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Automatic Calcification Morphology and
Distribution Classification for Breast

Mammograms With Multi-Task Graph
Convolutional Neural Network

Hao Du , Melissa Min-Szu Yao, Siqi Liu, Liangyu Chen, Wing P. Chan , and Mengling Feng

Abstract—The morphology and distribution of microcal-
cifications are the most important descriptors for radiolo-
gists to diagnose breast cancer based on mammograms.
However, it is very challenging and time-consuming for ra-
diologists to characterize these descriptors manually, and
there also lacks of effective and automatic solutions for this
problem. We observed that the distribution and morphology
descriptors are determined by the radiologists based on
the spatial and visual relationships among calcifications.
Thus, we hypothesize that this information can be effec-
tively modelled by learning a relationship-aware represen-
tation using graph convolutional networks (GCNs). In this
study, we propose a multi-task deep GCN method for auto-
matic characterization of both the morphology and distribu-
tion of microcalcifications in mammograms. Our proposed
method transforms morphology and distribution charac-
terization into node and graph classification problem and
learns the representations concurrently. We trained and
validated the proposed method in an in-house dataset and
public DDSM dataset with 195 and 583 cases,respectively.
The proposed method reaches good and stable results
with distribution AUC at 0.812 ± 0.043 and 0.873 ± 0.019,
morphology AUC at 0.663 ± 0.016 and 0.700 ± 0.044 for
both in-house and public datasets. In both datasets, our
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proposed method demonstrates statistically significant im-
provements compared to the baseline models. The perfor-
mance improvements brought by our proposed multi-task
mechanism can be attributed to the association between
the distribution and morphology of calcifications in mam-
mograms, which is interpretable using graphical visualiza-
tions and consistent with the definitions of descriptors in
the standard BI-RADS guideline. In short, we explore, for
the first time, the application of GCNs in microcalcification
characterization that suggests the potential of using graph
learning for more robust understanding of medical images.

Index Terms—Calcification characterization, graph
convolutional network, mammogram analysis.

I. INTRODUCTION

ACCORDING to Global Cancer Statistics 2020, breast
cancer has overtaken lung cancer as the most common

cancer around world [1]. Even so, the good news is that the
5-year survival rate for breast cancer can be as high as 90% if it
is detected early before it progresses to metastatic cancer [2].
Mammography is currently the most effective tool for early
detection of breast cancer, and it is widely adopted in breast
cancer screening [3]. Mammography images commonly have
high resolution, which enables the detection of microcalcifica-
tions (MCs) at an early stage. MC clusters are important early
signs of breast cancer, accounting for approximately 50% of
the diagnosed cases [4], [5]. An MC cluster contains at least 3
individual MCs where each MC is a small amount of calcium
deposits in breast tissue and appears as small bright spots in
mammograms [6].

Different types of MCs are associated with different proba-
bilities of malignancy [7]. Formally, the American College of
Radiology Breast Imaging Reporting and Data System (ACR
BI-RADS) classifies calcifications into either the ‘typically be-
nign’ or ‘suspicious’ category based on the morphology and
distribution of calcifications [8]. Morphology describes the form
of calcifications based on shape, size, brightness, roughness etc.
Distribution describes how calcifications spread throughout the
breast tissue. The morphology and distribution of calcifications,
illustrated in Fig. 1, are the most important characteristics
considered by radiologists to provide appropriate follow-up
recommendations.
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Fig. 1. Examples of morphology and distribution types. Types of suspicious morphology include coarse heterogeneous, fine pleomorphic,
amorphous and fine linear (fine-linear branching). The types of distribution includes diffuse, regional, cluster(grouped), linear and segmental.
All morphology and distribution descriptors are listed in the order of increasing risk of malignancy from left to right.

Recently, numerous deep learning based computer-aided di-
agnosis (CADx) methods have been developed in medical imag-
ing, especially mammography [9], [10], [11], [12], [13], [14],
[15], [16]. Lotter et al. developed a convolutional neural network
based CADx system to perform malignancy classification of
mammograms and digital breast tomosynthesis [16]. The system
outperformed five breast-imaging specialists in datasets from
U.K., USA and China [16]. Liu et al. introduced anatomy-aware
graph convolutional network into mammogram mass detection
task [13]. The proposed model showed statistically significant
improvements compared to the state-of-the-art performance.
More specifically, for calcifications, many CADx methods have
been proposed by researchers to classify calcification clusters
into benign or malignant [17], [18], [19], [20], [21], [22], [23],
[24], [25]. Alam et al. [17], [19] selected calcification density,
distances from cluster centroids, cluster areas and calcification
sizes to discriminate between benign and malignant calcification
clusters. Singh et al. [18] utilized shape and texture features
to determine malignancy. Although the effectiveness of these
features have been proven, existing CADx methods are unable
to characterize the MCs into the descriptors of morphology
and distribution, as recommended by ACR BI-RADS [8]. Au-
tomatic characterization of calcifications is important to
reproduce the chain of reasoning for mammogram interpre-
tation, leading to more accurate and robust understanding
of mammograms.

To address this challenge, we formulate the characterization
of calcifications in mammograms as a multi-task classification
problem and propose a graph neural network framework. Firstly,

we transform the calcifications in mammography images to
graphical data to represent the spatial and visual information.
That is, each calcification is represented as a node, and nodes
are connected according to their geometric relationships with
their nearby calcifications. Following the transformation, we
formulate the morphology classification into a ‘node classi-
fication task’ and the distribution classification into a ’graph
classification’ task. We propose a multi-task model with graph
convolutional neural networks (GCNs) to solve both tasks. GCN
is a deep learning based method that extends convolutional
operations to graphical data. GCN is designed to aggregate
each vertex’s feature with the features from the neighboring
vertices to learn relationship-aware representations for graph
or node classification tasks. By employing GCNs [26], [27],
[28], we incorporate both local patch features and topological
structures. We developed a multi-task learning framework to
automatically abstract data representations that are applicable to
both the morphology and distribution classification tasks. This
ensures the generalizability of the proposed model. Our main
contributions are as follows:

1) We transform information of calcification in mammogra-
phy images into graphical representations.

2) We propose a deep GCN based framework to model the
node and graph embeddings for both morphology and
distribution tasks.

3) We develop a multi-task GCN-based solution to char-
acterize both the morphology and distribution descrip-
tors simultaneously. We demonstrated with extensive
experiments that the proposed multi-task training strategy
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Fig. 2. Proposed framework demonstration. (a) Illustration of graph construction for calcification clusters. (b) Illustration of multi-task deep GCN
with inputs from (a).

leads to better and more robust performance compared to
models trained on a single task and other baseline models.

II. METHODOLOGY

A. Problem Definitions

The structure of proposed model is divided into graph con-
struction and multi-task GCN. In the first step, we transform
the calcifications in mammography images into graphical data
by using a convolutional neural network (CNN) based feature
extractor and graph transformation functions. Following graph
construction, the proposed GCN jointly learns representations
for node and graph classification with the multi-task training
strategy. The end-to-end framework is illustrated in Fig. 2.

Let xI be a mammography image, xc be the set of cal-
cifications in the image. A set of N mammography images
X = {xi}Ni=1 where xi = (xI

i , x
c
i ) are included in our dataset.

We transform image set X to graphical set G with Gi ∈ G and
G = (V, E), where V = {v1, v2, . . . , vN} and E ⊆ V × V are
the sets of vertices and edges, respectively. eij represents an
edge connecting vertices vi and vj if the edge eij ∈ E . A vertex
v and an edge e in the graph are associated with vertex features
hv ∈ RD and edge features he ∈ RC respectively, where D and
C are dimensions of vertex and edge features. There are two tasks
to investigate: (1) node (morphology) classification, where each
vertex v has a label yv and we aim to learn function f and
representation rv such that the vertex label could be predicted
as yv = f(rv); (2) graph (distribution) classification, where the
graph has a label yg and we aim to learn function g and represen-
tation vector rg to predict the label of the graph as yg = g(rg).
The focus of this study is developing a multi-task GCN to effec-
tively learn the node and graph embeddings for morphology and
distribution classification of calcifications. These calcifications’
locations, xC , are annotated by radiologists. If deployed as a
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real-world CADx application, the proposed model should be
equipped with a detection module which automatically detects
calcifications. The detection module is not included in this
study so as not to dilute the focus of the study. Such detection
modules can be developed based on several existing studies
which achieved accuracy and ROC-AUC over 95% [29], [30],
[31]. The impacts of integrating a calcification detection module
can be further studied in future studies.

B. Graph Construction

Graph construction is demonstrated in part (a) of Fig. 2. For
each mammography image with calcifications (xI

i , x
c
i ), we de-

fine a set of patches asP = {p1, p2, . . . , pn}, where p represents
an image patch that locates at the center of a calcification with
dimension M ×M . We extract high level features from patches
P with a convolutional neural network (CNN) as a feature
extractor. We concatenate extracted features with the normalized
coordinates of the patches to form the node feature hv . The edge
featureshe are defined as relative Cartesian coordinates of linked
nodes. Following node and edge feature extraction, we construct
two types of graphs based on the spatial connectivity relationship
between calcifications:

1) K-nearest neighbor (KNN) graph Gknn: Creates edges if
the nodes are within the k nearest neighbors. KNN graphs
have been widely adopted in point cloud classification and
segmentation [32], [33], [34], image classification [35],
etc. However, it may cause information loss from dis-
connected neighbors in dense calcification clusters or
introduce noise when the node is an outlier from the
calcification cluster.

2) Radius graph Gradius: Creates edges based on node posi-
tions to all other nodes within a given distance. The radius
graph solves the limitations introduced by the KNN graph
described above. However, it is affected by a constant
distance threshold which may cause information loss for
vertices beyond the threshold.

The process of graph construction is shown in Algorithm 1.

C. Deep Graph Convolutional Network

The constructed multi-graph inputs are then fed into deep
GCN, as illustrated in Fig. 2(b). The weights of the proposed
GCN are shared across multi-graph inputs. The design of weight
sharing targets to learn the common features that can describe the
characteristics of both graphs. Following [28] and [36], we used
GCN blocks with Normalization → ReLU → GraphConv →
Addition and GENeralized Aggregation Networks (GENconv)
as GraphConv backbone. In GENconv, the message construction
function p(l) is defined to apply on vertex feature h(l)

v , neighbor
vertex’s feature h

(l)
u and edge feature h

(l)
evu to construct the

message to propagate. p(l) is defined as:

m(l)
vu = ρ(l)

(
h(l)
v , h(l)

u , h(l)
evu

)
= ReLU

(
h(l)
u + 1(h(l)

evu
) · h(l)

evu

)
+ ε, u ∈ N (v) (1)

Algorithm 1: Calcification Characterization Multi-graph
Construction Algorithm.

where the ReLU(·) represents the rectified linear unit activation
function [37], 1(·) is an indicator function which equals to 1
when edge features exist otherwise 0, and ε is a small positive
constant. SoftMaxAggβ is then used as the message aggregation
function and defined as:

m(l)
v = SoftMaxAggβ(·)

=
∑

u∈N (v)

exp(βm(l)
vu)∑

i∈N (v) exp(βm(l)
vu)

·m(l)
vu, (2)

where N (v) is the set of neighbors of vertex v and β is
a hyper-parameter which controls the aggregation function.
Message normalization MsgNorm is then introduced to ad-
dress the over-smoothing and gradient vanishing problem in
training deep GCNs. MsgNorm normalizes the features of the
aggregated message m

(l)
v by combining them with other fea-

tures during the vertex update phase. Suppose MsgNorm is
applied to a multi-layer perceptron (MLP) vertex update func-
tion MLP(h(l)

v +m
(l)
v ), the vertex update function becomes as

follows:

hl+1
v = φl(l)(h(l)

v ,m(l)
v )

= MLP

(
h(l)
v + s · ‖h(l)

v ‖2 · m
(l)
v

‖m(l)
v ‖2

)
(3)

where s is a learnable scaling factor. The aggregated message
m

(l)
v is first normalized by its �2 norm and then scaled by the �2
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norm of h(l)
v by a factor of s. The scaling factor s is set to be a

learnable scalar with an initialized value of 1.

D. Multi-Task Learning

In this study, the proposed multi-task GCN is trained to jointly
perform morphology and distribution classification. In general,
the model was trained by a multi-task loss LMT = wmLm +
wdLd where wmLm and wdLd are weighted cross-entropy
loss for morphology and distribution classification, respectively.
In ACR BI-RADS guideline, morphology and distribution of
calcifications are equally important. Therefore, we introduced
GradNorm [38] to learn both tasks at an equal pace. To explain
GradNorm in the proposed method, we define the necessary
quantities as below:

� W : The subset of the full network weights W ⊂ W . The
weights of the last shared layer is generally chosen as W .

� G
(i)
W (t) = ‖∇Wwi(t)Li(t)‖2: The L2 norm of the gra-

dient over the weighted loss wi(t)Li(t) for task i with
respect to W , at training step t.

� GW (t) = Etask[G
W
i (t)]: The average value of gradient

norms over all tasks for training step t.
� L̃i(t) =

Li(t)
Li(0)

: The loss ratio as the inverse training rate
of task i at step t;

� ri(t) =
L̃i(t)

Etask[L̃i(t)]
: The relative inverse training rate of

task i at step t.
In order to balance the gradient magnitudesG(i)

W for each task,
the mean gradient norm across all tasksGW is set as the common
scale target. The relative inverse training rate of task i, ri(t), is
used to balance the learning pace of all tasks. The target gradient
norm for task i is:

G
(i)
W (t) → GW (t)× [ri(t)]

α, (4)

where α controls the strength of the restoring force which
pulls tasks back to a common training rate. A higher value
of α indicates a higher strength to enforce training rates to be
balanced.

Equation (4) provides the target gradient norms for task i. At
each training step t, we update the loss weights wi(t) to bring
gradient norms close to the target for task i. L1 loss between the
actual gradient norms and the target at each time step for each
task is introduced as Lgrad and we summed Lgrad across both
morphology and distribution classification tasks.

Lgrad(t;wi(t)) =
∑
i

|G(i)
W (t)−GW (t)× [ri(t)]

α|1 (5)

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Datasets

1) TMU Dataset: We collected a full field digital mammo-
gram dataset for this study from the Wan Fang Hospital, Taipei
Medical University (TMU), from June 2010 and October 2018.
The dataset contains 387 mammography images from 200 pa-
tients who were classified as ACR BI-RADS category 4 and 5
with documented calcifications from the original radiological re-
ports. All cases were confirmed breast cancers from biopsy tests.

Descriptors of morphology and distribution were annotated by
a senior radiological technologist and carefully reviewed by a
panel with two senior radiologists in a joint meeting. Our clinical
annotators are breast imaging experts to ensure the reliability
of the ground truths in the annotation process. The radiological
technologist is a senior radiographical technologist with 15 years
of experience in mammogram reading. The review panel consists
of the professor in the Department of Radiology, Taipei Medical
University, and chief of breast imaging in Wang Fang Hospital
with 32 and 20 years of experience, respectively. To assess the
impact of inter-observer variability on the ground truths, we
evaluated the agreement between the radiological technologist
and one of the senior radiologists in the review panel using the
Cohen’s kappa [39]. The inter-observer kappa values are 0.978
and 0.992 on annotating distribution and morphology descrip-
tors, respectively. The kappa results indicate a high degree of
agreement between annotators, thus inter-observer variability
has little impact on obtained ground truths (kappa 0.81–1.00:
almost perfect agreement [40]).

The study was jointly approved by NUS Institutional Review
Board (NUS-IRB) (Approval No. 2019/00159) and Joint Institu-
tional Review Board of Taipei Medical University (TMU-JIRB)
(Approval No. N202006039). We excluded 5 cases with no
biopsy confirmation, malignant phyllodes tumor or low image
qualities. The basic characteristics of the final cohort is shown
in online Appendix Table 1 [41].

2) CBIS-DDSM Dataset: We validated our proposed method
on the CBIS-DDSM (Curated Breast Imaging Subset of DDSM)
dataset. CBIS-DDSM [42] is an updated and standardized
version of the Digital Database for Screening Mammography
(DDSM) dataset [43]. The DDSM dataset is a publicly available
database of 2,620 scanned film mammography studies. The
cases were annotated with region of interests (ROIs) for calcifi-
cations and masses, and BI-RADS descriptors for calcification
morphology, calcification distribution, mass shape, mass margin
and breast density. Following the same inclusion criteria as the
TMU dataset, we included cases which were classified as ACR
BI-RADS category 4 and 5 with annotated calcifications. We
excluded cases which contained calcifications with more than
one morphology type, because CBIS-DDSM does not provide
separate ROI annotations for multiple morphology descriptors.
The number of such cases is relatively small (<10%). As a result,
we extracted 583 mammography images from CBIS-DDSM for
this study.

B. Experiments and Results

1) Implementation Details: The experiments were imple-
mented with PyTorch framework and Pytorch Geometric pack-
age [44], [45]. The dimension of calcification patches was set
at 14× 14 (1.32 mm × 1.32 mm), as the size of calcifica-
tions are generally less than 14 pixels in mammograms [46].
Hyper-parameters were selected through grid search over poten-
tial parameters. Empirically, the hidden size in proposed network
was set at 128, α was set at 1.5, k was set for KNN at 4 and
distance threshold for radius graph was set at 112. Initial learning
rate was set at 10−3 and decayed by 1

10 every 10 epochs. The
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models were trained by Adam optimizer on an Ubuntu server
with 4 NVIDIA V100 GPU cards for 100 epochs. The models
were trained and validated independently in TMU and DDSM
dataset in 5-fold cross validation manner. The splitting of the
folds was performed on the patient level such that there was
no overlapping of mammograms from same patients between
training and testing folds. No statistically significant differences
were found between training and testing folds in all demographic
variables (details in online Appendix Table 2-6) [41]. We also
conducted ablation studies to evaluate the model’s performance
after removing each proposed module in order to understand
the proposed module’s contribution to the overall model. To
ensure reproducibility, our implementations of the experiments
are publicly available on GitHub.1

2) Performance Comparison: To the best of our knowledge,
there is no state-of-the-art models to characterize morphology
and distribution of calcifications in mammography images. In
order to establish baselines for comparison, we employed mul-
tiple popular CNN and GCN models that have been widely and
successfully applied in medical imaging as baseline models. For
CNN baseline models, we regarded both the distribution and
morphology classification tasks as a multi-classification prob-
lem. Distribution baseline models take mammography images
XI as input to predict the types of distribution. For morphology
baseline models, the set of patches P defined in Section II-B
is used as inputs. Each patch p is located at the center of a
calcification and considered as an independent input to baseline
models. Similar to vertices in constructed calcification graphs,
each patch is associated with a morphology label. The baseline
models classify the patch set into morphology categories. For
GCN baseline models, we evaluate the models’ performance for
graph and node classification tasks separately. The employed
baseline models include:

1) ResNet [47]: ResNet has been one of the most suc-
cessful and popular network architectures in computer
vision field since proposed in 2015. Residual blocks with
skip connections were proposed to solve the problem
of gradient vanishing in training deep neural networks.
ResNet and its variants have been successfully adopted
in many applications such as medical image classification,
segmentation, synthesis etc [48], [49], [50], [51]. In this
study, we used ResNet-50 as a baseline comparison.

2) DenseNet [52]: In DenseNet architectures, layers are
densely connected with each other to reuse features and
preserve global state. DenseNet demonstrated excellent
results on small benchmark datasets such as Cifar-10 and
Cifar-100 [53], [54]. We used DenseNet-121 as one of the
baseline models.

3) MobileNet [55]: MobileNet was proposed primarily for
mobile and embedded devices. MobileNet uses depth-
wise separable convolutions to achieve high accuracy
with low latency. Many researchers have demonstrated
the effectiveness of MobileNet architectures in various
medical applications such as diabetic foot ulcer and lung

1[Online]. Available: https://github.com/DuHao10086/multi_task_calcifica
tion.

disease detection [56], [57]. We used MobileNetV2 [58]
in this study.

4) EfficientNet [59]: EfficientNets is proposed using net-
work architecture search, which performs compound
scaling in depth, width, and resolution. EfficientNets
achieved the state-of-the-art performance in various
benchmark datasets with significantly reduced parame-
ters compared to other models. We adopted EfficientNet-
B0 in experiments of this study.

5) GCN (vanilla) [27]: GCN is proposed to generalize
convolution operations to non-Euclidean graphical data.
GCN has been successfully applied in medical tasks such
as COVID-19 classification [60], drug discovery [61] and
brain fMRI analysis [62].

6) Graph attention network (GAT) [63]: GAT is one of
the most successful variant of the vanilla GCN. GAT
introduced masked self-attention into graph convolution
operations to apply weights to information propagation
from neighbouring vertices. GAT has demonstrated its
potential in medical tasks such as Alzheimer’s disease
analysis [64], identification of bipolar disorder [65] and
medical image enhancements [66].

We addressed several image quality issues to ensure the fair
comparison with baseline models. The CBIS-DDSM dataset
was collected from scanned analog films. As a result, the image
quality is much poorer compared to digital mammograms. We
applied the preprocessing techniques including CLAHE en-
hancement and lesion segmentation [67]. For the TMU dataset,
a small amount of collected mammography images were over-
exposed (<10%), showing bright and white areas in breasts.
This overexposure problem actually does not affect the perfor-
mance of the proposed model because the overexposed areas
do not overlap with calcifications and the proposed model takes
calcification patches as inputs, however, the overexposure may
affect the performance of baseline models because the baseline
models take the entire mammography images as inputs. To help
the baseline model overcome this issue, we preprocessed the
images by removing the overexposed regions from the affected
mammograms.

In our experiments, both distribution and morphology classi-
fication tasks are formulated as multi-class classification tasks.
Following the standard medical guideline BI-RADS fifth edi-
tion [8], the number of classes are 5 and 4 for distribution
and morphology descriptors, respectively. The examples of the
descriptors are shown in Introduction. We used the multi-class
AUC as primary evaluation metrics [68]. AUC was evaluated
at the node and graph level for morphology and distribution
classification, respectively. In addition, we evaluated precision,
recall, F1-score and accuracy for comparative purposes. All per-
formance metrics were evaluated with weighted average method
across multiple classes [69].

95% confidence intervals (95% CI) and statistical tests were
used for performance comparison. Confidence intervals were
computed with 1000 bootstraps [70]. Randomized permuta-
tion tests were used to test for statistically significant differ-
ences [71]. To overcome multiple comparison, the significance
level was adjusted to 0.008 using Bonferroni correction [72].

https://github.com/DuHao10086/multi_task_calcification
https://github.com/DuHao10086/multi_task_calcification
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TABLE I
THE PERFORMANCE COMPARISON ON TMU DATASET BETWEEN BASELINE MODELS AND PROPOSED MODEL ON DISTRIBUTION AND MORPHOLOGY

CLASSIFICATION

3) Results: As Tables I and II shows, our proposed model
demonstrated leading performance across both tasks in two
datasets. For the classification task on distribution, compared
with the baseline models, ResNet, DenseNet, MobileNet,
EfficientNet, vanilla GCN and GAT, our proposed model demon-
strated a mean ROC-AUC improvement of 0.152, 0.238, 0.124,
0.138, 0.189 and 0.187 in the TMU dataset, respectively. In

addition, our proposed model achieved mean improvements of
0.077, 0.067, 0.113 and 6.658 on precision, recall, F1-score
and accuracy respectively, compared to best results in base-
line models. For the classification task on morphology, the
improvements of ROC-AUC, precision, recall, F1-score and
accuracy were 0.069, 0.091, 0.018, 0.058 and 1.821 in the
TMU dataset, respectively, compared to best results in baseline
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TABLE II
THE ROC-AUC COMPARISON ON CBIS-DDSM DATASET BETWEEN
BASELINE MODELS AND PROPOSED MODEL ON DISTRIBUTION AND

MORPHOLOGY CLASSIFICATION

models [Table I]. Similarly, the proposed model outperformed
all baseline models in the mean ROC-AUC in the CBIS-DDSM
dataset, with maximum improvements of 0.268 and 0.148 in
distribution and morphology classification tasks, respectively
[Table II]. ROC-AUC results of each type of distribution and
morphology descriptors are shown in Appendix Table 7 and
8. [41] The improvements on distribution classification task can
be attributed to the design of GCN which captures the geometri-
cal relationships between calcifications, thereby improving the
ability to distinguish distribution types. For morphology, the
improvements can be attributed to the message propagation from
neighboring vertices with the same morphology type. Calcifica-
tions with the same morphology tend to locate in a nearby region
or cluster. Therefore, the feature propagation from neighbors
enhances the proposed model to distinguish morphology.

C. Ablation Study

1) Ablation Experiments for Multi-Task Network: We sepa-
rately trained task-specific models by removing the distribu-
tion or morphology branch respectively [Tables III and IV].
Although statistical significance was not reached due to the
limited sample size, the multi-task model outperformed the
task-specific models in both tasks. For the distribution clas-
sification task, the multi-task architecture demonstrated 0.009

and 0.022 higher ROC-AUC than the task-specific architecture
on the TMU and CBIS-DDSM datasets, respectively. For the
morphology classification task, the proposed multi-task model
achieved mean ROC-AUC improvements of 0.020 and 0.062
compared to the task-specific architectures in the two datasets.
The improvements can be attributed to the fact that distribution
and morphology are associated and jointly affect the radiolo-
gists’ decision-making on malignancy diagnosis. For example,
in ductal carcinoma in situ and invasive ductal carcinoma, fine
linear or linear branching calcifications often have a segmental
ductal distribution [73]. Fine pleomorphic and linear branching
calcifications in a segmental distribution are highly suspicious
for malignancy [73]. The design of the multi-task network learns
the shared representation from the morphology and distributed
labels, thus achieving improvements on both tasks.

2) Ablation Experiments for Depth of Deep GCNs: To inves-
tigate the effectiveness of depths of Deep GCN, we compared
with different number of graph convolutional layers in the
proposed network. The experiment results showed that rela-
tive larger number of GCN layers improves the performance,
though no statistical significance was found due to the limited
study sample size. In the TMU dataset, when the number of
GCN layers increase from 2 to 8 layers, the mean ROC-AUC
of distribution and morphology classification tasks increased
by 0.009 and 0.016, respectively. When the number of GCN
layers was further increased to 16 layers, the performance of the
two tasks dropped by 0.011 and 0.028, respectively. A similar
trend was also observed in the experiments on the CBIS-DDSM
dataset.

In GCNs, single layer of GCN considers nearest neighbor
while networks with multiple GCN layers perform message
propagation and fusion from multi-hop neighbors. As men-
tioned, calcifications with same morphology locate in a nearby
region or cluster and distribution considers how calcifications
spread over the breast. To a certain extent, when the depth
of GCN increases, message propagation from more hops of
neighbors enhance the network’s ability in classifying nodes and
graphs. However, when the network depth increases further, the
message propagation from further nodes may be harmful for
morphology classification because the further nodes may not
have the same type of morphology. Deeper GCN in this study
may also suffer from over-smoothing and gradient vanishing
problems, which could be further investigated in future studies.

3) Ablation Experiments for Multi-Graph Fusion: To investi-
gate the effectiveness of multi-graph fusion, we compared with
multi-task model with single radius or KNN graph as input
to GCN. The experiment results showed that the multi-graph
fusion improves the robustness of the model. The improvements
were statistically significant compared to the GCN model with
the KNN graph, while the improvements are not statistically
significant compared to the GCN model with the radius graph.
Comparing with single graph GCN models, the proposed multi-
graph model achieved maximum ROC-AUC improvements of
0.096 and 0.078 for the distribution classification task, 0.069
and 0.109 for the morphology classification task in two datasets.
As mentioned in Section II-B, individual graph has limitations
in either morphology or distribution classification task. The
design of multi-graph fusion enhances the model’s ability to
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TABLE III
ABLATION STUDY: THE PERFORMANCE COMPARISON ON TMU DATASET BETWEEN THE ABLATION MODELS AND THE PROPOSED MODEL ON DISTRIBUTION

AND MORPHOLOGY CLASSIFICATION

learn representations from two graphs, thereby improving on
both classification tasks.

D. Discussion

In this study, we proposed a multi-task GCN model to jointly
classify morphology and distribution descriptors of calcifica-
tions in mammography images. The proposed model demon-
strated improved performance compared to multiple represen-
tative baseline models. The improvements were statistically

significant across two datasets, suggesting the model has the
potential to generalize well across different demographics and
image qualities. Compared to the recent application of GCN on
mammograms by Liu et al. [13], our study is focused on the
classification of morphology and distribution descriptors of cal-
cifications, rather than mass detection in mammograms. In addi-
tion, the proposed model was designed to model the morphology
and distribution descriptors simultaneously, which is, to the best
of our knowledge, the first application of multi-task mechanism
on the characterization of calcifications in mammograms.
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Fig. 3. Two case studies (A,B) generated from GNNexplainer for making graph prediction and node prediction. For each case study, the
mammography image and radiological annotation are located at left hand side. Figure (A1) and (B1) identifies the important edges for graph
prediction of case (A) and (B), respectively. Figure (A2) identifies the important subset of graph and edges for node prediction of node 6. Figure (B2)
and (B3) demonstrate the important sub-graph and sub-edges for node prediction on node 24 and 12, respectively. In Figure (A2), (B2) and (B3),
solid edges indicate significant contributions to node prediction. A full-size high-resolution version of the figure can be found online [41].

TABLE IV
THE ROC-AUC COMPARISON ON CBIS-DDSM DATASET BETWEEN

ABLATION STUDY MODELS AND PROPOSED MODEL ON DISTRIBUTION AND
MORPHOLOGY CLASSIFICATION

As discussed in Experiments (Section III-B) and Ablation
Study (Section III-C), the findings in experiment results can
be explained with clinical guidelines that characterize distribu-
tion and morphology descriptors of calcifications. We further
introduced GNNexplainer [74], to enhance the interpretability
of the proposed model and to support our findings. GNNex-
plainer generates explanations by identifying the subgraphs of
the computational graphs and node feature subsets that have the
greatest impacts on the GNN’s predictions. Two case studies
are shown in Fig. 3 with original mammography image, ra-
diological annotations and explanation graphs generated from
GNNexplainer. In case study (A), the calcifications are dis-
tributed in cluster distribution and the cluster marked in the
green outline is identified as coarse heterogeneous morphology.
GNNexplainer highlights the edges with crucial roles in node
and graph prediction. For graph prediction, more edges between
calcifications in the cluster are displayed, indicating that these
nodes and edges are more influential in classifying the graph
as cluster distribution. For node classification, GNNexplainer
generated a crucial subgraph for node 6 which contains nodes
from the calcification cluster and highlights the edges between
calcifications in this cluster. In case study (B), crucial edges are
connected across the calcifications nodes and form the segmental
distribution (Figure B1). In addition, there are two kinds of
morphology in case study (B): fine pleomorphic and fine linear.
As shown in Fig. 3 (B2), the classification of node 24 is based on
feature propagation from neighboring nodes 21, 23, 25 and 26,
which are all with the same morphology. The classification of
node 12 with fine linear morphology is explained in Fig. 3 (B3).
The information propagation from neighboring nodes with fine
linear morphology plays a crucial role in the node classification.
The results from GNNexplainer supported our interpretation of
the experiment results. With the development of interpretation
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tools on graph networks, we believe that more explanation and
insights could be achieved in future research.

Moreover, we only included malignant cases with ACR BI-
RADS 4 and 5 in this study. This inclusion criteria is based
on the consideration that the classification of distribution and
morphology descriptors are more important in malignant cases
for patient care. Therefore, the effectiveness of the proposed
method on benign cases has not been assessed in this study. The
extraction and annotation of benign cases will continue to enrich
the calcification dataset for future studies.

IV. CONCLUSION

We proposed a multi-task GCN model to tackle the challeng-
ing problem of characterization of calcifications morphology
and distribution in mammography images, which is a essential
task for any effective computerized assisted detection tools for
mammography. Through experiments, we demonstrated that
our proposed model outperformed the baseline and also the
single-task models.
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