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Privacy-Aware Early Detection of COVID-19
Through Adversarial Training
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Yang Yang, and David Clifton

Abstract—Early detection of COVID-19 is an ongoing
area of research that can help with triage, monitoring and
general health assessment of potential patients and may
reduce operational strain on hospitals that cope with the
coronavirus pandemic. Different machine learning tech-
niques have been used in the literature to detect poten-
tial cases of coronavirus using routine clinical data (blood
tests, and vital signs measurements). Data breaches and
information leakage when using these models can bring
reputational damage and cause legal issues for hospitals.
In spite of this, protecting healthcare models against leak-
age of potentially sensitive information is an understudied
research area. In this study, two machine learning tech-
niques that aim to predict a patient’s COVID-19 status are
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examined. Using adversarial training, robust deep learning
architectures are explored with the aim to protect attributes
related to demographic information about the patients. The
two models examined in this work are intended to preserve
sensitive information against adversarial attacks and infor-
mation leakage. In a series of experiments using datasets
from the Oxford University Hospitals (OUH), Bedfordshire
Hospitals NHS Foundation Trust (BH), University Hospitals
Birmingham NHS Foundation Trust (UHB), and Portsmouth
Hospitals University NHS Trust (PUH), two neural networks
are trained and evaluated. These networks predict PCR test
results using information from basic laboratory blood tests,
and vital signs collected from a patient upon arrival to the
hospital. The level of privacy each one of the models can
provide is assessed and the efficacy and robustness of
the proposed architectures are compared with a relevant
baseline. One of the main contributions in this work is the
particular focus on the development of effective COVID-
19 detection models with built-in mechanisms in order to
selectively protect sensitive attributes against adversarial
attacks. The results on hold-out test set and external vali-
dation confirmed that there was no impact on the general-
isibility of the model using adversarial learning.

Index Terms—Adversarial machine learning, artificial
neural networks, data privacy, deep learning, electronic
medical records, medical information systems.

I. INTRODUCTION

COVID-19 has impacted millions across the world. Its early
signs cannot be easily distinguished from other respiratory

illnesses and hence an accurate and rapid testing approach is vital
for its management. RT-PCR assay of nasopharyngeal swabs is
a widely accepted gold-standard test, which has several limi-
tations, including limited sensitivity and slow turnaround time
(12–24 h in hospitals in high and middle-income countries). Sev-
eral other techniques, including qualitative rapid-antigen tests
(‘lateral flow’; LFTs), point-of-care PCR, and loop mediated
isothermal amplification have been proposed [1], [2]. However,
sensitivity results for for these techniques vary greatly amongst
groups, with reported values ranging from 40% to 70%. [2], [3].

There are a number of research studies on the deployment of
machine learning techniques to detect COVID-19 from various
widely available features, including demographic and laboratory
markers [4], [5]. A recent study introduced a machine learning
test based on vital signs, routine laboratory blood tests and blood
gas [6]. A strength of the test is the use of clinical data which
is typically available within 1 h, much sooner than the typical
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turnaround time of RT-PCR testing. Current tests that employ
machine learning are promising as they alleviate the need for
specialised equipment, can potentially be more sensitive, and are
faster than existing tests. Nonetheless they suffer from several
shortcomings:

1) Most approaches that have appeared in the literature so
far are based on basic machine learning techniques that
require a complete retraining anytime a new batch of
data is available. However, in a dynamic situation like a
pandemic where new streams of data need to be pro-
cessed, it is vital to incrementally learn from data without
the need to start over and retrain the system using all the
seen instances.

2) ML-based models explored in the COVID-19 literature
are not equipped with an inherent mechanism to guard
against possible issues that might arise due to the pres-
ence of demographic features. For example, models could
easily get biased to a certain demographic group causing
incorrect associations and overfitting.

3) Another issue is preserving the privacy of the patients
and robustness against adversarial attacks. Most basic
models can easily ‘leak’ information, making it easy for
an adversary to recover sensitive information contained
in the hidden representation. As blood tests are known
to include features which typically correlate with demo-
graphic features, such as sex and ethnicity, exclusion of
demographics does not necessarily solve the problem. For
example, health issues like Benign Ethnic Neutropenia [7]
or Sickle Cell Disease [8] are predominantly found in a
certain number of ethnic groups and much less likely to
occur in others. As an additional example, healthy men
and women have different reference ranges for blood
tests [9].

This work aims to address the above-mentioned shortcomings
in existing research. The proposed adversarial architectures
(Section IV) are designed to prevent the learning model from
potentially encoding unwanted demographic biases and protect
its sensitive information during the learning process. In the first
architecture (Section IV-A), protection of attributes is explicit,
with the option to select the attributes for guarding against adver-
sarial attacks. Section V-C1 will investigate whether these direct
protective measures would hurt generalisibility to unseen data.1

In the second architecture (Section IV-B), protecting attributes
is based on a general adversarial regularisation and is not tied to
any specific subset of selected attributes.

The proposed models in this study are designed to preserve
sensitive information against adversarial attacks, allow incre-
mental learning, and reduce the potential impact of demographic
bias. However, the main focus of the work is in privacy preser-
vation. The contributions of this work are as follows:

� Two adversarial learning models are introduced for the
task of COVID-19 identification based on Electronic
health records (EHR). The models perform satisfactorily

1While the architecture introduced here is composed of simple fully connected
layers, this adversarial setup can and has been tried in the literature with different
architectures including logistic regression, SVMs, and LSTMS, among others.

Fig. 1. Schematic view of privacy attacks for a machine learning
model. Dashed lines represent information flow, and full lines signify
possible actions.

on a real COVID-19 dataset and in comparison with
strong baselines. Unlike conventional tree-based methods,
these architectures are well-suited for transfer learning,
multi-modal data, and other advantages of neural models
without a significant performance trade-off.

� The models use adversarial regularisation to make them
robust against leakage of sensitive information and adver-
sarial attacks and suitable for scenarios where preservation
of privacy is important or classification bias is costly.

� A series of tests are performed to quantitatively demon-
strate the efficacy of the proposed architectures in pro-
tecting sensitive information against adversarial attacks in
comparison with a neural model that is not adversarially
trained.

� Several experiments are done in order to observe the effect
of this type of training on generalisability across different
demographic groups.

� The models are externally validated using data from other
hospital groups.

II. PRIVACY ATTACKS IN MACHINE LEARNING

AND HEALTHCARE

There are various ways a trained model can be attacked by
an adversary. The goal in most of them is to infer some kind
of knowledge that is not originally meant to be shared or is
unintentionally encoded by the model. At least three different
forms of attack are known, namely, membership inference,
property inference, and model inversion [10]. In this work, the
focus is on property inference, in which an adversary who has
access to model’s parameters during training, tries to extract
information about certain properties of the training data that are
not necessarily related to the main task. Fig. 1 shows the general
overview of privacy attacks according to Rigaki and Garcia [11].
The adversary, in the particular setup in this study, can see the
model and its parameters and wants information about the data
to which they do not have direct access.

Attacks of this kind are possible in any scenario where the
model is stored and trained on an external server. Protecting
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an ML model against property inference attacks is especially
useful in the context of collaborative and federated learning,
where models locally train on different portions of the dataset
and share their parameters over a network that might or might
not be fully secure against eavesdropping [12].

Within the context of healthcare, such attacks can reveal
sensitive personal data and prove disastrous for hospitals.
GDPR defines personal data as ‘any information relating to an
identified or identifiable natural person’. Article 9(1) of the
GDPR declares the following types of personal data as sensitive:
data revealing racial or ethnic origin, political opinions, religious
or philosophical beliefs, or trade union membership, genetic and
biometric data, and data concerning health or sex life or sexual
orientation of the subject [13].

Sensitive information such as age, gender, location, or eth-
nicity are usually quantised or anonymised in large healthcare
datasets. However, as demonstrated in Section V-C, this infor-
mation can be easily recovered by a simple attack model because
of the implicit associations that exist between such information
and other features in the dataset.

Property inference attacks are not limited to recovering any
specific type of data and can predict both categorical and numeri-
cal values. For instance, they can be used to train attacker models
that learn to identify both demographic features (implicitly
present in the data) and blood test features (explicitly present)
that highly correlate with certain diseases. It is then possible to
use this trained model to re-identify some patients based on their
demographic features and possible combination of diseases [14].

III. TASK DEFINITION

In the binary classification setting, each neural network f is
trained to predict labels y1, y2,..., yn from instances x1, x2,...,
xn. Each instance xi contains a set of sensitive (in this case
demographic) discrete features zi ∈ 1, 2, . . ., k which should
be “protected”.2 These sensitive features are called protected
attributes.

In the context of classification, any neural network f(x)
can be characterised as an encoder, followed by a linear layer
W : f(x) = W × h(x). W can be seen as the last layer of
the network (i.e. dense + softmax) and h is all the preceding
layers [15].

Suppose there exists an attacker model fatt that is trained on
the encoder h(x) of a neural classifier in order to predict zi. If
this trained adversary is able to predict zi based on the encoded
representation from the model, the model has leaked and privacy
of the model has been compromised.

It is unlikely that h(x) would be completely guarded against
an attack. If it encodes sufficient information about xi, it might
reveal some information to a properly trained fatt. The trained
model f is said to be private with regards to zi if an attacker
model fatt that has access to f ’s encoder (h(x)) cannot predict
zi with a greater probability than a majority class baseline.

2Ideally the transformation yi = f(xi) should not to be confounded by
specific values of zi. However, the experiments here are focused on privacy
preservation and not on the closely related subject of debiasing.

Fig. 2. Overall structure of the proposed model. Each Di is a discrim-
inator that aims to predict any of the d categorical features zi.

If h(x) is perturbed too much, it will not be informative to
fatt but would also fail in accurately predicting the main task
label yi. Therefore, the challenge is to ensure privacy against
potential attackers with regards to the protected attributes while
achieving a reasonably good result in the main task.

IV. METHODOLOGY

In this work, a standard supervised learning scenario is fol-
lowed where each training instance xi represents information
from blood tests and vital signs for each patient seen at the
hospital and yi is the corresponding Boolean value denoting the
result of the PCR test for that patient. The task is to train a model
to predict the correct label for each patient.

A. Adversarial Training Based on Gradient Reversal

The first adversarial architecture that is explored in Fig. 2 is
comprised of one main part and a number of secondary networks:

1) A main classifier M that is the central component of
the model. It consists of a stack of n fully connected
layers with dropout and batch normalisation, followed
by a softmax layer at the end.

2) d networks with auxiliary objectives separate from the
main task. Given d categorical features, each of these
secondary networks (henceforth referred to as discrimina-
tors) predict the value for that feature given each training
instance.

Assume hi is the representation of an instance at the ith layer
within M . This is the point of interception where the auxiliary
networks get access to the contents of M . All these components
then train in tandem with the following loss function:

L = LM −
d∑

i=1

λLDi
(1)

Each Di corresponds to a separate discriminator network that
predicts one of the d different categorical features of interest.
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λ is a weighting factor and can control the contribution of
each individual auxiliary loss. Formula 1 is set up so that after
backpropagation, the contents of h be maximally informative
for the main task, and minimally informative for prediction of
the protected features. Loss of the main task is computed using
binary cross entropy.

If x and y are the features and labels, ŷ and ẑ the predictions
for the main target and protected features, θM and θDi

the
parameters of the main classifier and its d discriminators, and
L is the joint binary cross entropy loss function, the training
objective can be formulated as finding the optimal parameters θ̂
such that:

θ̂ = min
θM

max
{θDi}d

i=1

L (ŷ (x; θM ) , y)

− λ

d∑
i=1

L (ẑ (x; θDi
) , zi) (2)

1) Gradient Reversal Layer: As discussed in Section IV-A,
during training, the objective is to jointly minimise both of the
following terms:3

arg min
D

L (D (h(xi)) , z) (3)

arg min
h,c

L (c (h(xi)) , yi)− L (D (h(xi)) , z) (4)

where each xi is an instance of the data which is associated with
the protected attribute z. D is the discriminator (the adversarial
network), and c is the classifier used to predict the labels for the
main task from representation h. L denotes the loss function.

Using an optimisation trick called the Gradient Reversal
Layer (GRL), the above terms can be combined into a single
objective. This idea was first introduced in the context of domain
adaptation [17] and was later also applied to text processing [16],
[18]. GRL is easy to implement and requires adding a new layer
to the end of the Discriminator’s encoder.

During forward propagation, GRL acts as an identity layer,
passing along the input from the previous layer without any
changes. However, during backpropagation, it multiplies the
computed gradients by −1. Mathematically this layer can be
formulated as a pseudofunction with the following two incom-
patible equations:{

GRL(x) = x if in forward mode
dGRL(x)

dx = −I if in backprop mode
(5)

Using this layer, the loss function can be consolidated into
one single formula, and a single backpropagation would suffice
in each training epoch. For the trivial case of having only
one protected attribute, equations 3 and 4 can be combined as
follows:

arg min
h,c,D

L (c (h(xi)) , yi) + L (D (λGRL (h(xi))) , z) (6)

The objective is to minimise the total loss, and for the case of
the discriminator, the gradients are reversed and scaled by λ. It

3The formulation of GRL in this section is based on [16].

is straightforward to generalise this to the case where there are
multiple (in the case of this study 3; namely, age, gender, and
ethnicity) protected attributes and corresponding Dis:

L = LM +

d∑
i=1

L(Di(λGRL(h(x), zi))))) (7)

B. Adversarial Training Based on Fast Gradient
Sign Method

As the second adversarial architecture, another model is de-
veloped in which the adversarial component can perturb the rep-
resentation during training with some added noise. The direction
of this noise (i.e. whether the added noise is a positive or negative
number) is dependent on the signs of the computed gradients.

This adversarial method is based on linear perturbation of
inputs fed to a classifier. In every dataset, the measurements
enjoy a certain degree of precision, below which could be
considered negligible error ε. If x is the representation of an
instance, it is likely that the classifier would treat x the same as
x̃ = x+ η, as long as ‖η‖∞ < ε.

However, this small perturbation grows when it is multiplied
by a weight matrix w:

w�x̃ = w�(x+ η) = w�x+ w�η (8)

The perturbation is maximised when η = sign(w), predi-
cated on the assumption that it remains within the max-norm
constraint defined above. In the context of deep learning, the
method can be formulated in the following way:

If θ is the parameters of the model, and J is the cost function,
during training, for each instance a perturbation of η is added to
the representation of the instance such that:

η = εsign (�xJ (θ, x, ypred)) (9)

This procedure is known as the fast gradient sign method
(FGSM), originally introduced in a seminal 2015 paper by
Goodfellow et al. [19]. It can be viewed either as a regularisation
technique or a data augmentation method that includes unlikely
instances in the dataset. For training, the following adversarial
objective function can be used:

J̃ (θ, x, ypred) = αJ(θ, x, y)

+ (1− α)J (θ, x+ εsign (�xJ (θ, x, ypred))) (10)

This method can be seen in terms of making the model robust
against worst case errors when the data is perturbed by an
adversary [19]. Because of this regularisation, the expectation
is that hidden representations would become less informative
to an attacker network that attempts to retrieve demographic
attributes. Following the original paper, α is usually taken to
be 0.5, which turns the equation into a linear combination with
equal weights given to both terms in the objective function.

In the implementation used for this work (Fig. 3), alongside
the main component, there is an attacker that intercepts the model
at a certain step during each training epoch, makes a copy of the
pre-attack parameters in the intercepted layer, and injects noise
into the model. Based on this information, an adversarial loss is
computed and backpropagation is applied.
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Fig. 3. Overall structure of FSGM. y′ is the predicted label. η is added
noise at the point of interception h.

After this step, a restore function is executed, returning
the parameters of the intercepted layer back to its pre-attack
values. A regular loss is then computed and backpropagation is
applied for a second time. This added noise is computed based
on (9). If h is the representation of a training instance at the time
of interception by the attacker, the perturbation is calculated by
h′ = h+ η.

C. Dataset

A hospital dataset referred to as OUH is used for the studies
in this study. OUH is a de-identified EHR dataset, covering
unscheduled emergency presentations to emergency and acute
medical services at Oxford University Hospitals NHS Foun-
dation Trust (Oxford, U.K.). These hospitals consist of four
teaching hospitals, which serve a population of 600,000 and
provide tertiary referral services to the surrounding region. At
the time of model development, linked deidentified demographic
and clinical data were obtained for the period of November 30,
2017 to March 6, 2021. For each presentation, data extracted
included presentation blood tests, blood gas results, vital sign
measurements, results of RT-PCR assays for SARS-CoV-2, and
PCR for influenza and other respiratory viruses. Patients who
opted out of EHR research, did not receive laboratory blood
tests, or were younger than 18 years of age have been excluded
from this dataset.

For OUH, hospital presentations before December 1, 2019,
and thus before the global outbreak, were included in the
COVID-19-negative cohort. Patients presenting to hospital be-
tween December 1, 2019, and March 6, 2021, with PCR con-
firmed SARS-CoV-2 infection, were included in the COVID-19-
positive cohort. This period includes both the first and second
waves of the pandemic in England.4 Because of incomplete
penetrance of testing during early stages of the pandemic and
limited sensitivity of PCR swab tests (around 70%), there is
uncertainty in the viral status of patients presenting during the

4[Online]. Available: https://coronavirus.data.gov.uk/details/cases

Fig. 4. Distribution of labels for each demographic attribute in
TRAIN(-Tr) and TEST(-Ts) sets in OUH.

pandemic who were untested or tested negative. Therefore, these
patients were excluded from the datasets.

There are 3081 instances of COVID-19-positive in the original
dataset and 112121 negative instances. For the experiments with
OUH, the majority class was subsampled in order to reach a more
balanced dataset with prevalence 0.5 (i.e. 6162 total labels).
Age, gender, and ethnicity information were binarised during
preprocessing. For gender, the average age is 64, which is taken
as cut-off point for binarisation.5 The ethnicity information,
which were encoded using NHS ethnic categories, were divided
into white and non-white. No significant difference in numbers
or general patterns was observed in the case where ambiguous
ethnic categories were removed as opposed to labelling them as
non-white. Therefore only the latter is reported. While quantis-
ing features in this way involves oversimplification and loss of
detail, it keeps the values binary across all the protected attributes
making comparisons easier in the experimental setup. This setup
is designed to make it easy for the attacker (i.e. having to decide
between 5 different age brackets as opposed to two would be a
much harder problem to solve for the attacker). If the training
setup is effective in the binary case, it is more likely to be
effective in a multi-class scenario. Fig. 4 shows the distribution
of demographic labels in the OUH dataset.

In Section V-C2, the proposed models will be externally
validated on three NHS Foundation Trust datasets [20], namely
Bedfordshire Hospitals NHS Foundation Trust (BH), Univer-
sity Hospitals Birmingham NHS Foundation Trust (UHB), and
Portsmouth University Hospitals NHS Trust (PUH). The entire
test sets in their original label distribution within the pandemic
time-frame are used to make sure the evaluation is fair and
that it mirrors the highly imbalanced data used in hospitals.
Table I shows the statistics for the Covid-19 Positive cases in
the datasets.

Evaluation at UHB trust considered all patients presenting to
The Queen Elizabeth Hospital, Birmingham, between December
01, 2019 and October 29, 2020. The Queen Elizabeth Hospital
is a large tertiary referral unit within the UHB group which

5As there was not a big gap between median and mean, the mean was used.

https://coronavirus.data.gov.uk/details/cases
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TABLE I
LABEL DISTRIBUTIONS FOR PCR (ALONG WITH PERCENTAGE OF EACH

LABEL) FOR UHB, BH, AND PUH DATASETS USED FOR EXTERNAL
VALIDATION OF THE MODELS

provides healthcare services for a population of 2.2 million
across the West Midlands. Confirmatory COVID-19 testing was
performed by laboratory SARS-CoV-2 RT-PCR assay.

Evaluation at BH considered all patients presenting to Bed-
ford Hospital between January 1, 2021 and March 31, 2021.
BH provides healthcare services for a population of around
620,000 in Bedfordshire. Confirmatory COVID-19 testing was
performed by point-of-care PCR based nucleic acid testing
[SAMBA-II & Panther Fusion System, Diagnostics in the Real
World, U.K., and Hologic, USA].

Evaluation at PUH considered all patients admitted to the
Queen Alexandria Hospital, serving a population of 675,000
and offering tertiary referral services to the surrounding region,
between March 1, 2020 and February 28, 2021. Confirmatory
COVID-19 testing was by laboratory SARS-CoV- 2 RT-PCR
assay.

Validation cohorts are prepared based on the works presented
by Soltan et al. in [20] and [6]. Held-out test sets are generated by
an 80:20 split stratified by patients with COVID-19 and balanced
equally with pre-pandemic controls.

V. EXPERIMENTS AND RESULTS

A series of experiments are performed in order to test the
proposed models and compare them against baselines. The base-
line non-adversarial model which is used as the basic structure
to start from, consists of 3 fully connected dense layers with
batch normalisation and dropout. This model is referred to as
Base. During 10-fold cross-validation, the best hyperparameters
were chosen using random search. It was empirically found that
heavy hyperparameter optimisation had at best mixed results
and adding more layers to the model did not consistently boost
performance. For this reason, a set of parameters that seemed
to work well across all the models during cross-validation were
kept fixed (Table II).6 The Base model was also kept simple
with only a few layers in order to have direct and straightfor-
ward comparisons with the adversarially trained models. The
demographic-based adversarial model is referred to as ADV and
its main component is the same as Base. Since after training, only
the Base part will be tested (i.e. discriminators will detach), the
ADV model ends up having the exact same number of param-
eters as Base. The perturbation-based adversarial model, which
also has the same number of parameters as Base, is referred to as
Advper. All the reported results on the test set are the median of

6All the models with the exception of ADVper were trained for 15 epochs for
experiments on OUH. For external validation, this was set to 30 epochs. ADVper

seemed to require more training epochs in all the experiments, therefore it was
trained with 30 epochs for both OUH and external validation.

three consecutive runs. The experiments are performed using an
Intel Xeon W-2223 CPU (3.60 GHz) processor equipped with a
Quadro P400 GPU.

In what follows, the feature sets used and the train and test
procedure are explained. Finally, the main task and attacker
results are reported under different scenarios.

A. Feature Sets

Two sets of clinical variables were investigated (Table III):
presentation blood tests from the first blood draw on arrival
to hospital and vital signs. Only blood test markers that are
commonly taken within existing care pathways and are usually
available within 1 h in middle and high-income countries were
considered here.

B. Training and Testing

The models are trained and tested in a binary classification
task in which the labels are confirmed PCR test results. As the
first step, the model is evaluated on the TRAIN set in a stratified
10-fold cross-validation scenario during which a threshold is
set on the ROC curve to meet the minimum recall constraint.7

Consequently, the model is trained on the TRAIN set and tested
on the holdout TEST data and results are computed using the
previously set threshold.

During training of the ADV model, the expectation is that
the accuracy of the main classifier increase over subsequent
epochs, and since the learning setup is such that discriminators
are constantly misled, performance is intended to be kept below
or around 50% accuracy. To test this assumption, the changes
in the trajectory of accuracy for the main and three auxiliary
tasks are plotted in the first 15 epochs. This is when the ADV
model is being trained on TRAIN set and before it is tested on
holdout TEST. As can be seen in Fig. 5, accuracy for the main
task keeps growing steadily while discriminator accuracy drops
below 50% and plateaus afterwards.

In Table IV the results are reported on the main task of pre-
dicting PCR results for all the models. The results demonstrate
that the models perform well at the main task, namely, predicting
the outcome of the PCR test.

C. Attacking Trained Networks to Predict Protected
Attributes

In order to asses how much privacy each model can provide
against an adversarial attack, a series of experiments are per-
formed in which 3 different non-adversarial Base models are
trained on the training data, with each corresponding to the
prediction of a different demographic attribute. In other words,
instead of predicting the PCR test result, a protected attribute
is provided as the label to train and test on. The experiments
are performed under the same conditions as the main task. The

7The idea behind calibration of recall is to make sure the false negatives do
not exceed beyond a certain point. In a hospital setting and in a pandemic, it
is too costly to send patients home with a false negative result or transfer them
to wards and potentially expose other inpatients to infection. Therefore, high
sensitivity is needed to give physicians confidence that negative results are truly
negative.
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TABLE II
HYPERPARAMETER VALUES USED FOR ALL THE EXPERIMENTS

TABLE III
CLINICAL PARAMETERS INCLUDED IN EACH FEATURE SET

TABLE IV
RESULTS FOR THE 4 DIFFERENT MODELS FOR THE OUH DATASET IN A 10-FOLD CROSS-VALIDATION SETTING WITH THE RECALL

VALUE SET AS 0.8± 0.07

TABLE V
ATTACKER RESULTS ON THE TEST SET WHEN TRAINED AND TESTED ON FEATURES DIRECTLY. THIS SERVES AS THE UPPER BOUND

FOR INFORMATION LEAKAGE

Fig. 5. Accuracy scores for the main and each of the three discrimina-
tors for each epoch.

attacker is first trained in a 10-fold cross-validation scenario and
a threshold is set based on the ROC curve with the minimum
recall constraint of 0.8± 0.07.

Subsequently, the attackers are trained on TRAIN set and
tested on the TEST portion of the dataset and predict the same
values given the obtained threshold set during 10-fold CV. These
results are important to the final interpretations of the model
privacy because they determine the upper bound for the most
amount of leak the proposed models can have. In Table V, the

TABLE VI
PERCENTAGE OF MAJORITY CLASS LABELS TO THE WHOLE

DATA FOR EACH DEMOGRAPHIC ATTRIBUTE

results are reported for trained attackers on the TEST portion of
the dataset given each protected attribute that was predicted.

The lower bound is the the majority class baselines in which
the attacker simply relies on some prior information about the
distribution of the protected attributes to predict these features
and does not make use of the obtained hidden representations.
For instance, if a dataset is obtained in Scotland, relying on the
known fact that the predominant ethnic category is British White,
the attacker would simply assign the same label to all of the
instances. Statistics about majority classes for each attribute is
given in Table VI in both TRAIN and TEST sets. As can be seen,
ethnicity is the most unbalanced category in comparison with
gender and age in which class labels are more equally distributed.

As the next step, the baseline and proposed adversarial models
are trained on the TRAIN set and the weights of the neural
networks are saved. Subsequently, the trained attackers are
loaded and tested, not on the feature directly this time, but
on the output of the encoder of the baseline and adversarially
trained models. The idea is that, if an adversarially trained model
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TABLE VII
ATTACKER RESULTS ON THE TEST SET WHEN TRAINED AND TESTED ON THE OUTPUT GENERATED BY THE ENCODER OF

THE NONADVERSARIAL BASE MODEL

TABLE VIII
ATTACKER RESULTS ON THE TEST SET WHEN TRAINED ON THE ENCODER OF THE BASE MODEL AND TESTED ON THE ENCODER OF THE ADV MODEL

TABLE IX
ATTACKER RESULTS ON THE TEST SET WHEN TRAINED ON THE ENCODER OF THE BASE MODEL AND TESTED ON THE

ENCODER OF THE ADVper MODEL

is indeed protecting demographic attributes, it should make it
harder for an attacker to predict those values from its encoded
representations in comparison with a baseline model that is not
specifically designed for preservation of privacy. Results shown
in Table VII already show a degree of privacy provided by the
non-adversarial encoder, as they indicate a noticeable decrease
in performance compared to Table V. The most marked decrease
is visible in prediction of gender, in which performance drops
from AUC of 0.9104 to 0.6926. In the case of age, however, the
attacker seems more robust.

Since the intention is to keep the attackers blind to the
encoding strategy used by the adversarially trained model, in
order to test the attackers on the ADV and ADVper models, the
same threshold which was set during 10-fold CV on the encoded
representation of the Base model is used here as well. Therefore,
to predict the three attributes, the attacker which is trained on the
non-adversarial encoder on the TRAIN set is loaded and then
tested on the ADV/ADVper model’s encoder.

The results in Tables VIII and IX confirm the assumption
that an adversarial learning procedure, either with separate
discriminator networks for each protected attribute or using
perturbation-based regularisation, provides a greater level of
privacy against attacks by an intruder that intends to recover this
information using a representation obtained from the model.

1) Demographic Cross-Testing to Asses Generalisability:
The application of an adversarial learning procedure to protect
selected attributes involves a training setup with competing
losses which is intended to weaken undesirable implicit asso-
ciations contained in the hidden representations of the network.
This is expected to result in a certain amount of performance drop
compared to the non-adversarial baseline. As long as this drop
is not massive, the performance-privacy trade-off is justified.
However, a more general concern is whether a model like ADV,
with its 3 different discriminators and the direct and specific
manipulation of its hidden representations would generalise

poorly when tested on certain demographic sub-populations of
the dataset. Since ADVper applies its regularisation without
specifically targeting any protected attributes, it is less likely
to suffer from this issue.

In order to investigate whether protecting demographic at-
tributes damages generalisability of the ADV, a series of exper-
iments were performed with the aim to train the Base and ADV
models only on one demographic group and then test them on
the other group. The adversarial model is compared with the
baseline to make sure that generalisability of the ADV model is
not hurt. Since there are 3 different binary attributes, there are 6
possible ways to cross-test the models. These subgroups are de-
noted with f (female), m (male), w (white), n (non-white), o (old),
and y (young).8 To restructure the dataset for these experiments,
in each case all the data is combined and TRAIN and TEST are
filtered based on the targeted demographic. For example ‘m2f’
would mean that the TRAIN set only contains females and the
TEST set only males. The results in Table X clearly indicate that
adversarial learning has not damaged generalisability in any of
scenarios in which the Base and ADV models were tested.

2) External Validation of the Models: In order to validate the
models on external data, Base, ADV, and ADVper are trained on
the OUH dataset (as described in Section IV-C) and later tested
on the entirety of the UHB, BH, and PUH datasets. The same
procedure is followed as the previous experiments: First 10-fold
CV is run on the OUH dataset and a threshold is set, and then the
models are tested on the external test data with the previously
obtained threshold. The hyperparameters were kept the same for
these experiments with the exception of ADVper which seemed
to converge better after 30 epochs during 10-fold CV. Tables XI,
XII, and XIII show the results of this experiment on the UHB,
BH, and PUH test sets, respectively.

8Old and young here are simply labels to distinguish the two age sub-groups
and do not necessarily reflect notions of young and old in society.
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TABLE X
RESULTS OF DEMOGRAPHIC CROSS-TESTS TO ASSESS THE EFFECTS OF ADVERSARIAL TRAINING ON GENERALISABILITY

ACROSS DIFFERENT SUBGROUPS OF THE DATASET

TABLE XI
RESULTS FOR THE MODELS WHEN TRAINED ON OUH AND TESTED ON THE UHB DATASET

TABLE XII
RESULTS FOR THE MODELS WHEN TRAINED ON OUH AND TESTED ON THE BH DATASET

TABLE XIII
RESULTS FOR THE MODELS WHEN TRAINED ON OUH AND TESTED ON THE PUH DATASET

VI. DISCUSSION AND CONCLUSION

In this work, two adversarially trained models were intro-
duced and evaluated for the task of predicting COVID-19 PCR
test results based on routinely collected blood tests and vital
signs. The data was processed in the form of tabular data.

In the experiments, the focus was on the issue of leakage of
potentially sensitive attributes that are implicitly contained in the
datasets, and how an attacker network can successfully retrieve
this information under different circumstances. Information like
age seemed to be easily inferred with high accuracy from the
features or from the hidden representation of the Base model.
In this case, ADV and ADVper models significantly reduced
this vulnerability, which highlights the protective power of
these adversarial methods in hiding such implicit information
against invasive models that are specifically trained to infer this
knowledge.

The same pattern was seen in the case of the other two demo-
graphic attributes, namely, gender and ethnicity. For ethnicity,
the representation was less informative to the attacker network
for the following two reasons:

1) A certain percentage of the patients had preferred not to
state their ethnicity. Since the intention was to keep all the
tasks binary, this category was treated as non-white which

is clearly sub-optimal. This further complicates ethnicity
prediction for the attacker.

2) There are limitations in the accuracy of documenting
ethnicity by hospital staff during data collection, which
may increase the amount of noise in the data.

However, even though the overall results are lower for the case
of ethnicity, the ADV model still shows better privacy compared
to the baseline. In such cases, the adversary is likely to rely on
prior knowledge of the dataset or general information about the
prevalence of ethnicity groups in the data, rather than the output
of the encoder.

The adversarial setup came with only a minimal performance
cost (Table IV) and proved robust both in the generalisability
tests (Table X) and in external validation on highly imbalanced
datasets (Section V-C2). More experiments (both at the level of
data and model) are needed to ascertain whether the same general
patterns can be seen under different conditions. Nonetheless,
these methods are not tied to the specifics of the Base model
and can be applied to any neural architecture. Furthermore, in
the case of the ADV model, the protected attributes need not be
demographic and theoretically any categorical feature of interest
(or any feature that can be meaningfully quantised) can be used
during training. Future work can also include experimenting
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with continuous features, in which the attacker would have to
guess the features in a regression task.

In regards to the balance between subject privacy and the
effectiveness of their diagnosis, any decisions would inevitably
involve a trade-off. In this work, the boundaries of a leak are
determined, in the sense that upper and lower bounds for the
amount of possible leak the attacker can potentially exploit is
explained. One cannot rely on absolute numbers only, as certain
facts about the dataset might not be practical to hide (e.g. If
an attacker knows the dataset was collected in Japan, it stands
to reason that the demographic attribute of almost all patients
would be ‘Asian’. Optimising for the model to completely hide
this particular attribute is unnecessary and the knock to the
performance would not be justified). Where the balance lies
depends on several different factors including the following: The
amount of background knowledge the attacker has of the model
and dataset, the majority class stats for the individual protected
attributes, how sensitive a particular piece of information is
that would justify obscuring the representation to, as much as
possible, protect it and accept the performance degradation, and
last but not least, how much the performance is reduced after
protecting an attribute. There is not one generic answer that can
formulate all of the following into a single decision making
formula and the specifics of each case determine where the
balance should lie.

To conclude, in this paper two effective methods were intro-
duced in order to protect sensitive attributes in a tabular dataset
related to the task of predicting COVID-19 PCR test result
based on routinely collected clinical data. The effectiveness
of adversarial training was shown by assessing the proposed
models against a comparable baseline both in the context of
the main task where it showed performance scores that were
by and large at the same level with the baselines and also in
the context of privacy preservation where a trained attacker
was employed to retrieve sensitive information by intercepting
the content of the models’ encoder. In the second scenario,
the adversarially trained models consistently showed superior
performance compared to the non-adversarial baseline.

For future work, this study can be expanded by including
a larger set of feature ranges for each protected attribute and
numerical features can also be included. Scenarios where the
attacker has access to gradient updates or can fully observe all
the weights from the entire network can also be explored. Future
experiments can be designed with the aim for the attacker to
reconstruct a larger set of attributes in a single run.
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