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Automatic Assessment of Stereotactic Radiation
Therapy Outcome in Brain Metastasis Using
Longitudinal Segmentation on Serial MRI

Seyed Ali Jalalifar
and Ali Sadeghi-Naini

Abstract—The standard clinical approach to assess the
radiotherapy outcome in brain metastasis is through mon-
itoring the changes in tumour size on longitudinal MRI.
This assessment requires contouring the tumour on many
volumetric images acquired before and at several follow-up
scans after the treatment that is routinely done manually
by oncologists with a substantial burden on the clinical
workflow. In this work, we introduce a novel system for au-
tomatic assessment of stereotactic radiation therapy (SRT)
outcome in brain metastasis using standard serial MRI.
At the heart of the proposed system is a deep learning-
based segmentation framework to delineate tumours lon-
gitudinally on serial MRI with high precision. Longitudinal
changes in tumour size are then analyzed automatically
to assess the local response and detect possible adverse
radiation effects (ARE) after SRT. The system was trained
and optimized using the data acquired from 96 patients
(130 tumours) and evaluated on an independent test set of
20 patients (22 tumours; 95 MRI scans). The comparison
between automatic therapy outcome evaluation and manual
assessments by expert oncologists demonstrates a good
agreement with an accuracy, sensitivity, and specificity of
91%, 89%, and 92%, respectively, in detecting local con-
trol/failure and 91%, 100%, and 89% in detecting ARE on
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the independent test set. This study is a step forward to-
wards automatic monitoring and evaluation of radiotherapy
outcome in brain tumours that can streamline the radio-
oncology workflow substantially.

Index Terms—Adverse radiation effect, automatic tumour
segmentation, brain metastasis, deep learning, stereotactic
radiotherapy, therapy outcome assessment.

[. INTRODUCTION

BOUT 10% to 30% of all cancer patients develop brain

metastasis [1], with a higher risk for melanoma, lung,
and breast cancer patients. According to population studies,
the annual incidence of brain metastases in the United States
is estimated to exceed 14 persons per 100000 [2]. Metastatic
brain tumours represent an important cause of morbidity and
mortality in cancer patients. Whereas a significant proportion of
cancer patients survive for many years if the cancer is identified
at an early stage while it is still localized [3], when the tumour
is metastasized to the brain, the median survival ranges from as
short as 5 months to up to 4 years, based on the subgroup and
origin of the cancer [4], [5], [6], [7]. Early diagnosis and precise
treatment of brain metastasis may lead to the reduction of brain
symptoms and may enhance the quality of life and survival of
the patients [8], [9], [10].

Brain metastasis may occur as a single tumour (approximately
29% of cases), two-three tumours (35% of cases), and more
than three tumours (36% of cases) [11]. Treatment planning for
patients diagnosed with metastatic brain tumours depends on
many factors including the origin of cancer, symptoms, number
of metastases, and location of the tumour. Two main treatment
modalities available for the management of metastatic brain
tumours include surgery and radiation therapy. Surgery involves
resection of the tumour and is often administered when the
tumour is large and accessible. Other contributing factors are
patient’s age, presence of other extracranial diseases, and relative
proximity to eloquent brain areas [12]. In whole brain radiation
therapy (WBRT) the prescribed radiation dose is delivered to
the whole brain in many low-dose fractions over several weeks
[13]. In stereotactic radiosurgery (SRS) and hypo-fractionated
stereotactic radiotherapy (SRT), high dose of radiation is de-
livered to a precisely targeted area to minimize injury to the
neighboring regions. Whereas in SRS the prescribed radiation
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dose is delivered in a single fraction, in SRT the total radiation
dose is delivered in very few fractions over few days.

Magnetic resonance imaging (MRI) is the main imaging
modality for diagnosis, treatment planning, and therapy outcome
evaluation in brain metastasis. MRI scans are acquired before
(baseline) and at multiple follow-up sessions after the radiation
therapy as part of the standard treatment planning and outcome
assessment procedure. The procedure requires accurate delin-
eation of the tumour that is often performed by expert radiation
oncologists and neuro-radiologists. Evaluation of radiotherapy
outcome in brain metastasis on serial MRI is mainly performed
based on the standard criteria presented by the response assess-
ment in neuro-oncology—brain metastases (RANO-BM) group
[14]. The RANO-BM criteria are principally based on changes
in the longest diameter of the target tumour in the axial, coronal,
and sagittal planes compared to baseline or nadir (smallest
tumour size on the previous scans) to specify its response to
therapy. The four categories of therapy response based on the
RANO-BM criteria include complete response (CR; no target
tumour remaining), partial response (PR; more than 30% reduc-
tion in the longest diameter compared to baseline), stable disease
(SD; less than 30% decrease compared to baseline but also less
than 20% increase in the longest diameter compared to nadir),
or progressive disease (PD; also referred to as local failure;
more than 20% increase in the longest diameter compared to
nadir). Tumour enlargement on MRI after radiotherapy may
also become apparent due to adverse radiation effect (ARE).
Such evident tumour enlargements on MRI often become stable
or followed by a decrease in tumour size on subsequent imaging
follow-ups. Differentiating between tumour progression and
ARE is crucial for radiotherapy response evaluation. The stan-
dard approaches to diagnose ARE include serial MRI (including
the use of T1-weighted, T2-weighted, and perfusion imaging),
and where applicable, histology on resected specimens [15],
[16], [17].

In order to calculate the tumour size changes on serial imag-
ing, precise delineation of tumour is required for each imaging
session. Manual segmentation of tumour on volumetric images
acquired at several follow-up sessions for each patient is a te-
dious and time-consuming job. An automatic and robust tumour
segmentation framework is highly desirable in the clinic and
could streamline radiation therapy outcome evaluation workflow
considerably. Because of many applications of automatic tumour
segmentation, intense research has been carried out on this
topic [18], [19], [20]. The existing segmentation algorithms in-
clude those that apply traditional methods such as region-based
[21], [22] and model-based techniques [23], with more recent
methodologies based on deep neural networks [24], [25], [26].
Deep learning-based image segmentation is now very popular
in the literature and has demonstrated to outperform the tradi-
tional methods [27], [28], [29]. The deep networks for image
segmentation generally consist of stacked convolutional layers
and occasionally fully connected layers. Among many networks
introduced for the task of segmentation, 2D and 3D U-Net gained
widespread popularity because of their robustness in different
modalities [28], [30]. However, 2D U-Net has the drawback
of extracting similar features multiple times throughout the

network in addition to inefficient modeling of long-range spatial
dependencies. A main limitation associated with 3D U-Net is
that it often cannot handle large input sizes due to memory
limitations with the complex architecture of the network.

Deep learning-based techniques have demonstrated promis-
ing performance in brain tumour segmentation [31], [32], [33].
Despite previous research on the application of these techniques
in feature extraction frameworks for classifying brain tumour
subtypes and predicting clinical outcomes such as survival, their
clinical efficacy in longitudinal monitoring of changes in tu-
mour physical dimensions has not been investigated thoroughly.
Cabezas et al. proposed an ensemble of 3D U-Nets to segment
different sub-regions of gliomas on the BraTS dataset [34] to
extract quantitative features for predicting the overall survival
of patients. Gates et al. [35] proposed a multi-scale convolutional
neural network based on the DeepMedic to segment glioma
sub-volumes on MRI, and applied the features extracted from
the segmented images and clinical data for predicting the overall
survival. Pei et al. [36] proposed a context-aware deep learning
model for brain tumour segmentation on MRI, followed by
deep learning models for subtype classification and survival
prediction using the tumour segments. Zhu et al. [37] developed
a semi-automatic segmentation software for quantitative clinical
evaluation of glioblastoma multiforme on MRI. While their
results demonstrate a good correlation between the manual and
semi-automatic segmentation, the developed method was not
evaluated on serial MRI to quantify changes in tumour size.

In this work, a novel deep-learning-based system is intro-
duced for automatic radiotherapy outcome assessment in brain
metastases. A multi-step framework is proposed for automatic
brain tumour segmentation that is applied for delineation of
tumours before and at multiple imaging follow-ups after the
radiotherapy to assess the therapy outcome automatically based
on the RANO-BM criteria. To the best of our knowledge, this
is the first time that a deep-learning-based segmentation frame-
work is adapted and investigated comprehensively for automatic
radiotherapy outcome assessment in brain malignancies.

Il. METHODS
A. Data Acquisition and Pre-Processing

This study was conducted in accordance with institutional re-
search ethics approval from Sunnybrook Health Sciences Centre
(SHSC), Toronto, Canada (project identification number: 2175,
2020/08/11). The imaging and clinical data were collected from
116 patients (152 tumours; average size at baseline: 2.4 4+ 1.0
cm, range: 0.5-7 cm) diagnosed with brain metastasis and treated
with hypo-fractionated SRT between March 2011 and December
2014 at SHSC. The patients (40.2% male, 59.8% female) were
aged between 29 and 91 years (average age: 62 + 15 years).
Among the 116 patients, 86 patients had one, 24 patients had
two, and 6 patients had three or more brain metastasis tumours.
The primary tumour histology included lung cancer (76 tumours,
50%), breast cancer (36 tumours, 23.7%), melanoma (15 tu-
mours, 9.9%), colorectal cancer (7 tumours, 4.6%), renal cell
carcinoma (6 tumours, 3.9%), and other cancers (12 tumours,
7.9%). Lesions with prior resection were excluded. Any salvage
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therapy was administrated after identifying tumour progression
clinically that was the endpoint of this study. The imaging
data included gadolinium-contrast-enhanced T1-weighted and
T2-weighted-fluid-attenuation-inversion-recovery (T2-FLAIR)
images acquired, as part of standard of care, before (baseline)
and at up to 9 follow-ups after the treatment (average number
of imaging follow-ups: 4). All available follow-up imaging
data were used for post-treatment monitoring in this study. The
dataset also included treatment-planning gross tumour volume
(GTV) contours for each patient. All GTVs were contoured by
an expert CNS radiation oncologist and reviewed by at least
one other CNS radiation oncologist and a neuroradiologist.
The GTVs were used to generate ground truth tumour masks
for the baseline and follow-up scans under the supervision of
expert oncologists. the MRI scans were acquired using a 1.5
T Ingenia system (Philips Healthcare, Best, Netherlands) and
a 1.5 T Signa HDxt system (GE Healthcare, Milwaukee, WI,
USA). The scan sequences were 3D T1w TFE (repetition time:
9.4 ms, echo time: 2.3 ms, imaging frequency: 127.77 MHz)
and 3D Tlw FSPGR (repetition time: 8.548 ms, echo time:
4.2 ms, imaging frequency: 63.86 MHz) for the T1-weighted
images and T2 FLAIR CLEAR (repetition time: 9000 ms, echo
time: 125 ms, imaging frequency: 127.77 MHz) and T2 FLAIR
PROPELLER (repetition time: 8600 ms, echo time: 117 ms,
imaging frequency: 63.86 MHz) for the T2-FLAIR images. The
in-plane image resolution and the slice thickness were 0.5 and
1.5 mm for Tl-weighted and 0.5 and 5 mm for T2-FLAIR
images, respectively. All images were resampled with a voxel
size of 0.5 x 0.5 x 1 mm?>. The voxel intensities in each image
were normalized to be between 0 and 1. The normalization was
done on voxel level (vox_intst) using the following formula:

(vozel_intst — min_intst) / (max_intst — min_intst)

where the min_intst and max_intst are the minimum and max-
imum intensity values in the corresponding 3D image. The
T2-FLAIR images were co-registered on their corresponding
T1-weighted images using an affine registration. Among the 116
patients, 96 patients (130 tumours) were randomly selected for
training the models, and the remaining 20 patients (22 tumours)
were kept as an unseen test set for independent evaluation.

The tumours were monitored longitudinally on MRI after
SRT and the pattern of changes in tumour size as well as the
ground truth local control/failure (LC/LF) outcome for each
tumour was determined by a radiation oncologist using the
follow-up imaging data. The follow-up scans were performed
every 2-3 months for all patients until they transitioned to pal-
liative care or passed away. The ground truth tumour size status
(decrease/stable/increase) was determined for each follow-up
scan. Specifically, the tumour size status was determined as
decrease/increase if a measurable (>2 mm) decrease/increase
was evident in the longest diameter of the tumour in the ax-
ial plane compared to the previous scan, otherwise, it was
determined as stable. The RANO-BM criteria were used to
determine an outcome of LC (complete response, partial re-
sponse, or stable disease) or LF (progressive disease) for each
tumour separately [14]. Adverse radiation effect (ARE) was
diagnosed and differentiated from local progression based on

the report by Sneed et al. [15]. The ARE cases were diagnosed
clinicoradiologically based on serial imaging, including the use
of perfusion MRI (rCBV cut-off = 2) and chemical exchange
saturation transfer (CEST) imaging, and/or through histological
confirmation (available for 50% of tumours diagnosed with
ARE) [16], [38].

B. Tumour Segmentation Framework

Fig. 1 presents a scheme of the proposed framework for au-
tomatic segmentation of brain tumours on MRI. The framework
consists of two cascaded 2D U-Nets to find the approximate
position of the tumour. Once the approximate tumour position
is found, the image is cropped around the tumour to make the
size of input image smaller for the next network. Specifically,
the size of input T1-weighted images for the first and second
2D U-Nets is 512 x 512 and 256 x 256 pixels, respectively.
The need for cropping images stems from the fact that both
the 3D U-Net and multi-scale self-guided attention (MSGA)
network [39] adapted in the framework have memory limitation
which makes their training process challenging. If the input
size for the 3D U-Net is the original image size (512 x 512 x
128 voxels) without cropping, one needs to patch or resize the
input volume to meet the memory limitations of the network.
Patching the volume leads to losing contextual information
(e.g., tumour tears apart in different patches) while resizing it
results in losing detailed local information. Similarly, and due
to its complex architecture, training the MSGA network on the
original 2D images (512 x 512 pixels) with two channels of
T1-weighted and T2-FLAIR requires limiting the batch size.
With cropping, it would be possible to preserve both local and
contextual information using the approximate position of the
tumour estimated with the cascaded 2D U-Nets. The output of
each 2D U-Net for a patient is a set of 128 2D masks with size of
512 x 512 pixels for the first and 256 x 256 pixels for the second
2D U-Net. To find the approximate position of the tumour from
these masks, a logical OR operation is applied on all the 2D
masks to create a single mask presenting an upper-bound of the
tumour areas in different slices. Subsequently, the connected
components are identified in the single mask and the center
of each connected component is regarded as the approximate
center of the corresponding tumour. The approximated centers
are used to crop the image around the tumour region. In cases
where there is more than one tumour in an MRI volume, the
tumours are treated separately, and the final masks are fused at
the end. At the core of the framework there are two segmentation
networks including a 3D U-Net and a MSGA network. The 3D
U-Net is fed with the cropped T1-weighted volumetric images
(128 x 128 x 128 voxels). The MSGA network is fed with
cropped two-channel T1-weighted and T2-FLAIR co-registered
image slices (128 x 128 pixels each). The output of these
two networks is fused at the end through slice-wise averaging
over their output probability maps. The final output masks are
generated by thresholding the averaged probability maps with a
threshold level of 0.5.

The choice of a combination of 2D U-Net, 3D U-Net, and
MSGA network is to take advantage of their features, while
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Fig. 1. (a) Overview of the proposed segmentation framework. For a volumetric input image (contrast-enhanced T1-weighted, 512x512x 128

voxels), first all slices are fed to a 2D U-Net one by one. The generated masks from the 2D U-Net are used to finds an approximate tumour position
(x, y). The volumetric input image is then cropped around (x, y) into a 256 x256 x 128 voxel volume. A similar procedure is performed to reduce the
size of volumetric image containing the tumour to 128x 128 x 128 voxels. This volume is then fed into a 3D U-Net for segmentation with no patching.
The slices of this volume are also fed to MSGA, after concatenation with the co-registered T2-FLAIR image, and the segmentation masks of MSGA
are then fused with those of 3D U-Net. (b) The MSGA network structure. Features extracted at different scales from Resnet-101 are concatenated
and convolved and then self-concatenated and fed into guided attention module. The resulting self-guided features are fed into the guided loss.

simultaneously mitigating their limitations. More specifically,
whereas the 2D U-Nets can effectively localize the region of
interest even for smaller tumours to crop the large input image,
it can not generate precise segmentation masks for all tumours.
On the other hand, a localized input for the 3D U-Net and
MSGA network reduces irrelevant information and enhances
the model focus on the region of interest, leading to consider-
able improvements in their performance in generating precise
segmentation masks. The good performance of the 2D U-Net
architecture in various segmentation tasks is due to its capability
to capture context and enable localization, using a contracting
path and a symmetric expanding path, with skip connections
in-between the two paths [30]. Such architecture enables the
network to share features from multiple layers and overcome
the trade-off between localization accuracy and context utiliza-
tion. The drawback of 2D U-Net, however, is that it does not
consider the 3D spatial dependencies between the voxels, and
consequently, loses a considerable amount of useful information
for segmentation. To overcome this, Cicek et al. proposed the
3D U-Net as a volumetric image segmentation network [28],
which maintains the benefits of the 2D U-Net architecture but
also considers the voxel dependencies. Considering 3D spatial
dependencies comes at the cost of high memory consumption
because of the huge input size. A cascaded network of 2D U-Net
and 3D U-Net could benefit from the advantages of 3D U-Net
while the redundant information could be filtered out using 2D
U-Net to meet the memory limitations of the 3D U-Net. The
two main drawbacks of the encoder-decoder architectures such
as 2D and 3D U-Net include deriving redundant information,
and more importantly, inefficient modeling of long-range feature

dependencies in these networks. Sinha et al. [39] proposed a
multi-scale self-guided attention network to overcome these lim-
itations. The MSGA network enables capturing richer contextual
dependencies and neglecting irrelevant information by using
an attention mechanism. Also, the utilization of interdependent
channel maps which enables the network to integrate local
features with their corresponding global dependencies makes
it efficient in our application, where the network is fed with two
channels of T1-weighted and T2-FLAIR images.

C. Training and Evaluation of the System

In order to train and evaluate the tumour segmentation frame-
work, the data associated with samples of the training and test
sets were completely separated at patient level. The networks
in the framework were trained independently using the data
acquired from the training samples. The second 2D U-Net,
the 3D U-Net, and the MSGA network were trained using the
manually cropped data from the training set. The networks
were only trained on the images acquired at the baseline. This
was done to permit evaluating the framework’s performance
on the training set at the first follow-up and compare it with
the performance on the independent test set. The framework
was initially evaluated in terms of segmentation accuracy, using
the images of the independent test set acquired at the baseline
and follow-up scans. The Dice similarity coefficient, Hausdorff
distance, and the tumour volume estimation error were used for
this evaluation. The performance of the system was subsequently
evaluated in monitoring the tumour size status after SRT and
automatic assessment of therapy outcome using the imaging data
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of the independent test set acquired at the baseline and all follow-
ups available for each patient. For comparison, experiments
were conducted using seven different models following a similar
training and evaluation procedure. The first model included two
cascaded 2D U-Nets, the second model consisted of a 3D U-Net,
and the third model included a 3D U-Net along with an MSGA
network. For training and testing the standalone 3D U-Net and
3D U-Net + MSGA in the second and third models, each 512 x
512 x 128 voxel volume was patched into 16 input patches
of 128 x 128 x 128 voxels and the associated masks were
concatenated together at the end. The fourth model included
two cascaded 2D U-Nets followed by a 3D U-Net, the fifth
model utilized the framework proposed in this study inputting
the T1-weighted image only, and the sixth model incorporated
the complete framework proposed (Fig. 1). The seventh model
utilized the well-recognized nnU-Net framework [40] for further
comparison. The nnU-Net framework input the co-registered
T1-weighted and T2-Flair images (512 x 512 x 128 voxels) as
two channels, where each image was down-sampled to 128 x
128 x 128 voxels for the first 3D U-Net in the framework. Pre-
training of the networks for weight initialization was performed
using the data from the brain tumour segmentation (BraTS)
dataset [34]. A set of 9 tumours from the training samples was
used as the validation set for tuning the network hyperparameters
in the training phase. A batch size of 4 and 2 was used for training
the 2D U-Nets and nnU-Net, respectively. The batch size for the
3D U-Net and MSGA network was tuned to one. The training
was performed with a learning rate of 0.0001 for all networks.
Experimental results with different hyperparameters have been
presented in Table S1 of the Supplementary Materials. A dice
and a cross-entropy based loss function was used for the 2D
and 3D U-Nets, respectively. The loss function for the nnU-Net
was defined as the sum of the dice and cross-entropy losses.
The dice loss function was defined as (I — dice coefficient),
where dice coef. = 2TP/(2TP + FN + FP + smooth). A
smoothing term was added in the dice coefficient to prevent
division by zero. Instead of setting Boolean intensity values
for the ground truth and the automatically generated masks
and performing Boolean operations, the mask intensities were
defined as continuous values to make the dice loss differentiable.
The cross-entropy loss was defined as -I/N ¥,V $,M(y,;.log(pi;))
where N and M are the number of pixels and classes (in our case
two, tumour vs normal tissue), respectively. The loss function
for the MSGA network was defined as the summation of three
terms: Lsegjotala LG’jotals and Lrecftotal . Lrecftotal is the mean
squared error between the original input and output features of
the encoder-decoder network in the attention module. Lg ;otal
is the mean squared error between the encoded representation
of features in the encoder-decoder network inside the atten-
tion module. Finally, Lseq totar is the cross-entropy between
the ground-truth and network output masks. The training and
validation loss for the 3D U-Net and MSGA networks over the
training epochs are presented in Fig. S1 of the Supplementary
Materials. The framework was developed on an Nvidia GeForce
RTX 2080 Ti with 12 GB of Memory. All models were developed
in Python and trained and tested using Keras with TensorFlow
backend.

D. Procedure and Criteria for Automatic Assessment of
Tumour Size Status, Local Response, and ARE Outcome

The segmentation masks generated by the deep learning mod-
els were used to estimate the size of tumour in each scan and,
subsequently, the tumour size changes after SRT. The tumour
size status, local response, and the ARE outcome were then
assessed automatically based on the estimated changes in tumour
size using the procedure and criteria described below.

A typical SRT outcome evaluation workflow in the clinic
consists of determining the tumour size status at each follow-up
scan compared to the previous scan. For automatic assessment of
tumour size status, following the protocol applied in clinic, the
longest diameter of tumour in the axial plane was calculated for
all scans using the automatic segmentation masks. Tumour size
status at each follow-up scan was labeled as increase or decrease
if a measurable increase or decrease (> 2 mm) was estimated,
respectively, in the tumour’s longest diameter compared to the
previous scan. Otherwise, it was labeled as stable. The tumour
size status labels identified automatically were compared with
the ground truth labels to evaluate the performance of automatic
labeling in terms of accuracy, precision, and recall. It should be
noted that this step was only to evaluate the performance of the
network in automatic labeling of tumour size status and not the
local response (discussed below).

The SRT outcome in terms of LC/LF and ARE was evalu-
ated for each tumour automatically based on the RANO-BM
criteria. Using the automatic segmentation masks, the longest
diameter of tumour in the axial, coronal, and sagittal planes
was estimated for the baseline and all follow-ups. The relative
change in the longest diameter of tumour was calculated at each
follow-up compared to the baseline and nadir. The change in
the tumour diameter at each follow-up was categorized into three
categories of shrinkage, steady, and enlargement when more than
30% decrease compared to baseline, less than 30% decrease
compared to baseline but also less than 20% increase compared
to nadir, and more than 20% increase compared to nadir was
detected in the tumour longest diameter, respectively [14]. Fur-
ther, the relative change in tumour volume was calculated at
each follow-up compared to the baseline and nadir. The change
in the tumour volume at each follow-up scan was categorized
into three categories of shrinkage, steady, and enlargement based
on the volumetric response assessment criteria proposed by Oft
et al. [41] which is an extension of the RANO-BM guideline
recommendations for volumetric response assessment. Specif-
ically, shrinkage at a follow-up scan was defined as more than
65% reduction in tumour volume compared to baseline, steady
as less than 65% reduction compared to baseline but also less
than 72.8% increase compared to nadir, and enlargement as more
than 72.8% increase in tumour volume compared to nadir. The
categories detected at each follow-up scan using the automatic
segmentation models were compared to those identified from the
ground-truth segmentation masks to evaluate the performance
of automatic response categorization at individual follow-ups in
terms of accuracy, precision, and recall.

The shrinkage/steady/enlargement patterns determined based
on the longest diameter for each tumour at the follow-up scans
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Fig. 2.

Contrast-enhanced T1-weighted images acquired at the baseline (1), and the first (2), second (3), and third (4) follow-ups after SRT from

three representative patients with brain metastasis demonstrating local control (a), local failure (b), and ARE (c) after treatment. The arrow in the
baseline image shows the location of brain metastasis. LC/LF/ARE is evaluated based on the changes in longest diameter. In (c) an initial growth
in first follow-up is followed by a decrease in the second, and then third follow-ups.

were used for automatic detection of LC/LF and ARE outcome.
Any tumour demonstrating a sequence of steady or shrinkage
patterns at follow-ups with no enlargement was classified with an
LC outcome. When an enlargement was detected in the pattern
of size changes, the change in the tumour longest diameter at
the next follow-up was calculated compared to the scan in which
the enlargement was detected. The tumour was classified with
an LF outcome if its size increased again (more than 2 mm to
account for measurement errors) compared to the previous scan.
If the tumour size decreased or remained stable after the initial
enlargement, the tumour was classified as LC but with ARE. Asa
tumour with ARE could possibly progress later and be classified
as LF, detection of LC/LF and ARE outcome was performed
and evaluated independently for each tumour. The outcomes
identified automatically were compared with the ground truth
outcome for each tumour to evaluate the performance of the
automatic outcome assessment in terms of accuracy, sensitivity,
and specificity.

Ill. RESULTS

Fig. 2 demonstrates contrast-enhanced T1-weighted images
acquired from three representative brain metastasis patients with
an outcome of LC, LF, and ARE after SRT, respectively. In

Fig. 2(a), the tumour has consistently shrunk after SRT (follow-
ups 1-3), demonstrating an LC outcome. In Fig. 2(b) the tumour
has continued to grow after the first follow-up, showing an LF
outcome. In Fig. 2(c), initial growth in the first follow-up stopped
immediately in the second follow-up, followed by further shrink-
age in the third follow-up, that is evidence for ARE.

Fig. 3 shows the ground truth and automatic tumour segmen-
tation masks generated by different deep learning models for
five representative patients of the test set. The images show a
step-by-step improvement in the automatic segmentation masks
generated by the cascaded 2D U-Nets, 3D U-Net, cascaded
2D & 3D U-Nets, and the complete segmentation framework
proposed in this paper (cascaded 2D & 3D U-Nets + MSGA).
Specifically, the proposed frameworks could achieve a close to
perfect segmentation for cases (a) and (c), while for cases (b)
and (d) it slightly under-segmented the tumour, and for case ()
the results indicate over-segmentation. In general, the results
demonstrate that the model is not biased towards under- or
over-segmentation. A detailed comparison between the segmen-
tation results of different networks at the baseline and follow-up
sessions is given in Table I in terms of dice similarity coefficient,
Hausdorff distance, and tumour volume estimation error. A con-
sistent step-by-step improvement is observed in different criteria
of segmentation accuracy, with the best results associated with



JALALIFAR et al.: AUTOMATIC ASSESSMENT OF STEREOTACTIC RADIATION THERAPY OUTCOME IN BRAIN METASTASIS

2687

TABLE |

DicE SIMILARITY COEFFICIENT (DSC), HAUSDORFF DISTANCE (HD), AND VOLUME ESTIMATION ERROR (VEE) FOR SEGMENTATION OF BRAIN METASTASIS

AT THE BASELINE AND FOLLOW-UP SCANS USING DIFFERENT NETWORK ARCHITECTURES

Baseline 1% Follow-up 2" Follow-up 3 Follow-up 4™ Follow-up 5™ Follow-up
Segmentation Model Metric Training Test Set Training Test Set Test Set Test Set Test Set Test Set
Set Set
DSC 86.5+58 | 854+7 82.8+6 | 81.3+59 79.7+ 11 77.249.7 76.1 +10.6 743+ 11.2
Cascaded 2 UoNets HD (mm) | 2.8+04 3+0.6 32406 | 3.7+05 4.6+0.7 44+06 43+0.7 45409
VEE (cc) | 0.55£0.5 | 0.58+0.5 | 0.64+05 | 0.67£0.5 0.82+0.7 0.78 £ 0.7 0.75+0.6 0.75+0.7
VEE (%) 15.8+7 164+9 | 183+84 | 192+83 237+ 11 24.5+12.5 26.1+£11.9 302+ 14
DSC 88.8+4.5 | 872454 | 848+55 | 83.7+64 83+8 81.6+7.7 80+8 79.8 + 8
2D UoNet HD (mm) | 24+07 | 26+07 | 26+06 | 33+06 42+0.7 43+07 45+06 42406
VEE (cc) | 0.50+04 | 0.52+0.5 | 0.56+0.5 | 0.60+0.5 0.79 0.7 0.74£0.6 0.73+0.7 0.73+0.6
VEE (%) | 149+52 | 153+68 | 17563 | 17.8+9.1 213494 233+ 12 24.1+94 247494
DSC 89.7+5 | 88.9+53 | 85.6+5.1 | 84.8+62 84.1+7.7 83.5+8.3 82.4+8.8 82.149.6
HD (mm) | 23405 | 25407 | 26405 | 32408 4407 3.5+0.7 3.6+0.7 3.6+0.7
3D U-Net + MSGA VEE (cc) | 051404 | 05204 | 055+04 | 0.59+0.5 0.74+0.7 0.74+0.7 0.72+0.7 0.71+0.7
VEE (%) | 123+43 | 13.6+6 | 169+85 | 18+88 193+78 215468 22549 233+12
DSC 90.1+44 | 89.6+4.6 | 862+46 | 851+5 843472 83.4+7 82.9+7 82.8+7
Cascaded 2 & 3D UNets |12 (mm) | 23402 | 24404 | 26+05 | 3.1+08 3.8+0.7 32406 3.5+0.6 34406
VEE (cc) 05+03 | 051+£04 | 055+04 | 0.57+0.5 0.73+0.6 0.71 0.6 0.72+0.6 0.71+0.7
VEE (%) | 11.1+42 | 125+53 | 16783 | 182+8 18.7+7.5 20£7.5 21749 22,6+ 10
DSC 91.1+38 | 903+4.1 | 87.1+39 | 864+49 853472 83.7+8.4 832485 82.849.2
Cascaded 2D & 3D U-Nets + | pp (mm) 2404 23405 | 243+05 | 2.95+0.7 3.7+0.7 34+0.7 3.5+0.7 34406
MSGA (with T1-weighted
only) VEE (cc) | 042403 | 049404 | 055404 | 0.58+0.5 0.72+0.6 0.68 + 0.6 0.68 + 0.6 0.69 + 0.6
VEE (%) | 10.5+48 11£5 14.6+54 | 164+54 | 17.9%+ 6.8% 18.7% + 7% 193%+82% | 23.8+10.1%
DSC 92.3+3.1 | 91.5+3.7 | 88.7+3.7 | 87.4+52 86.7+5.5 85.1+6.1 84.1£6.8 84.5+7
Cascaded 2D & 3D U-Nets + | HD (mm) | 1.84£0.4 | 21+0.6 | 22105 | 2.84+0.7 2.98 £ 0.7 3+06 2.89 £ 0.6 2.9+0.58
MSGA VEE (cc) 0.39+03 | 0.44+0.4 | 052+04 | 057+0.5 0.59 £ 0.5 0.61 £ 0.5 0.62 £ 0.6 0.6 + 0.56
VEE (%) 92446 | 102+53 | 125+4 | 134+51 | 15.7% % 6.3% 165%+7% | 17.3% +83% | 19.7+8.5%
DSC 91.7+33 | 90.9+3.1 | 88.5+32 | 87.1+59 86.6+ 6 85.3£6.5 84+7 84.2+8.1
nUNet HD (mm) | 1.88+04 | 23+057 | 218+0.5 | 2.95+038 3+0.8 2.9+0.7 2.93+0.61 2.9+ 0.66
VEE (cc) | 043404 | 05+03 | 052+04 | 0.63+0.5 0.67 +0.5 0.61 0.6 0.63+0.5 0.61+0.6
VEE (%) 9.8+42 11£55 | 125441 | 15157 16.3% + 6.8 16.4% =7 17.5% + 8.2 202+ 8.8

the cascaded 2D & 3D U-Nets + MSGA architecture inputting
both the T1-weighted and T2-FLAIR images. The networks
demonstrate a similar performance of the training and test sets,
implying very good generalizability for tumour segmentation
of new unseen cases. Further, the segmentation results of the
proposed framework are comparable between the baseline and
follow-up scans. It should be noted that in the experiments
conducted in this study, no data from the follow-ups were used
for training the networks. Specifically, the networks were solely
trained using the data of the training set patients acquired at
the baseline, but subsequently evaluated using the follow-up
data from the patients of the training and test sets, separately.
The segmentation results for separate categories of baseline
tumour size are presented in Table S2 of the Supplementary
Materials. The results demonstrate that the proposed framework
outperformed the other segmentation models in most cases, with
few cases of performance in par with the nnU-Net model. Results
of statistical comparisons on percental tumour size changes at
each follow-up session relative to the baseline are presented in
Table S3 of the Supplementary Materials. The table includes
the results of Pearson correlation analyses and paired t-tests
(two-sided, av = 0.05) performed on the tumour size changes
obtained using the automatically generated segmentation masks

compared to those based on the ground-truth masks. The table
demonstrates good correlations between the percentual tumour
size changes estimated automatically compared to the ground
truth at different follow-ups, with no statistically significant
difference between them, where the proposed segmentation
framework and the nnU-Net model demonstrate better results
compared to the other models.

Table II presents the results of detecting tumour size status
at the imaging follow-ups after SRT for patients of the test set
using the five different segmentation models. The cascaded 2D
& 3D U-Nets + MSGA architecture demonstrated the best per-
formance with an accuracy of 85.9%, while the nnU-Net model
resulted in an accuracy of 84.4%. The results of detecting the
shrinkage/steady/enlargement categories at individual follow-up
scans are presented in Table III. Here, the proposed framework
demonstrated a similar performance to that of nnU-Net in terms
of accuracy when the tumour size changes were categorized
based on the longest diameter of tumour, but it outperformed
the nnU-Net model when change in the tumour volume was
used as the measurement method.

Table IV reports the results of automatic outcome assessment
for the test set patients using five segmentation models. The re-
sults demonstrate that the proposed framework and the nnU-Net
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Fig. 3.  Tumour segmentation masks generated by the cascaded 2D
U-Nets (1), 3D U-Net (2), cascaded 2D & 3D U-Nets (3), and Cascaded
2D & 3D U-Nets + MSGA (4) for five representative patients (a-e) in the
test set. The images are acquired at the baseline. The arrow in the first
image of each row shows the location of brain metastasis. The ground
truth and automatic segmentation masks (middle slide) are shown in
blue and red, respectively, with the purple area showing the overlap
region in each case.

TABLE Il
RESULTS OF DETECTING TUMOUR SIZE STATUS AT FOLLOW-UP SESSIONS
AFTER SRT FOR THE PATIENTS OF TEST SET USING DIFFERENT
SEGMENTATION MODELS

Segr;/[eor:lt:ltion Tumour Size Status Accuracy Precision Recall
Increase 82.3% 70%

Cascaded 2D Stable 8% | 57.6% | 82.6%
Decrease 92.8% 62.9%

Increase 84% 80%

3D U-Net Stable 79.6% 67.8% 82.6%
Decrease 94% 76.4%

Increase 90% 90%

Caseadeq 2D & Stable 82.8% 70% 91.3%
Decrease 100% 66.7%

C ded 2D & Increase 90% 90%
3D U-Nets + Stable 85.9% 75% 91.3%
MSGA Decrease 100% 76.2%
Increase 81.8% 90%

nnU-Net Stable 84.4% 76% 82.6%
Decrease 100% 81%

model resulted in the best performance with a sensitivity and
specificity of 88.9% and 92.3%, respectively, for detecting the
LC/LF, and 100% and 89.2% for detecting the ARE outcome.
Kaplan-Meier analyses were conducted to compare the time to
detected event for LF and ARE based on the clinical radiotherapy
outcome assessment and the assessment performed by the pro-
posed automatic system. A log-rank test was applied to evaluate

Clinical Assessment (Ground Truth)

10 ——— Assessment by the Automatic System
-
g 08 i

L [

g% &
w
b |
o

0.6
= Arommmme R
o I I |
> T |
h— 1
S 04 i
38 i
o tommmmmmmmes +

T
* 02
p-value = 0.953
0.0
0 1 2 3 4 5
Time (year)

Clinical Assessment (Ground Truth)

=== Assessment by the Automatic System

o
o
S o8 HiH
w H—-t---- |
[a'4 [}
< i
2 06 . i 1
]
G (T +
Z
= 04
Q
©
o
o
a 02
p-value = 0.494
0.0
0.0 05 1.0 15 20 25 30 35
Time (year)
Fig. 4. Kaplan-Meier curves for comparative time to event analysis

between the clinical radiotherapy outcome assessment and the assess-
ment performed by the proposed automatic system on the test set.
The plots have been shown for the LF (top) and ARE (bottom) events.
The time to event for each tumour was calculated from the date of
radiotherapy to the date an LF/ARE was detected clinically or by the
automatic system using the proposed segmentation framework.

for any statistically significant difference between the curves
for each event. Fig. 4 demonstrates the Kaplan-Meier curves for
the LF and ARE events. The curves obtained for the automatic
system are similar to their clinically assessed counterparts. No
significant difference was observed between the curves for the
LF (p-value = 0.95) or ARE (p-value = 0.49) event.

V. DISCUSSION AND CONCLUSION

In this work, a novel system was proposed for automatic
assessment of therapy outcome in brain metastasis patients
treated with SRT. At the heart of the proposed system is a deep
learning-based segmentation framework to delineate tumours
longitudinally in serial MRI with high precision. Longitudinal
segmentation of tumour before and at multiple follow-up ses-
sions after the SRT permits monitoring changes in tumour size
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TABLE IlI
RESULTS OF DETECTING THE RANO-BM RESPONSE CATEGORIES AT INDIVIDUAL FOLLOW-UP SCANS FOR THE PATIENTS OF TEST SET USING DIFFERENT
SEGMENTATION MODELS, VALIDATED BASED ON THE RESPONSE CATEGORIES IDENTIFIED FROM THE GROUND-TRUTH SEGMENTATION MASKS

Segmentation Tumour Size i Measurement Method
Model Status (Response Longest Diameter of Tumour Tumour Volume

Category) Accuracy Precision Recall Accuracy Precision Recall
Enlargement (PD) 70% 70% 68.4% 65%
Caslﬁf‘lgef D Steady (SD) 72% 71.4% 74.1% 68.8% 70.4% 70.4%
e Shrinkage (PR) 75% 70.6% 66.7% 70.6%
Enlargement (PD) 77.8% 70% 75% 75%
3D U-Net Steady (SD) 78.1% 81.5% 81.5% 71.9% 79.2% 70.4%
Shrinkage (PR) 73.7% 82.4% 60% 70.6%
Enlargement (PD) 83.4% 75% 75% 75%
Ca“"“:ﬁdNZg &3D Steady (SD) 81.3% 82.1% 85.1% 75.4% 78.6% 78.6%
Shrinkage (PR) 77.8% 82.4% 70.6% 70.6%
Enlargement (PD) 78.3% 90% 76.2% 80%
Céfgic::(iﬁs% iD Steady (SD) 84.4% 91.7% 81.5% 81.3% 85.7% 88.9%
Shrinkage (PR) 82.4% 82.4% 80% 70.6%
Enlargement (PD) 78.3% 90% 76.2% 80%
nnU-Net Steady (SD) 84.4% 88% 81.5% 79.7% 85.2% 85.2%
Shrinkage (PR) 87.5% 82.4% 75% 70.6%

TABLE IV
RESULTS OF DETECTING THE LC/LF AND ARE OUTCOMES FOR THE
PATIENTS OF TEST SET BASED ON THE RANO-BM CRITERIA USING
DIFFERENT SEGMENTATION MODELS. SENS: SENSITIVITY; SPEC:
SPECIFICITY; ACC: ACCURACY

LC/LF Detection ARE Detection
Segmentation Model
Acc. Sens. Spec. Acc. Sens. Spec.
Cascaded 2D U-Nets | 72.7% | 66.7% | 769% | 77.2% | 66.7% | 79%
3D U-Net 81.9% | 77.8% | 84.6% | 81.9% | 66.7% | 842%
Cascaded D & D1 630 | 77.8% | 923% | 864% | 100% | 842%
Coscrded 2D & 0| 90.9% | 889% | 923% | 90.9% | 100% | 892%
nnU-Net 90.9% | 88.9% | 923% | 90.9% | 100% | 89.2%

for automatic assessment of therapy outcome based on standard
clinical criteria.

The segmentation framework was designed such that it can
tackle the memory limitations associated with effective training
of complex deep networks by cropping the volumetric images
around the tumour. Two cascaded 2D U-Nets were trained to
find the approximate position of the tumour. This position is later
used to crop the MRI volume around the tumour. Experimental
results show that the cascaded 2D & 3D U-Net model could
considerably improve the segmentation accuracy compared to
the cascaded U-Nets and the 3D U-Net alone. Further, the
segmentation framework proposed in this study outperformed
the cascaded 2D U-Nets, the 3D U-Net, the cascaded 2D & 3D
U-Net, and the nnU-Net models. By incorporating the MSGA
network into the framework, the model benefits from both the
cascading and ensembling mechanisms to improve the segmen-
tation accuracy [42]. The MSGA network applies a multi-scale
attention mechanism to focus on crucial regions of the images
and discard redundancies in the extracted features while learning
tumour segmentation. Also, complementary information is pro-
vided to the framework through MSGA by feeding T2-FLAIR
images as an additional input channel to the MSGA network.
As such, fusing the outcome of this network with the 3D U-Net

potentially improves the overall performance of the segmenta-
tion framework, as observed in this study. Performance of the
proposed system was subsequently evaluated in monitoring the
tumour size status at several imaging follow-ups after SRT. Ex-
perimental results demonstrated an accuracy of 86% in detecting
tumour size status (increase/stable/decrease), on the independent
test. It should be noted though, that these labels were manually
determined at each follow-up by only one observer, and therefore
labelling error is expectable due to measurement errors, espe-
cially for smaller tumours and those lying closer to the class
boundaries. Such errors may affect the reported accuracies in
automatic labeling of the tumour size status. Future studies may
mitigate possible errors in ground truth labeling of tumour size
status using a multiple observer strategy.

The proposed system also demonstrated a promising
performance in detecting tumour size status in terms of response
categories at individual follow-up scans, and subsequently
automatic assessment of SRT outcome (LC/LF and ARE) on the
independent test set. The automatic outcome assessment system
in this study evaluates the presence of ARE after radiotherapy
based on the pattern of changes in tumour size on serial MRI,
with acceptable accuracy. However, it should be noted that
monitoring tumour size changes on serial imaging is not always
enough to draw an accurate conclusion on whether an observed
tumour size increase on imaging is associated with progressive
disease or ARE. Along with other radiological insights such
as those based on T1/T2 matching or use of perfusion MRI
[17], [43], additional clinical evidence including histological
confirmation is sometimes required to diagnose ARE. As such,
standard serial MRI is usually used by oncologists in conjunction
with other clinical criteria to detect pseudo-progression or radi-
ation necrosis after radiotherapy. Considering the performance
of the proposed system in accurate tumour segmentation, moni-
toring tumour size changes longitudinally, and detecting LC/LF
and ARE outcomes, it can be applied as an effective decision
support system for radiotherapy outcome assessment to triage
complicated boundary cases that required further assessment by
clinicians.
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Previous studies have shown the potential of deep-learning-
based methods in automatic brain tumour segmentation and
assessment of tumour size changes in response to treatment. Xue
etal. [44] proposed a cascade of modified 3D U-Net architecture
for detection and segmentation of brain metastases on 3D T1
MPRAGE images. They proposed the utility of automatically
generated segmentation masks for facilitating radiotherapy treat-
ment planning and post-treatment monitoring of tumour size,
where they demonstrated example results for one case. Cho et al.
[45] developed a CAD system for automated brain metastasis
detection on MRI using a U-Net based cascaded model and
applied it for categorizing tumour size changes at two follow-up
sessions separately, where they achieved a moderate agreement
with the RANO-BM criteria. The study here features a novel
deep-learning-based system for automatic assessment of radio-
therapy outcome in brain metastasis using an attention-guided
architecture for accurate tumour segmentation. The system was
evaluated on multiple MRI scans for each patient to demonstrate
its performance in precise tumour segmentation and monitoring
tumour size status at individual follow-up sessions, and in de-
tecting LC/LF and ARE outcomes after SRT using the pattern
of tumour size changes on serial MRI. The system was also
evaluated in terms of similarity of time to detected LF and ARE
events compared to those identified clinically. To our knowledge,
this is the first time a comprehensive study is performed to inves-
tigate the efficacy of deep-learning-based segmentation frame-
works for automatic radiotherapy outcome assessment. The
findings of this study are in agreement with observations of the
previous papers where the potential of data-driven segmentation
models was shown in monitoring tumour size changes after
treatment, while it extends the preliminary investigations by de-
veloping a novel segmentation framework and demonstrating its
promising performance for various tasks within a radiotherapy
outcome assessment workflow.

Objective assessment of tumour response to therapy has been
the basis for many investigations in cancer therapeutics during
recent years [46]. The RANO-BM criteria and recommenda-
tions were proposed to establish a basis for standard response
assessment in clinical trials for brain metastasis. The improved
uniformity in response assessment following the RANO-BM
criteria facilitates the interpretation of studies involving patients
with brain metastasis. This is especially important as the new
trend is away from automatically excluding patients with active
brain metastasis from the clinical trials of novel therapies [47].
A number of previous studies have explored the RANO-BM
criteria as a tool for objective response assessment. Douri et al.
[48] evaluated the RANO-BM criteria’s current threshold in a
cohort of 50 patients with brain metastasis treated by SRS. Their
findings show that the current RANO-BM thresholds are useful
in assessing diameter increases caused by tumor progression and
pseudo progression, but may need adjustments to identify clini-
cally relevant tumour progression reliably. Fischedick et al. [49]
compared the 2D linear and 3D volumetric measurement meth-
ods for post-SRT monitoring of brain metastasis. The 2D and
3D measurements were categorized according to the RANO-BM
criteria and Matthew J. et al. [50], respectively. They concluded
that results obtained from the 2D and 3D measurements are

highly comparable. While the criteria proposed for volumetric
analysis in the RANO-BM guidelines are incomplete due to
lack of research to support specific recommendations, Oft et al.
[41] adopted the basic concept from the RANO-BM guideline to
derive volumetric criteria and investigated the predictors for vol-
umetric regression after SRT. Their result show that volumetric
regression post-SRT does not occur at a constant rate, and a cut-
off of >20% regression for the volumetric definition of response
at 3 months post-SRT was predictive for subsequent control.
Further research is required to validate specific threshold recom-
mendations for volumetric monitoring of brain metastasis after
radiotherapy. The automatic system proposed in this paper can
facilitate such investigations in future and is a step forward to-
wards a volumetric radiotherapy response assessment paradigm.

There is a huge interest in finding reliable clinical and/or
imaging features that would assist in distinguishing ARE from
tumour progression to limit the number of cases triaged for
diagnostic biopsy or surgical resection [51]. Various methods
such as those based on the qualitative [17] and quantitative [52]
assessment of T1/T2 matching, and perfusion [53], [54], and
CEST [38] MRI have shown relatively effective with different
degrees of accuracy to differentiate ARE from tumour progres-
sion. Accurate segmentation of tumour on MRI is a prerequisite
for all these methods. Wiggenraad et al. have investigated the use
of cine-loops for monitoring tumour size changes in brain metas-
tasis after SRT to identify pseudo-progression (ARE) [55]. They
created the cine-loops for ten patients using the axial slice with
largest tumour diameter on pre-treatment contrast-enhanced T1-
weighted MRI and the corresponding slices in the co-registered
follow-up images. The cine-loops were evaluated by a group
of radiation oncologists and neuroradiologists for interpretation
of events after SRT, where it was concluded that the use of
cine-loops was superior to assessment of separate MRI scans. To
our knowledge, no previous study has investigated the applica-
tion of automatic brain tumour segmentation on serial MRI for
monitoring the pattern of tumour size changes to detect ARE.

One potential limitation associated with this study is its rel-
atively small cohort size. Here, several MRI datasets acquired
at different imaging sessions for each patient were applied to
evaluate the proposed framework. While the results presented
are encouraging and pave the way for future studies, more
investigations are required for further evaluation of the pro-
posed methodologies on larger patient populations and possi-
bly multi-centre imaging data. The patients in this study had
relatively large brain metastases treated with hypo-fractionated
SRT. Although tumours with size of 5 mm and above were
included in this study, future studies focusing on tumours with
size of less than 1 cm are required for further assessment of
the performance of the framework on smaller brain metastases
typically treated with SRS. ARE in this study was diagnosed
clinicoradiologically based on serial imaging, and/or histologi-
cal confirmation. Diagnosing ARE clinicoradiologically without
histological confirmation, however, may be prone to errors due
to misinterpretation of images in complicated cases. As such,
future studies on imaging datasets with ground truth histology
for all ARE cases are necessary for further validation of the
results of this study.
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The proposed segmentation framework demonstrated good
generalizability in longitudinal segmentation of brain tumours
on serial MRI, while it was only trained on the baseline images of
the training set. The generalizability of the proposed framework
makes it an appropriate fit for the task of automatic therapy
outcome assessment. Implementation of the proposed system
in clinical settings can potentially accelerate longitudinal tu-
mour size analyses, streamline image-guided therapy outcome
evaluation workflows, e.g., for local response assessment and
ARE detection, and facilitate precision oncology through regular
and high-throughput response assessment. This is particularly
important in case of patients with multiple brain metastases
where manually segmenting tumours on several follow-up scans
puts a substantial burden on clinical workflow. The system can
possibly be coupled with PACS-based databases to perform
online and/or offline tumour size analyses on serial imaging and
act as an invaluable decision support tool in clinic. Although a
more comprehensive study is a prerequisite to further validate
the results of this study and the clinical utility of the proposed
system, the promising results obtained here and the prospect
of its real-world applications highlight the importance of the
findings in this paper.
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