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Real-Time Prediction for Neonatal Endotracheal
Intubation Using Multimodal

Transformer Network
Jueng-Eun Im, Shin-Ae Yoon, Yoon Mi Shin , and Seung Park

Abstract—Neonates admitted to neonatal intensive care
units (NICUs) are at risk for respiratory decompensation
and may require endotracheal intubation. Delayed intuba-
tion is associated with increased morbidity and mortality,
particularly in urgent unplanned intubation. By accurately
predicting the need for intubation in real-time, additional
time can be made available for preparation, thereby increas-
ing the safety margins by avoiding high-risk late intuba-
tion. In this study, the probability of intubation in neonatal
patients with respiratory problems was predicted using a
deep neural network. A multimodal transformer model was
developed to simultaneously analyze time-series data (1–
3 h of vital signs and FiO2 setting value) and numeric data
including initial clinical information. Over a dataset includ-
ing information of 128 neonatal patients who underwent
noninvasive ventilation, the proposed model successfully
predicted the need for intubation 3 h in advance (area under
the receiver operator characteristic curve = 0.880 ± 0.051,
F1-score = 0.864 ± 0.031, sensitivity = 0.886 ± 0.041,
specificity = 0.849 ± 0.035, and accuracy = 0.857 ± 0.032).
Moreover, the proposed model showed high generalization
ability by achieving AUROC 0.890, F1-score 0.893, speci-
ficity 0.871, sensitivity 0.745, and accuracy 0.864 with an
additional 91 dataset for testing.

Index Terms—Endotracheal intubation, neonatal
intensive care units, multimodal transformer network,
deep neural network.
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I. INTRODUCTION

ENDOTRACHEAL intubation is used for sustaining life in
premature and term neonates with respiratory difficulty in

the neonatal intensive care units (NICUs). However, intubation
is accompanied by serious adverse events, including increased
morbidity, reintubation, subglottic stenosis, laryngeal injury,
ventilator-associated pneumonia events, swallowing and speech
impairment, and tracheobronchitis [1], [2], [3], [4]. In particular,
for neonates, attempting endotracheal intubation is dangerous
compared to adults because they have a small airway [3], hence,
it needs to be cautious when attempting endotracheal intubation
in neonates. Meanwhile, predicting endotracheal intubation is
challenging in neonates because they are in a physiologically
unstable period with underdeveloped immunity and fluctuating
cardiopulmonary status. Even though several studies on adult
intubation have been already performed [1], [5], [6], [7], [8],
considerable efforts are still required to develop models for
neonates. Because clinical characteristics for adults have a
very different range and pattern from those for neonates [9],
[10], [11], applying an adult endotracheal intubation model
to neonates has limitations. Clark et al.’s study [12] on the
prediction of endotracheal intubation in neonates focused on
predicting intubation within a relatively broad period (> 24 h),
which did not provide precise information on when to perform
intubation. Therefore, the purpose of this study is to provide
real-time prediction on neonatal intubation within the next 3 h.
By accurately predicting the need for intubation in real-time,
additional time may be made available for preparation, which
can help increase the safety margins by avoiding late intubation
for high-risk neonates [1].

To develop real-time prediction model, the multimodal trans-
former based on deep neural networks was utilized to analyze
both 1–3 h of time-series data and numeric data including risk
factors for RDS [12], [13], [14] such as prematurity, cesarean
section, pregnancy-induced hypertension, male sex, maternal
diabetes mellitus, and multiple births. The deep neural net-
works have been widely applied for prognosis prediction in
NICUs with great success [15], [16], [17], [18]. Feng et al. [15]
used long short-term memory (LSTM) networks to predict the
real-time mortality risk of preterm neonates in the initial stage
of NICU hospitalization. Jia et al. [16] proposed a convolu-
tional neural network (CNN)-based model that used routinely
recorded neonatal patient information to predict weaning from
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mechanical ventilation. Recently, the transformer with the self-
attention mechanism, introduced by Vaswani et al. [19], enables
the model to compute contextualized representations of the input
sequence, while the feed forward neural network is used to
apply non-linear transformations to the representations. The
transformer has achieved state-of-the-art results in a variety
of natural language processing tasks, and has been particu-
larly useful for time-series analysis tasks such as forecasting,
anomaly detection, and classification. The transformer networks
successfully utilized to efficiently capture disease-medication
associations within their temporal context, and outperformed
the CNN and LSTM in forecasting time series problems [20],
[21], [22], [23], [24], [25].

In addition, the multimodal approach was used to enhance the
model performance by providing a comprehensive understand-
ing of clinical data [26], [27], [28], [29], [30]. Shamout et al. [26]
proposed a multimodal approach to predict the deterioration of
COVID-19 patients in the emergency department. The multi-
modal used a DNN that learns from chest X-ray images and a gra-
dient boosting model that learns from routine clinical variables,
and this model outperformed each single-modal prediction. Sano
et al. [31] developed a sleep pattern detector that uses multimodal
data acquired from smartphone and wearable technologies to
detect sleep patterns with the bidirectional LSTM, and the results
were statistically superior to those of non-temporal machine
learning algorithms and state-of-the-art actigraphy software.

In this paper, we conducted a retrospective study with datasets
of 128 neonates in NICU who experienced respiratory distress
and developed a multimodal network to distinguish neonates
who require intubation 3 h in advance. The multimodal net-
work consisted of two subnetworks: a multilayer perceptron
(MLP) block for numeric data analysis, and a transformer block
for time-series data analysis. The feature vectors obtained by
two blocks were concatenated and fed to the fully connected
layer to calculate the intubation probability. The experimental
results demonstrated that the average metrics for the proposed
model were as follows: area under the receiver operating curve
(AUROC) = 0.880, F1-score = 0.864, sensitivity = 0.886,
specificity = 0.849, and accuracy = 0.857. The contributions
of this research can be summarized as follows:

� A novel DNN architecture was developed to predict neona-
tal endotracheal intubation 3 h in advance, resulting in an
excellent performance with AUROC 0.880 on a total of
128 neonatal patients in NICU.

� The transformer architecture was successfully integrated
with the MLP block for multimodal analysis.

� We established a dataset for intubated neonates in the
NICU, consisting of 128 patients.

II. MATERIALS AND METHODS

A. Dataset

A dataset was obtained from Chungbuk National University
Hospital (Cheong-Ju, Korea) between June 1, 2020, and March
11, 2023. This retrospective study was conducted in accor-
dance with the Declaration of Helsinki and approved by the

Institutional Review Board of Chungbuk National University
Hospital (IRB no. CBNUH 2021-02-034-001), and informed
consent was waived. The dataset collected in this study includes
the personal information of neonates and their mothers. This
dataset will only be used if approved by the corresponding
author. The dataset on neonatal patients was manually collected
from electronic medical records (EMRs). As described in Fig. 1,
we found a list of 577 neonatal patients who were admitted to
the NICU at Chungbuk National University Hospital. Patients
without respiratory distress (288), patients who were admitted
more than 48 hours after birth (53), and patients who had
already undergone intubation at the time of admission (73) were
excluded from the list. Then, we collected initial clinical and
time-series data for 163 patients on the list, and excluded five
patients who had attempted intubation after 12 h of admission
and those with missing data, defined as more than 2 numeric
data or 10% of time-series data, resulting in a total of 128
patients’ data included. Because the initial tabular data such
as body temperature and blood gas analysis results (pH, PCO2,
PO2, BE, and lactate) could gradually recover or worsen over
time, and may not be representative of the patient’s condition
in the long term (> 12 h). Accordingly, of the 128 patients, 36
neonates with intubation records were classified as intubated (or
positive) patients, and the remaining 92 data were classified as
non-intubated (or negative) patients. Before analysis, all positive
and negative data were randomly shuffled and subsequently
utilized for the analysis of the prediction model. The results of
the statistical comparison between intubated and non-intubated
neonates showed that the intubated patients had lower pH and
pulse oximetry (SpO2), higher PCO2 and fraction of inspired
oxygen settings (FiO2), and faster heart rates (Table I).

The dataset includes 19 numeric features (gestational age
(GA), birth weight, Apgar scores at 1 and 5 min, sex, cesarean
delivery, antenatal steroid use, pregnancy-induced hypertension,
gestational diabetes mellitus, premature membrane rupture, out-
born delivery, multiple births, initial body temperature, clinical
risk index for babies (CRIB-II) score and parameters in initial
capillary blood gas analysis (CBGA) including PO2, PCO2, base
excess (BE), lactate, and pH) and four time-series features (HR,
RR, FiO2, and SpO2). The time-series data points were recorded
in 1 h intervals and included records before the intubation at-
tempts (or the last vital sign record). If intubation was performed
less than 3 h after admission, the data recorded immediately after
the admission were considered. In the control case, we randomly
selected the total observation time and gathered time-series data
as in the intubation case.

The numeric and time-series data were preprocessed as fol-
lows: The missing values in the numeric data and time-series
data were filled with the average values and the most recent data,
respectively. Then, the data were normalized via (1), where x̂ is
the normalized value, and μx and σx denote the average value
and standard deviation of x, respectively.

x̂ =
x− μx

σx
(1)
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Fig. 1. Flow diagram indicating the selected and excluded clinical studies. Among 577 patients in the neonatal intensive care unit (NICU), 128
patients (36 intubated and 92 non-intubated) were filtered by the exclusion criteria associated with patient selection and missing data.

B. Model Architecture

1) Multimodal Transformer: This section describes the multi-
modal transformer to predict the intubation probability of NICU
patients. The proposed model uses two types of data: numeric
data including initial clinical information, and time-series data
including the vital signs and FiO2 setting value of a patient. Fig. 2
schematically illustrates the multimodal transformer. The model
has an MLP block and a transformer block to analyze numeric
data and time-series data, respectively. The feature vectors ob-
tained through the MLP and transformer blocks are concatenated
and fed to the additional MLP block to calculate the intubation
probability.

Each MLP block consists of a dense layer (DMLP = 32), a
batch normalization layer, an activation layer (ReLU for numer-
ical analysis and sigmoid activation for outcome prediction),
and a dropout (0.2) layer. The transformer block consists of
a transformer encoder including the input embedding network,
multi-head attention network, and feedforward network, as illus-
trated in Fig. 2. In the input embedding network, the time-series
data (inputi) are processed by the input embedding network
to encode the time sequence of each data point. Specifically,
inputi is multiplied by the positional encoding function (PEi).
PEi is represented as sine and cosine functions with different
frequencies, where i and d denote the position and dimension

of the time-series data, respectively, and the embedding model
dimension is Dembed = 32 (2) and (3).

PE(i,2k) = sin
(
i/10000(2k/Dembed)

)
, 2 k ∈ d (2)

PE(i,2k+1) = cos
(
i/10000(2k/Dembed)

)
, 2k + 1 ∈ d (3)

The positional-encoded feature vector and time-series data
processed via the dense layer followed by Gaussian error linear
unit (GELU) activation are added at the end of the stack in the
input embedding network. In the multi-head attention network,
the embedded feature vector is copied as the query (Q), key
(K), and value (V ). The dot product of Q and K is obtained
and scaled to determine the attention weight via the softmax
function. The value is multiplied by V (4) to obtain a new
sequence (z), where αij is the weight calculated by softmax,
and W q,W k,W v ∈ Rd×d are the layer-specific weights for Q,
K, and V, respectively. Each attention head processes an input
sequence x = (x1, . . ., xn) of n elements, with xi ∈ Rd, and
calculates the output sequence z = (z1, . . ., zn) of the same
length, where zi ∈ Rd (5).

αij = softmax

(
(xiW

q)
(
xjW

k
)ᵀ

√
Dembed

)
(4)
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Fig. 2. Multimodal model architecture. The model uses two types of inputs: (i) the numeric data pass through a multilayer perceptron (MLP) block,
and (ii) the time-series input passes through the transformer encoder consisting of the input embedding, multi-head attention, and feedforward
subnetworks. The subscript i indicates the position of the time-series data. The representations extracted by the two branches are concatenated
into a feature vector, which is passed through the MLP model.

z =

n∑
j=1

αij (xjW
v) (5)

C. Model Training

1) Model Parameters: In a binary classification problem, if
one class has significantly more instances than the other, then the
model may be biased toward the majority class. To address the
problem of data imbalance, one approach is to use loss weighting
factors [32], [33], [34]. The idea is to assign different weights to
the loss function for each class based on the class frequency in
the dataset. Since the imbalanced dataset including 36 positive
cases and 92 control cases was utilized in this study, we adjusted
the loss weighting factor to prevent learning bias towards the
more frequent class. Accordingly, we assigned a weight of 0.8
to the positive class and 0.2 to the negative class during training
based on Bayesian Optimization. In addition, we used the Adam
optimizer withβ1= 0.9,β2= 0.999, and an exponential learning
rate decay with 100 steps. The initial learning rate was 5× 10−5,
and the decay rate was set as 0.96. The model was trained for
2,000 epochs.

2) Implementation Details: The proposed model was im-
plemented through Python 3.8 (https://www.python.org/) with
PyCharm (https://www.jetbrains.com/) and Windows 10 as the
operating system. The transformer and MLP blocks were im-
plemented using the Keras library (https://keras.io/) and Tensor-
Flow 2.4 (https://www.tensorflow.org/). All models were trained
on an NVIDIA RTX 3090 GPU with CUDA v.11.0 (NVIDIA,
Santa Clara, CA, US) and Intel core i5-11500 CPU (Intel, Santa
Clara, CA, US).

3) Performance Evaluation: We performed 4-fold cross-
validation to ensure the reliability and consistency of the model
performance. In each fold, the dataset was split into training
(75%) and validation (25%). In the training and validation
datasets, the positive/negative ratios were maintained as approx-
imately 1:4. We evaluated the AUROC, f1-score, sensitivity,
specificity, accuracy, ROC curve, and confusion matrix over the
validation datasets. The statistical calculation was performed
using a scikit-learn library (https://scikit-learn.org/).

III. RESULT

A. Data Optimization

1) Optimization of Time-Series Data: The proposed model
is trained to predict the need for intubation a certain period
cutoff time (tc) in advance. For constructing the dataset, data at
a certain time point were labeled as either intubation (positive)
or non-intubation (negative). The criterion for the labeling was
whether the data were included in tc before each neonatal
intubation in NICU or not. If data were included in tc, the data
were labeled as positive (Fig. 3). To evaluate the effect of tc on
the model performance, we conducted extensive experiments in
which tc was set as 1, 3, 5, and 12 h. In our experiment, the model
performance was improved as tc was set to shorter. The tc with
1 h corresponded to the best performance (AUROC = 0.892,
F1-score = 0.875, sensitivity = 0.858, specificity = 0.853, and
accuracy=0.853), followed by the tc with 3 h (AUROC=0.880,
F1-score = 0.864, sensitivity = 0.886, specificity = 0.849,
and accuracy = 0.857) (Fig. 4). The model exhibited a poor

https://www.python.org/
https://www.jetbrains.com/
https://keras.io/
https://www.tensorflow.org/
https://scikit-learn.org/
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TABLE I
BASELINE CHARACTERISTICS FOR INTUBATED AND NON-INTUBATED

NEONATAL PATIENTS

performance in extremely long-term prediction tc = 12 (AU-
ROC = 0.805, F1-score = 0.750, sensitivity = 0.816, speci-
ficity=0.707, and accuracy=0.739). The model performance at
tc = 1 h and 3 h was comparable, indicating that the appropriate
tc of model was 3 h because it allowed for accurate predictions
at an earlier time (Table II).

2) Multimodality Data: We used two subnetworks to simulta-
neously process the numeric and time-series data. To analyze the
effect of each subnetwork on the model performance, we per-
formed an ablation study, the results of which are summarized in
Table III. The model using only the numeric data without CBGA
scores exhibited a poor performance (AUROC=0.710, F1-score
= 0.673, sensitivity = 0.826, specificity = 0.643, and accuracy

Fig. 3. An illustration of an intubated patient timeline. Multiple samples
are gathered over time from an intubated patient. The data within the
cutoff time (tc = 3 h) is classified as intubation (positive), and the others
are classified as non-intubation (negative).

TABLE II
COMPARISON OF MODEL PERFORMANCE UNDER VARIOUS CUTOFF TIME

(tc) VALUES

TABLE III
COMPARISON OF MODEL PERFORMANCE USING DIFFERENT DATA

MODALITIES

= 0.648), followed by the model using numeric data (AUROC
= 0.773, F1-score = 0.784, sensitivity = 0.776, specificity =
0.768, and accuracy = 0.770). The results demonstrated that the
numeric data initially collected at NICU admission are insuf-
ficient to predict the need for intubation. The model using the
time-series data exhibited the following average values: AUROC
= 0.866, F1-score = 0.815, sensitivity = 0.854, specificity =
0.856, and accuracy = 0.811, which indicated that the changes
in the vital signs and FiO2 setting value plays an essential role
in predicting the need for intubation. The multimodal model
achieved the best performance (AUROC = 0.880, F1-score =
0.864, sensitivity = 0.886, specificity = 0.849, and accuracy
= 0.857). The performance of the multimodal model without
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Fig. 4. Performance analysis of the proposed model with tc = 3 h. The model was evaluated through 4-fold cross-validation. The receiver operating
curve (ROC) and the normalized confusion matrix for each fold were obtained. Rows of the confusion matrix represent the actual values, and the
columns represent the model prediction (0: non-intubation case; 1: intubation case).

CBGA scores was comparable to that of the model using CBGA
scores (AUROC= 0.862, F1-score= 0.818, sensitivity= 0.902,
specificity = 0.780, and accuracy = 0.807).

B. Model Comparison

The proposed model based on the multimodal transformer
was compared with other models used in the recent prognosis
studies, specifically, LR [35], [36], [37], extreme gradient boost-
ing (XGBoost) [38], [39], [40], SVM [36], [41], [42], MLP [36],
[43], [44], [45] and LSTM [46], [47], [48], [49]. We evaluated
the AUROC, sensitivity, specificity, and accuracy of each model
over the validation datasets.

The LR and SVM models with a Gaussian radial basis
function (RBF) were performed using scikit-learn library. The
XGBoost regressor was implemented using XGBoost library.
The subsample ratio of columns and max-depth were set as
0.8 and 8, respectively. For the model training, the learning
rate was set as 10−4, and the tree estimator was set to 100. To
address the problems of data imbalance and overfitting issues,
the weights of the positive class and gamma were set as 2 and
1, respectively. These hyperparameters were optimized through
a grid search method with 4-fold cross-validation. Before being
fed to the LR, SVM, and XGBoost models, the time-series data
were flattened and concatenated with the numeric data. For the
MLP and LSTM models, the transformer block was replaced

TABLE IV
COMPARISON OF THE PROPOSED MODEL WITH OTHER MODELS

with an MLP block and LSTM block, respectively (Appendix I,
Fig. 6). These models were implemented with the Keras library.
The MLP block consisted of a hidden dense layer (DMLP = 128)
with rectified linear unit (ReLU) activation. The time-series data
were flattened and fed to the input MLP block used instead of the
transformer block. The LSTM block included an LSTM layer
(DLSTM = 128).

Table IV highlighted that the proposed model achieved the
best performance (AUROC = 0.880, F1-score = 0.864, sensi-
tivity = 0.886, specificity = 0.849, and accuracy = 0.857). This
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Fig. 5. Real-time prediction for eight patients, obtained using the proposed model. Intubated and non-intubated patients are represented at
(a)–(d), and (e)–(h), respectively. Graphs indicating the predicted intubation probability (left) and time-series data (right) in real-time. The predicted
probabilities were classified as intubated and non-intubated classes according to the best threshold (horizontal dotted lines). The dotted black line
represents the intubation time derived 3 h in advance (tc = 3 h), and the dotted red line represents the intubation time. tc: cutoff time; HR: heart
rate (beats/min); RR: respiratory rate (breath/min); SpO2: oxygen saturation; FiO2 (%): fraction of inspired oxygen (%).

result showed that the proposed multimodal transformer outper-
formed machine learning models such as LR (AUROC = 0.790,
F1-score = 0.633, sensitivity = 0.727, specificity = 0.627, and
accuracy = 0.630), XGBoost (AUROC = 0.857, F1-score =
0.818, sensitivity = 0.853, specificity = 0.791, and accuracy
= 0.807), and SVM (AUROC = 0.786, F1-score = 0.797,
sensitivity = 0.798, specificity = 0.785, accuracy = 0.788). In
addition, the proposed model outperformed other DNN models
including LSTM model (AUROC = 0.863, F1-score = 0.820,
sensitivity = 0.820, specificity = 0.807, and accuracy = 0.809),
and the MLP model (AUROC = 0.863, F1-score = 0.812,
sensitivity = 0.820, specificity = 0.797, accuracy = 0.801).

IV. DISCUSSION

As coronavirus disease 2019 (COVID-19) pandemic spreads
around the world, respiratory-related studies have been intro-
duced using machine learning and deep learning. To be specific,
Varzaneh et al. [8] developed a decision tree-based model to
predict the intubation risk of hospitalized patients with an ac-
curacy of 0.93. Bolourani et al. [50] suggested the XGBoost

model that predicts respiratory failure in admitted patients within
48 h of admission using a dataset of the emergency depart-
ment with the highest mean accuracy of 0.919. Siu et al. [1]
also successfully predicted adult intubation using RF model
with a freely available Medical Information Mart for Intensive
Care (MIMIC) dataset with an AUROC of 0.87. However, only
scarce literature targeting neonates or infants has been reported.
Previous studies [12], [51] proposed simple logistic models
to predict intubation (an AUROC of 0.84) or late respiratory
support (AUROCs of 0.801–0.881) for very low birth weight
infants. Since the recent studies have focused only on whether to
attempt intubation or respiratory support, developing a real-time
model was needed to identify the timing of intubation, which
requires a high burden and cost for medical staff. Furthermore,
the Clark et al. [12] requires vital sign collected at 2-second
intervals requiring automatic extraction features from electronic
medical records (EMRs), but the different clinical data formats
(CRFs) between hospitals and countries makes it impractical for
use in the majority of hospitals. Additionally, our study targets
all term and preterm neonates with respiratory diseases, thus it
is inevitable to collect additional data and develop an optimized



2632 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 6, JUNE 2023

Fig. 6. Multimodal MLP and LSTM architectures.

model accordingly. To develop a real-time prediction model for
intubation, the advanced model architecture needs to be applied
Compared to the traditional machine learning methods such as
logistic regression, SVM, and RF, the transformers have shown a
great ability for interactions in sequential data, and have widely
adapted to a variety of time-series tasks such as forecasting [52],
[53], [54], anomaly detection [55], [56], and classification [57],
[58]. Therefore, in this study, a transformer architecture [19] was
adapted for analyzing time-series data and an MLP block was
added for comprehensive analysis with numeric data, resulting
in the development of a multimodal transformer capable of
effectively analyzing both time-series data and numeric data
simultaneously.

In this study, the proposed model provides prediction of in-
tubation probabilities using multi-modal information including
1–3 h of vital signs with FiO2 setting value and initial clinical
variables. To develop and evaluate this model, we established
a dataset including the information of 128 neonatal patients
under NIV support and validate the multimodal model that
could classify neonates requiring intubation 3 h in advance. We
focused on developing a real-time system capable of predict-
ing short-term prediction because our dataset included 75% of
intubated neonatal patients who attempted intubation 3 hours
after NICU admission. Fig. 5 demonstrates that the predicted
intubation probability reflects the historical trends of time-series
data. In the Fig. 5(a), the respiratory rate (RR) increased to
104 beats/min (normal range of RR: 30–60 beats/min) between
9–10 h after NICU admission. During this period, the predicted
intubation probabilities increased (50%–56.5%). In Fig. 5(b),
the FiO2 drastically increased to 35–41% (FIO2 is typically
maintained at 21%) between 3–5 h after NICU admission, and
the predicted intubation probability approached 85.4%. Fig. 5(c)
represents the probability increased slightly to 54.5% at 1 h,

and sharply increased to 86.4% at 4 h after admission to the
NICU, which is similar to the trend of time-series data. The
RR was temporarily decreased by 20 beats/min at 1 h, and the
FiO2 increased rapidly to 40% after 4 hours of admission to the
NICU. Fig. 5(d) shows that the predicted intubation probability
was maintained at 70.7% or higher. During this period, the RR
(69-89 beats/min) and FiO2 (30-35%) were out of the normal
range. In addition, we also present the prediction results of non-
intubated patients (Fig. 5(e)–(h)). Fig. 5(e) shows fluctuation of
the HR (112–160 beats/min) (normal range of HR: 120–160
breaths/min). Fig. 5(f)–(h) shows the RR values were often
appeared to deviate normal range. However, we observe stable
trends in the FiO2 and SpO2, and confirm that the predictive
probability of intubation was also stable.

We compared the multimodal transformer network model
with traditional machine learning models, and the proposed
model outperformed the LR, XGBoost, SVM, MLP, and LSTM.
The transformer network could effectively learn sequence data
through parallel computation and a structured memory for man-
aging long-term dependencies [19]. Recently, transformer-based
networks have exhibited outperforming performance in various
research domains [19], [59], [60], [61], [62], [63], [64].

The ablation study was conducted to optimize the model
architecture, and the model using both numeric and time-series
data achieved the highest performance. The model with 18
clinical data without CBGA scores (PO2, PCO2, BE, lactate, and
pH) also showed comparable predictive performance (AUROC
= 0.862) with one using CBGA scores (AUROC = 0.880). This
model could be also practically used in institutions and hospitals
because the CBGA requires expensive analyzing instruments
and trained technicians.

We did further study to test the proposed model using a re-
cently obtained test dataset from 91 neonatal patients, including
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21 intubated patients and 70 non-intubated patients, in addition
to the existing data of 128 patients used for model development.
The proposed model that achieved the highest performance was
utilized for testing. Using this model, we performed endotra-
cheal intubation predictions for 91 neonatal patients at hourly
intervals. This result was validated by checking whether the
neonates had a record of endotracheal intubation within the
next 3 hours. As a result, the model achieved a performance
of AUROC 0.890, F1-score 0.893, specificity 0.871, sensitivity
0.745, and accuracy 0.864. These results, as compared by the
cross-validation results, demonstrate that the proposed model
has high generality ability, though additional research may be
needed to improve sensitivity.

For future work, ensemble learning [65], [66] could be
considered to improve the accuracy and robustness of
a decision-making system by combining the outputs of
multiple models. In addition, state-of-art feature selection
technologies [67], [68], [69] could be applied to reduce the
dimensionality of the dataset, simplify the model, and improve
its accuracy and generalization ability.

V. CONCLUSION

We have developed a real-time prediction system using a
multimodal transformer network to predict neonatal endotra-
cheal intubation 3 hours in advance. The proposed model has
outperformed traditional machine learning models with AUROC
= 0.880, F1-score = 0.864, sensitivity = 0.886, specificity
= 0.849, and accuracy = 0.857, and reflected the historical
trends of vital signs and FiO2 setting value well. Furthermore,
the proposed model demonstrated high generalization ability
by showing AUROC 0.890, F1-score 0.893, specificity 0.871,
sensitivity 0.745, and accuracy 0.864 with an additional 91
collected data for testing. To find the optimal model architecture,
we have conducted the ablation study. It has been desirable
to simultaneously process the numeric and time-series data
compared to the single-modal network. In addition, we have
performed extensive experiments to select the most appropriate
cutoff time among tc = 1, 3, 5, and 12 h, and the appropriate tc
was selected as 3 h. We expect that the proposed model could be
practically applied to neonates at high risk for respiratory failure
by using 23 factors readily available in hospitals.

APPENDIX A
ARCHITECTURE OF MULTIMODAL MLP AND LSTM

The multimodal MLP (Fig. 6(a)) and the multimodal
LSTM (Fig. 6(b)) utilize two-type inputs: (i) the numeric data
passes through a multilayer perceptron (MLP) block, and (ii)
the time-series data passes through MLP and LSTM block,
respectively. The representations extracted by the two branches
are concatenated into a feature vector, which is passed through
an MLP model.

REFERENCES

[1] B. M. K. Siu et al., “Predicting the need for intubation in the first 24 h after
critical care admission using machine learning approaches,” Sci. Rep.,
vol. 10, no. 1, pp. 1–8, 2020.

[2] A. Lamoshi et al., “Association of anesthesia type with prolonged post-
operative intubation in neonates undergoing inguinal hernia repair,” J.
Perinatol., vol. 41, no. 3, pp. 571–576, 2021.

[3] J. L. Wei and J. Bond, “Management and prevention of endotracheal
intubation injury in neonates,” Curr. Opin. Otolaryngol. Head Neck Surg.,
vol. 19, no. 6, pp. 474–477, 2011.

[4] V. Venkatesh et al., “Endotracheal intubation in a neonatal population
remains associated with a high risk of adverse events,” Eur. J. Pediatrics,
vol. 170, no. 2, pp. 223–227, 2011.

[5] I. Ucgun, M. Metintas, H. Moral, F. Alatas, H. Yildirim, and S. Erginel,
“Predictors of hospital outcome and intubation in COPD patients admitted
to the respiratory ICU for acute hypercapnic respiratory failure,” Respir.
Med., vol. 100, no. 1, pp. 66–74, 2006.

[6] M. Hua, J. Brady, and G. Li, “A scoring system to predict unplanned in-
tubation in patients having undergone major surgical procedures,” Anesth.
Analg., vol. 115, no. 1, pp. 88–94, 2012.

[7] V. Arvind, J. S. Kim, B. H. Cho, E. Geng, and S. K. Cho, “Development
of a machine learning algorithm to predict intubation among hospitalized
patients with COVID-19,” J. Crit. Care, vol. 62, pp. 25–30, 2021.

[8] Z. A. Varzaneh, A. Orooji, L. Erfannia, and M. Shanbehzadeh, “A new
COVID-19 intubation prediction strategy using an intelligent feature
selection and K-NN method,” Inform. Med. Unlocked, vol. 28, 2022,
Art. no. 100825.

[9] C.-C. Wang et al., “Differences in clinical and laboratory characteristics
and disease severity between children and adults with dengue virus infec-
tion in Taiwan 2002,” Trans. Roy. Soc. Trop. Med. Hyg., vol. 103, no. 9,
pp. 871–877, 2009.

[10] J. S. Tregoning and J. Schwarze, “Respiratory viral infections in infants:
Causes, clinical symptoms, virology, and immunology,” Clin. Microbiol.
Rev., vol. 23, no. 1, pp. 74–98, 2010.

[11] L. C. Ku and P. B. Smith, “Dosing in neonates: Special considerations
in physiology and trial design,” Pediatr. Res., vol. 77, no. 1, pp. 2–9,
2015.

[12] M. T. Clark et al., “Predictive monitoring for respiratory decompensation
leading to urgent unplanned intubation in the neonatal intensive care unit,”
Pediatr. Res., vol. 73, no. 1, pp. 104–110, 2013.

[13] J. Liu, N. Yang, and Y. Liu, “High-risk factors of respiratory distress
syndrome in term neonates: A retrospective case-control study,” Balkan
Med. J., vol. 31, no. 1, pp. 64–68, 2014.

[14] N. Brix et al., “Predictors for an unsuccessful intubation-surfactant-
extubation procedure: A cohort study,” BMC Pediatrics, vol. 14, no. 1,
pp. 1–8, 2014.

[15] J. Feng et al., “Predicting mortality risk for preterm infants using deep
learning models with time-series vital sign data,” NPJ Digit. Med., vol. 4,
no. 1, pp. 1–8, 2021.

[16] Y. Jia et al., “Prediction of weaning from mechanical ventilation us-
ing convolutional neural networks,” Artif. Intell. Med., vol. 117, 2021,
Art. no. 102087.

[17] A. Jalali et al., “Deep learning for improved risk prediction in surgical
outcomes,” Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020.

[18] X. P. Burgos-Artizzu et al., “Evaluation of an improved tool for non-
invasive prediction of neonatal respiratory morbidity based on fully au-
tomated fetal lung ultrasound analysis,” Sci. Rep., vol. 9, no. 1, pp. 1–7,
2019.

[19] A. Vaswani et al., “Attention is all you need,” in Proc. 31st Conf. Neural
Inf. Process. Syst., 2017, pp. 1–11.

[20] O. Nitski et al., “Long-term mortality risk stratification of liver trans-
plant recipients: Real-time application of deep learning algorithms on
longitudinal data,” Lancet Digit. Health, vol. 3, no. 5, pp. e295–e305,
2021.

[21] S. Rao et al., “An explainable transformer-based deep learning model for
the prediction of incident heart failure,” IEEE J. Biomed. Health Inform.,
vol. 26, no. 7, pp. 3362–3372, Jul. 2022.

[22] M. Mahbub et al., “Unstructured clinical notes within the 24 hours since
admission predict short, mid & long-term mortality in adult ICU patients,”
Plos One, vol. 17, no. 1, 2022, Art. no. e0262182.

[23] Y. S. Dosso, D. Kyrollos, K. J. Greenwood, J. Harrold, and J. R. Green,
“NICUface: Robust neonatal face detection in complex NICU scenes,”
IEEE Access, vol. 10, pp. 62893–62909, 2022.

[24] Z. Yu, Y. Shen, J. Shi, H. Zhao, P. H. S. Torr, and G. Zhao, “PhysFormer:
Facial video-based physiological measurement with temporal difference
transformer,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2022, pp. 4186–4196.

[25] B. Fu et al., “Attention-based recurrent multi-channel neural network for
influenza epidemic prediction,” in Proc. IEEE Int. Conf. Bioinf. Biomed.,
2018, pp. 1245–1248.



2634 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 6, JUNE 2023

[26] F. E. Shamout et al., “An artificial intelligence system for predicting the
deterioration of COVID-19 patients in the emergency department,” NPJ
Digit. Med., vol. 4, no. 1, pp. 1–11, 2021.

[27] S.-C. Huang et al., “Fusion of medical imaging and electronic health
records using deep learning: A systematic review and implementation
guidelines,” NPJ Digit. Med., vol. 3, no. 1, pp. 1–9, 2020.

[28] X. Zheng et al., “Deep learning radiomics can predict axillary lymph
node status in early-stage breast cancer,” Nature Commun., vol. 11, no. 1,
pp. 1–9, 2020.

[29] I. I. Karipidis et al., “Simulating reading acquisition: The link between
reading outcome and multimodal brain signatures of letter–speech sound
learning in prereaders,” Sci. Rep., vol. 8, no. 1, pp. 1–13, 2018.

[30] A. E. Fetit et al., “A multimodal approach to cardiovascular risk stratifi-
cation in patients with type 2 diabetes incorporating retinal, genomic and
clinical features,” Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019.

[31] A. Sano, W. Chen, D. Lopez-Martinez, S. Taylor, and R. W. Picard,
“Multimodal ambulatory sleep detection using LSTM recurrent neural
networks,” IEEE J. Biomed. Health Inform., vol. 23, no. 4, pp. 1607–1617,
Jul. 2018.

[32] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,” in Proc. IEEE Int. Joint Conf.
Neural Netw. (World Congr. Comput. Intell.), 2008, pp. 1322–1328.
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