol., vol. 16, no. 4, pp. 223-237, 2020.
World Health Organization (WHO), “Hypertension,” Accessed: Nov.
20, 2022. [Online]. Available: https://www.who.int/news-room/fact-
sheets/detail/hypertension

E. O’brien et al., “European society of hypertension recommendations
for conventional, ambulatory and home blood pressure measurement,” J.
Hypertension, vol. 21, no. 5, pp. 821-848, 2003.

J. R. Banegas et al., “Relationship between clinic and ambulatory blood-
pressure measurements and mortality,” New England J. Med., vol. 378,
no. 16, pp. 1509-1520, 2018.

W.-Y. Yang et al., “Association of office and ambulatory blood pressure
with mortality and cardiovascular outcomes,” JAMA, vol. 322, no. 5,
pp. 409420, 2019.

R. Agarwal and R. P. Light, “The effect of measuring ambulatory blood
pressure on nighttime sleep and daytime activity—implications for dip-
ping,” Clin. J. Amer. Soc. Nephrol., vol. 5, no. 2, pp. 281-285, 2010.

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

X.-R. Ding and Y.-T. Zhang, “Pulse transit time technique for cuffless
unobtrusive blood pressure measurement: From theory to algorithm,”
Biomed. Eng. Lett., vol. 9, no. 1, pp. 37-52, 2019.

C. Landry, E. T. Hedge, R. L. Hughson, S. D. Peterson, and A. Arami,
“Accurate blood pressure estimation during activities of daily living: A
wearable cuffless solution,” IEEE J. Biomed. Health Inform., vol. 25,n0.7,
pp. 2510-2520, Jul. 2021.

V. G. Ganti, A. M. Carek, B. N. Nevius, J. A. Heller, M. Etemadi,
and O. T. Inan, “Wearable cuff-less blood pressure estimation at home
via pulse transit time,” IEEE J. Biomed. Health Inform., vol. 25, no. 6,
pp. 1926-1937, Jun. 2021.

C. C. Y. Poon and Y.-T Zhang, “Cuff-less and noninvasive measurements
of arterial blood pressure by pulse transit time,” in Proc. IEEE 27th Annu.
Conf. Eng. Med. Biol., 2005, pp. 5877-5880.

X.-R. Ding, Y.-T. Zhang, J. Liu, W.-X. Dai, and H. K. Tsang, “Con-
tinuous cuffless blood pressure estimation using pulse transit time and
photoplethysmogram intensity ratio,” IEEE Trans. Biomed. Eng., vol. 63,
no. 5, pp. 964-972, May 2016.

J. Liu, B. P. Yan, Y.-T. Zhang, X.-R. Ding, P. Su, and N. Zhao, “Multi-
wavelength photoplethysmography enabling continuous blood pressure
measurement with compact wearable electronics,” IEEE Trans. Biomed.
Eng., vol. 66, no. 6, pp. 1514—1525, Jun. 2019.

F. Miao, B. Zhou, Z.-D Liu, B. Wen, Y. Li, and M. Tang, “Using nonin-
vasive adjusted pulse transit time for tracking beat-to-beat systolic blood
pressure during ventricular arrhythmia,” Hypertension Res., vol. 45, no. 3,
pp. 424-435,2022.

Y. Chen, S. Shi, Y.-K. Liu, S.-L. Huang, and T. Ma, “Cuffless blood-
pressure estimation method using a heart-rate variability-derived parame-
ter,” Physiol. Meas., vol. 39, no. 9, 2018, Art. no. 095002.

M. Kachuee, M. M. Kiani, H. Mohammadzade, and M. Shabany, “Cuffless
blood pressure estimation algorithms for continuous health-care moni-
toring,” IEEE Trans. Biomed. Eng., vol. 64, no. 4, pp. 859-869, Apr.
2017.

F. Miao et al., “A novel continuous blood pressure estimation approach
based on data mining techniques,” IEEE J. Biomed. Health Inform., vol. 21,
no. 6, pp. 1730-1740, Nov. 2017.

F.Miao, Z.-D. Liu,J.-K. Liu, B. Wen, Q.-Y. He, and Y. Li, “Multi-sensor fu-
sion approach for cuff-less blood pressure measurement,” /EEE J. Biomed.
Health Inform., vol. 24, no. 1, pp. 79-91, Jan. 2020.

S. Yang, J. Sohn, S. Lee, J. Lee, and H. C. Kim, “Estimation and vali-
dation of arterial blood pressure using photoplethysmogram morphology
features in conjunction with pulse arrival time in large open databases,”
IEEE J. Biomed. Health Inform., vol. 25, no. 4, pp. 1018-1030, Apr.
2021.

S. Haddad, A. Boukhayma, and A. Caizzone, “Continuous PPG-based
blood pressure monitoring using multi-linear regression,” IEEE J. Biomed.
Health Inform., vol. 26, no. 5, pp. 20962105, May 2022.

R. Mieloszyk et al., “A comparison of wearable tonometry, photoplethys-
mography, and electrocardiography for cuffless measurement of blood
pressure in an ambulatory setting,” IEEE J. Biomed. Health Inform.,
vol. 26, no. 7, pp. 28642875, Jul. 2022.

Z.-D Liu, F. Miao, R.-X Wang, J.-K Liu, B. Wen, and Y. Li, “Cuff-less
blood pressure measurement based on deep convolutional neural net-
work,” in Proc. IEEE 41st Annu. Int. Conf. Eng. Med. Biol. Soc., 2019,
pp. 3775-3778.

P. Su, X.-R. Ding, Y.-T. Zhang, J. Liu, F. Miao, and N. Zhao, “Long-term
blood pressure prediction with deep recurrent neural networks,” in Proc.
IEEE EMBS Int. Conf. Biomed. Health Inform., 2018, pp. 323-328.
X.-M Fan, H. Wang, F. Xu, Y. Zhao, and K.-L. Tsui, “Homecare-oriented
intelligent long-term monitoring of blood pressure using electrocardio-
gram signals,” IEEE Trans. Ind. Informat., vol. 16, no. 11, pp. 7150-7158,
Nov. 2020.


https://www.who.int/news-room/fact-sheets/detail/hypertension
https://www.who.int/news-room/fact-sheets/detail/hypertension

LIU et al.: CUFFLESS BLOOD PRESSURE MEASUREMENT USING SMARTWATCHES: A LARGE-SCALE VALIDATION STUDY

4227

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

F. Miao et al., “Continuous blood pressure measurement from one-channel
electrocardiogram signal using deep-learning techniques,” Artif. Intell.
Med., vol. 108, 2020, Art. no. 101919.

W. Wang, P. Mohseni, K. L. Kilgore, and L. Najafizadeh, “Cuff-less
blood pressure estimation from photoplethysmography via visibility graph
and transfer learning,” IEEE J. Biomed. Health Inform., vol. 26, no. 5,
pp. 2075-2085, May 2022.

J. J. Leitner, P-H. Chiang, and S. Dey, “Personalized blood pres-
sure estimation using photoplethysmography: A transfer learning ap-
proach,” IEEE J. Biomed. Health Inform., vol. 26, no. 1, pp. 218-228,
Jan. 2022.

D.-K. Kim, Y.-T. Kim, H. Kim, and D.-J. Kim, “DeepCNAP: A deep
learning approach for continuous noninvasive arterial blood pressure mon-
itoring using photoplethysmography,” IEEE J. Biomed. Health Inform.,
vol. 26, no. 8, pp. 3697-3707, Aug. 2022.

S. Baker, W. Xiang, and I. J.JK.-B. S. Atkinson, “A computationally
efficient CNN-LSTM neural network for estimation of blood pressure
from features of electrocardiogram and photoplethysmogram waveforms,”
Knowl.-Based Syst., vol. 250, 2022, Art. no. 109151.

X.-R. Ding et al., “Continuous blood pressure measurement from in-
vasive to unobtrusive: Celebration of 200th birth anniversary of Carl
Ludwig,” IEEE J. Biomed. Health Inform., vol. 20, no. 6, pp. 1455-1465,
Nov. 2016.

Z.-D. Liu, J.-K. Liu, B. Wen, Q.-Y. He, Y. Li, and F. Miao, “Cuffless blood
pressure estimation using pressure pulse wave signals,” Sensors, vol. 18,
no. 12, 2018, Art. no. 4227.

R. Mukkamala et al., “Evaluation of the accuracy of cuffless blood pressure
measurement devices: Challenges and proposals,” Hypertension, vol. 78,
no. 5, pp. 1161-1167, 2021.

R. Mukkamala, S. G. Shroff, C. Landry, K. G. Kyriakoulis, A. P. Avolio,
and G. S. Stergiou, “The microsoft research aurora project: Important
findings on cuffless blood pressure measurement,” Hypertension, vol. 80,
no. 3, pp. 534-540, 2023.

ANSI/AAMI/ISO 81060-2:2019, “Non-invasive sphygmomanometers -
Part 2: Clinical investigation of intermittent automated measurement type,”
Accessed: May 15, 2023. [Online]. Available: https://webstore.ansi.org/
Standards/ AAMI/ANSTIAAMIISO810602019

Y. Ma et al., “Relation between blood pressure and pulse wave velocity for
human arteries,” Proc. Nat. Acad. Sci., vol. 115, no. 44, pp. 11144-11149,
2018.

W.-H. Lin, H. Wang, O. W. Samuel, G. Liu, Z. Huang, and G. Li, “New
photoplethysmogram indicators for improving cuffless and continuous
blood pressure estimation accuracy,” Physiol. Meas., vol. 39, no. 2, 2018,
Art. no. 025005.

P. Yao et al., “Multi-dimensional feature combination method for contin-
uous blood pressure measurement based on wrist PPG sensor,” IEEE J.
Biomed. Health Inform., vol. 26, no. 8, pp. 3708-3719, Aug. 2022.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

R. Padwal et al., “Optimizing observer performance of clinic blood pres-
sure measurement: A position statement from the Lancet Commission
on Hypertension Group,” J. Hypertension, vol. 37, no. 9, pp. 1737-1745,
2019.

I. S. Association, IEEE Standard for Wearable Cuffless Blood Pressure
Measuring Devices, IEEE Standard 708-2014, 2014.

J. Liu, B. P-Y. Yan, W.-X. Dai, X.-R. Ding, Y.-T. Zhang, and N. Zhao,
“Multi-wavelength photoplethysmography method for skin arterial pulse
extraction,” Biomed. Opt. Exp., vol. 7, no. 10, pp. 4313-4326, 2016.

M. Z. Suboh, R. Jaafar, N. A. Nayan, N. H. Harun, and M. S. F. Mo-
hamad, “Analysis on four derivative waveforms of photoplethysmogram
(PPG) for fiducial points detection,” Front. Public Health, vol. 10, 2022,
Art. no. 920946.

W.-H. Lin, X. Li, Y. Li, G. Li, and F. J. P. M. Chen, “Investigating the
physiological mechanisms of the photoplethysmogram features for blood
pressure estimation,” Physiol. Meas., vol. 41, no. 4, 2020, Art. no. 044003.
Z.-D Liu, B. Zhou, Y. Li, M. Tang, and F. Miao, “Continuous blood pres-
sure estimation from electrocardiogram and photoplethysmogram during
arrhythmias,” Front. Physiol., vol. 11, 2020, Art. no. 575407.

Y. S. Putyatina, “Measurement of arterial blood pressure by processing
pulse wave data,” in Proc. IEEE 3rd Annu. Siberian Russian Workshop
Electron Devices Mater., 2002, pp. 77-78.

F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, pp. 2825-2830, 2011.

F. Nogueira, “Bayesian optimization: Open source constrained global op-
timization tool for python,” Accessed: Sep. 25, 2022. [Online]. Available:
https://github.com/fmfn/BayesianOptimization

E. O’Brien et al., “The British Hypertension Society protocol for the
evaluation of blood pressure measuring devices,” J. Hypertension, vol. 11,
no. Suppl 2, pp. S43-S62, 1993.

P. K. Whelton et al., “2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/
ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evalu-
ation, and management of high blood pressure in adults: A report of the
American College of Cardiology/American Heart Association Task Force
on Clinical Practice Guidelines,” J. Amer. College Cardiol.,vol.71,no. 19,
pp. e127-e248, 2018.

X. E Teng and Y. T. Zhang, “Theoretical study on the effect of sensor
contact force on pulse transit time,” IEEE Trans. Biomed. Eng., vol. 54,
no. 8, pp. 1490-1498, Aug. 2007.

B. McCarthy, C. Vaughan, B. O’flynn, A. Mathewson, and C. 0. Mathina,
“An examination of calibration intervals required for accurately tracking
blood pressure using pulse transit time algorithms,” J. Hum. Hypertension,
vol. 27, no. 12, pp. 744-750, 2013.

R. Mukkamala and J.-O. Hahn, “Toward ubiquitous blood pressure mon-
itoring via pulse transit time: Predictions on maximum calibration period
and acceptable error limits,” IEEE Trans. Biomed. Eng., vol. 65, no. 6,
pp. 1410-1420, Jun. 2018.


https://webstore.ansi.org/Standards/AAMI/ANSIAAMIISO810602019
https://webstore.ansi.org/Standards/AAMI/ANSIAAMIISO810602019
https://github.com/fmfn/BayesianOptimization


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


