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A 2.5D Deep Learning-Based Method for
Drowning Diagnosis Using Post-Mortem
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Abstract—It is challenging to diagnose drowning in au-
topsy even with the help of post-mortem multi-slice com-
puted tomography (MSCT) due to the complex pathophys-
iology and the shortage of forensic specialists equipped
with radiology knowledge. Therefore, a computer-aided di-
agnosis (CAD) system was developed to help with diagno-
sis. Most deep learning-based CAD systems only utilize 2D
information, which is proper for 2D data such as chest X-ray
images. However, 3D information should also be consid-
ered for 3D data like CT. Conventional 3D methods require
a huge amount of data and computational cost when using
3D methods. In this article, we proposed a 2.5D method that
converts 3D data into 2D images to train 2D deep learning
models for drowning diagnosis. The key point of this 2.5D
method is that it uses a subset to represent the whole case,
covering this case as much as possible while avoiding
other repetitive information. To evaluate the effectiveness
of the proposed method, conventional 2D, previous 2.5D,
and 3D deep learning-based methods were tested using
an MSCT dataset obtained from Tohoku university. Then,
to provide explainable diagnosis results, a visualization
method called Gradient-weighted Class Activation Mapping
was employed to visualize features relevant to drowning
in CT images. Results on drowning diagnosis showed that
our proposed method achieved the best performance com-
pared to other 2D, 2.5D, and 3D methods. The visual as-
sessment also demonstrated that our method could find the
saliency regions corresponding to drowning.

Index Terms—Computed tomography, drowning, deep
learning, computer-aided diagnosis, explainability.
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|. INTRODUCTION

CCORDING to a report from World Health Organization,

drowning is the third leading cause of unintentional death
worldwide [1]. In forensic medicine, diagnosing via autopsy is
challenging due to its non-specific pathophysiology [2]. Mean-
while, on routine autopsy, the macroscopical appearance of the
cut surface of the drowned lung may be light red with small
amounts of blood and large quantities of edema fluid. Such
gross observation has limitations in the evaluation of pulmonary
edema, but autopsy imaging like computed tomography (CT),
can give reliable pulmonary information noninvasively [3].
Common features such as ground-glass opacity with thickened
pulmonary interstitium can be found in CT, however, these
findings are not specific for drowning either [3], [4]. Considering
the challenges mentioned above and the shortage of forensic
specialists who are also equipped with radiology knowledge,
computer-aided diagnosis (CAD) systems can be developed to
provide reference information.

It is hard to express lesions quantitatively by handcrafted
features when classifying a medical image using a CAD system.
Deep learning can extract representative features automatically
through the training process. Thus, we can use those features for
image classification. Our previous work on drowning diagnosis
using post-mortem lung CT images showed the feasibility of the
deep learning-based CAD system [5]. Then we further improved
the CAD system with higher accuracy and visually explainable
information [6]. These studies conducted slice-wise classifica-
tion by training 2D-DCNNs with every single slice of each case,
then calculated a case-wise result by averaging all slice-wise
results. Such calculation was unsuitable for 3D data because
information along the longitudinal axis was not included. Thus,
training 3D models with 3D data might be a solution. Some
studies have shown the feasibility of 3D-DCNNs in medical
imaging, such as the glaucoma detection with 3D optical coher-
ence tomography [7], or classifying liver tumors by using 3D
magnetic resonance imaging (MRI) [8]. However, a 3D-DCNN
has several times more parameters than its 2D-DCNN, which
is also challenging due to the small-scale dataset and expensive
computational cost.

2.5D methods that reshape 3D data into 2D data and use
the reshaped data to train 2D-DCNNs were developed to find
a compromise between computational cost and the performance
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of models. There are already some works using 2.5D methods
for medical image analysis. A study [9] converted 3D digital
subtraction angiography data into 2D images and trained a 2D
model for intracranial aneurysms classification. Alkadietal. [10]
used a 2.5D method for prostate cancer detection on MRI by
putting every three consecutive slices of the input volume to
the RGB dimension. A 2.5D lymph node detection method [11]
was proposed by re-sampling the 3D volume of interest (VOI)
centroid into 2D orthogonal views. The re-sampled views were
then used to train a 2D-DCNN. These works obtained good clas-
sification results but have yet to go further on explainability. Due
to the underlying black-box nature of the deep learning method,
there needs to be more explicitly representing the knowledge for
a given classification task. The lack of inspecting the behavior of
models affects the use of deep learning in all domains, especially
medical image diagnosis, where explainability and reliability
are the key elements for trust by the end-user [12]. For example,
Shi et al. [13] proposed an explainable attention-transfer classi-
fication model for COVID-19 automatic diagnosis to generate
more understandable results. Instead of giving simple positive
or negative classification results, explainable visualizations can
show why the model gave such results and therefore make the
model more reliable.

In this study, we developed an explainable 2.5D method
to utilize 3D information of multi-slice CT (MSCT), which
can provide case-wise classification rather than slice-wise. To
evaluate the explainability of our method, Gradient-weighted
Class Activation Mapping (Grad-CAM). [14] was employed
to produce a coarse localization map highlighting important
regions in the image for predicting a concept (such as drowning
or non-drowning). Experiment results showed that clearer and
more consistent attention could be achieved using the proposed
method. We also discussed the coherency between the attention
of models and the judgment of forensic specialists. The contri-
butions of this study are:

1) This work presents the first case-wise explainable CAD
system for drowning diagnosis.

2) We proposed a 2.5D method to convert 3D MSCT data
into 2D images, which can be used to train 2D deep learn-
ing models. Considering the small amount of available
data and the computational cost of 3D models, our study
has provided a competitive way to deal with 3D medical
data in deep learning.

3) Compared to most studies that only presented the devel-
opment of CAD systems, we also evaluated its explain-
ability by checking the correspondence between the atten-
tion of models and the judgement of forensic specialists.

[I. DATA AND METHODS
A. Dataset and Pre-Processing

Post-mortem MSCT scanning as part of the pre-autopsy
screening was performed on an eight-channel scanner (Aquilion:
Toshiba Medical Systems, Japan). We obtained axial conven-
tional scan images of the chest with a protocol of 135 kVp,
190-250 mAs, M-sized field of view (FOV), and 1.0 mm slices
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Fig. 1. The form of four-row MSCT image data for lung areas. Six or
seven discrete regions with 30 mm intervals were obtained for drowning
diagnosis. Each region consisted of four consecutive slices with 1 mm
thickness. Here is an example with six regions (denoted by R:-Rg).

TABLE |
ToTAL NUMBERS OF DIFFERENT CASES FOR EACH CLASS
Class 24-slice 28-slice
Non-drowning 40 113
Drowning 51 109

(a) original image

(b) pre-processed image

Fig. 2. An original image (a) and the pre-processed image (b).

(size 512 x 512 pixels) every 30 mm through the chest in four-
row multi-slice mode and processed with lung kernel settings.
Every four slices compose aregion, and there are six(24 slices) or
seven regions (28 slices) in a case due to individual differences,
such as stature. Fig. 1 shows an example of a 24-slice case.
Though the MSCT data is not continuous and different from the
helical CT, it is sufficient for forensic radiologists and used as a
general pre-autopsy scanning. In total, we obtained 313 cases,
including 153 for non-drowning and 160 for drowning, as listed
in Table 1. The test set consisted of 50 cases, including 25 for
non-drowning and 25 for drowning. Each class had four cases
with 24 slices and 21 cases with 28 slice case. We randomly split
15% of the training set into validation set, which would not be
used for training or testing.

Pre-processing was applied to remove the background. Due
to post-mortem factors such as putrefaction and rigor mortis, we
segmented the body as foreground instead of the thoracic cavity.
As shown in Fig. 2, given an original image (a), we first divided
the image into foreground and background based on Otsu’s
method [15]. Then morphological processing was conducted to
remove bags that covered the body and the bed under the body.
Finally, we obtained the pre-processed image (b).

All cases used in this study had then undergone autopsy by a
forensic specialist having autopsy experience for more than 30
years. The ground truth (drowning or non-drowning) was given
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(a) Original data (Slice-data (b) Con-data

Fig. 3. Examples of 2.5D data generation. (a) An original CT case
with 24 slices (six regions denoted by Ri, Ras,..., R, and four slices
in each region). (b) Slices were selected in an equally-spaced way and
concatenated into a new image named Con-data so that a 2D image
could represent information about this case.

based on a comprehensive judgment, including the pre-autopsy
screening, the investigation of the death scene by the police, and
medicolegal autopsies including drug screens and diatom tests.
The use of MSCT images for this study was approved by the
ethics board of Tohoku University (protocol number: 2021-1-
495; date: 2018-09-18). Informed consent was not required for
this research.

B. Generation of 2.5D Data

A single slice only provides information in the transverse
plane, so 3D anatomical information was lost during the training
process, which led to unreliable results. On the other hand, 3D
deep learning-based methods have been widely used for 3D
medical data like CT or MRI. Nevertheless, 3D-DCNNs often
have much more parameters to be trained, and the small-scale
data and expensive computational cost generally restrict their
performance. Therefore, we proposed a 2.5D method that con-
verts 3D data into 2D images, named Con-data, and trained them
on 2D-DCNNE.

This method is context-aware as it can provide information in
the transverse, coronal, and sagittal planes, making it possible to
utilize all spatial information on 2D models. As shown in Fig. 3,
(a) is an example of a 24-slice MSCT that contains six regions.
Six slices of 512 x 512 pixels were selected out from each region
with the same interval and concatenated into a new Con-data (b)
of 3072 x 512 pixels. In addition, the receptive field of neurons
of DCNNs ensures that convolutional filters produce a strong
response to local input patterns. This means DCNNs are not
sensitive to the absolute position in the field. Therefore, the way
of concatenating images does not affect the results. Four subsets
can be obtained for this case as shown in (b). For a 28-slice case
that contains seven regions, we applied the same procedure in
regions R;-Rg, and regions Ra-R7, so eight subsets would be
generated.

(a) Original CT data (Slice-data) (c) Ch-data
J : B =
QR 'e’c'egt €>

S f
Fig. 4. An example of Ch-3 [10]. Three slices from consecutive re-

gions (e.g., Re, R3, and R4) of an original CT case (a) were put into
different channels (b) and formed as a new color image (Ch-3) (c).

(b) Different channels
| B e |

TABLE Il
SHAPES AND THE NUMBER OF DIFFERENT DATA PER CASE

Shape Number per case (n)

Data Type HxWxC 2dslice  28-shice
Slice-data 2D 512 x 512 x 1 24 28
Ch-3 [10] 2.5D 512 x 512 x3 16 20
Ch-6 2.5D 512 x 512 x 6 4 8
Con-data 2.5D 3072 x 512 x 1 4 8
3D-6 3D 512 x 512 x 6 4 8
3D-24 3D 512 x 512 x 24 1 2

There are two noteworthy points here. First, we selected ‘six
slices’ here to cover the whole case (R1-Rg) as much as possible
while avoiding repetitive information (consecutive four slices
in the same region). Second, we did not directly concatenate
seven slices for 28-slice cases because to train both 24-slice
and 28-slice cases together, we have to keep the input shape the
same. If we resize an image from 3584 x 512 (R;-R7) into 3072
x 512, then there would be severe longitudinal deformation
that makes the lung appear squashed. Furthermore, our data-
generation method could be a flexible way to deal with other
possible data (e.g., a 32-slice case) in the future.

For better evaluation, we also adopted another type of 2.5D
data mentioned in a related study [10], named Ch-3, as shown in
Fig. 4. Ch-3 (size 512 x 512 x 3) is constructed by rearranging
three different MSCT slices into RGB channels (three primary
colors: red, green, and blue) of a color image. To make a fair
comparison with Con-data, we also extended Ch-3 into Ch-6
with size 512 x 512 x 6. For a Ch-3 image, the same as how
we picked out slices for Con-data, taking a 24-slice case as an
example, we took three slices from regions R;-R3, then Ro-Ry,
Rs-Rs, and R4-Rg, and finally we would obtain 16 subsets from
this case.

To show the superiority of our 2.5D method, we carried
out experiments using conventional 2D and 3D methods. The
conventional 2D method is to train 2D models with every single
slice (named Slice-data), as was done in previous works [5], [6].
The 3D method is to train 3D models with 3D data, named 3D-6
and 3D-24. The 3D-6 used the same method to pick out six slices
from each case and reformed them into a sub-volume so as to
make it comparable with Con-data. The 3D-24 used all 24 slices
for a 24-slice case, or the first 24 slices and the last 24 slices for
a 28-slice case.

Shapes in Height x Width x Channel (H x W x C) and the
number (n) of generated data per case are shown in Table II. Here
the number n can also represent how much the generated data
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Schematic diagrams of AlexNet, VGG16, and InceptionResNetV2 used in this study. Blue boxes mark out the modified layers. 2D and 3D

versions of AlexNet and VGG 16 have the same architecture except for different operators and input dimensions.

covers the overall case. The smaller the n is, the more regions it
covers. n = 1 means that the data is the volumetric case itself.

C. DCNN Models

For all the 2D and 2.5D data, we adopted three 2D-DCNN5
named AlexNet [20], VGG16 [21], and Inception-ResNet-
V2 [22] (InResV2) in this study. AlexNet and VGG16 were used
in previous studies [5], [6]. Meanwhile, to test whether better
performance can be obtained from a deeper model, we chose
the more advanced InResV2 as it combines the characteristics
of InceptionNet and ResNet, with higher performance but lower
computational cost. The original AlexNet and VGG16 have
more than 61 million (M) and 138 M of parameters, which would
lead to overfitting easily on our small-scale dataset. InResV2
has over 460 layers, 20 times more than VGG16, but only 55 M
of parameters. A compressed view of the three models used in
this work is given in Fig. 5. As the blue boxes show, to reduce
the parameters of AlexNet and VGG16, the original layers on
top of the last convolutional block were replaced by a global
average pooling layer, two smaller fully-connected (FC) layers
with 256 and 64 neurons, and a softmax layer. We determined
the neuron numbers of FC layers empirically. For all the 3D data,
we only adopted 3D versions of AlexNet and VGG16 to make
parallel comparisons with 2D-DCNNS, and they had the same
architecture as the 2D versions mentioned above. InResV2 was
not included because it is too deep to be applied in 3D.

Notice thatin Table II Ch-6 and 3D-6 have the same shape, and
are actually the same data. The difference lies in how we treated
them: 2D convolution for Ch-6 and 3D convolution for 3D-6.
For a 2D convolution layer, when the input has more than one
channel (e.g., a Ch-3 or Ch-6), the filter should match the number
of input channels (three channels for a Ch-3, six channels for
a Ch-6). Since they have the same number of channels, the
convolutional filter moves along the x and y axis, thus called as a
2D convolution. To calculate the output, we perform convolution
on each matching channel, then add the results together to get
one feature map. In terms of a 3D convolution layer, the filter

could have the different number of channels, and it moves along
the X, y, and z axis, thus called as a 3D convolution. Instead
of getting one feature map after the 2D convolution, the output
shape of a 3D convolution is a 3D volume space such as a cube
or cuboid.

When training models, transfer learning [24] is a widely
used technique because it transfers the knowledge learned from
ImageNet [25], a huge dataset containing 1.3 million natural
images of 1,000 classes, to the target domain and fastens the
convergence. Although some training processes could benefit
from transfer learning, the transferability of features decreases
due to the huge differences between the source domain (the
large-scale natural images of ImageNet) and the target domain
(our small-scale MSCT drowning dataset) [26]. Meanwhile,
there is no the same available pre-trained model for 3D-DCNNSs,
so all models were trained from scratch.

To increase the diversity of our small-scale dataset, we car-
ried out data augmentation by applying rotation, horizontal or
vertical flipping, and height or width shifting to the original
Slice-data. The same operation was done on those slices simul-
taneously for all the 2.5D and 3D data. The loss function was
categorical cross-entropy, and the optimizer was Adam with a
learning rate of le-5 and a decay rate of le-6. To determine
whether the training was done, early stopping was applied to
stop training when the validation loss was no longer decreasing
in 10 epochs. Since changing these hyperparameters does not
influence the conclusion of experiments in any significant way as
long as the models were able to converge [27], [28], we used the
same configuration mentioned above for all 2D and 3D models.

D. Saliency Visualization

To evaluate our proposed method and give explainable results,
we employed a saliency visualization technique called Grad-
CAM to show the highlighting areas of models on a given input
image. In this way, we can compare the coherency between
highlighting areas of models and the judgement of forensic
specialists. A brief demonstration of how to apply Grad-CAM
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Fig. 6. A demonstration of saliency visualization. Given an inputimage
(a), we compute the gradient of the score for a target class (e.g., drown-
ing), with respect to feature maps (b) of the last convolutional layer.
This gradient is then global-average-pooled to obtain neuron importance
weights, which are then combined with feature maps to calculate the
coarse localization map (c). Finally, the localization map is projected
onto (a) to obtain the saliency visualization (d).

is shown in Fig. 6. After an image (a) is fed into a trained
DCNN model, we compute the gradient of the score for a target
class (e.g., drowning) with respect to feature maps (b) of the
last convolutional layer. This gradient is subsequently global-
average-pooled to obtain the neuron importance weights, which
capture the importance of each feature map for the target class.
Then a linear combination is performed on feature maps with
weights to get a coarse localization map (c). Finally, we project
the localization map onto the input image to obtain a saliency
visualization (d). The color bar next to the localization map
(c) depicts the score for the target class. Warmer (red) regions
correspond to a higher score for the target class, showing model’s
stronger attention in this area. Based on the visualization, we
can further evaluate whether the attention of the model match
the human expert’s knowledge. Details on Grad-CAM algorithm
can be found in the original study by Selvaraju et al. [14].

Ill. RESULTS
A. Drowning Diagnosis

As mentioned in Table I, the number n of different image data
types varies for one case. Thus, we calculated the subset-wise
and case-wise performance of each type of data in this study.
As evaluation indexes, we used accuracy, false positive rate
(FPR), false negative rate (FNR), receiver operating characteris-
tic (ROC) curve, and area under the ROC curve (AUC). Instead
of using the default threshold of 0.5 for binary classification,
we chose the maximum Youden’s index .J [29] to find out the
optimal cut-off point of models. The J ranges from 0 to 1,
and higher J means better performance of the dichotomous
diagnostic test. Definitions of subset-wise and case-wise results
are as follows:

1) Subset-wise: To decide whether the generated data is N
(non-drowning) or P (drowning), we can directly check
the class label outputted by the model. Then subset-wise
results are calculated according to:

Accuracy = (TN+TP)/(TN+TP+FN+FP)

2) Case-wise: To decide whether a test case is N (non-
drowning) or P (drowning), we calculated the sum of
predicted probabilities prob; of class labels for each image
data of the same case (see Fig. 6). Then we can obtain
case-wise results according to:

case = N, if% >, prob, < 0.5
B if% Z?:l prob, > 0.5

where n is the number of generated data per case
(Table II). After the classes of all cases were decided, we
calculated the case-wise accuracy and FPR using the same
definition as subset-wise results. Ideally, subset-wise and
case-wise results of Con-data should be almost the same,
as well as 3D-6, because they are designed to represent a
case using a single piece of data.

Based on the subset-wise classification results, ROC curves
and AUC values are given in Fig. 7 (case-wise ROC-AUCs are
omitted because they are calculated from subset-wise results).
Since values of TPR and FPR change as the threshold for the
predicted probabilities varies, We used the maximum value of
Youden’s index J to select the optimum cut-off points rather
than the default threshold of 0.5 for ROC curves. When using
2D-DCNN models, on the one hand it can be observed from (a),
(b), and (d) that AUCs and Youden’s index J were improved
as the information contained in the input data increased. On
the other hand, Ch-6 (¢) had more information, but the models’
performance was worse than that of Ch-3 (b) due to the overlap
among too many channels. The best results on Con-data are not
only because of the larger input size, which will be explained
in the following subsection. Meanwhile, the Con-data (d) out-
performs the Ch-6 (c) and 3D-6 (e) though they contain the
same information, which proves the effectiveness of this 2.5D
method. Regarding 3D-DCNN models, their performance de-
creased significantly because there were many more parameters
to be trained and their huge computational cost. That is why
in Fig. 7(e), (f) results of 3D-VGG were worse than that of
3D-AlexNet, as it has more than tens of times of parameters.
Also, we can see from (c) and (f) that results on Ch-6 and 3D-24
were the worst out of the same type / all types of data, even
though they contained the most information of cases.

Table IIT summarizes the subset-wise and case-wise classifi-
cation accuracy, FPR, and FNR based on Youden’s index .J on
test set, as well as the running time (second):

1) 2D, 3D vs. 2.5D: Models performed their best on Con-
data, on which InResV2 had reached the highest accuracy
while maintaining the lowest FPR, FNR, and running
time. VGG16 showed almost equal performance, suggest-
ing that the classification results might not benefit from
increasing the depth of networks. Although high accuracy
was obtained on Ch-3, it also showed a higher FPR and
FNR (smaller J). At the same time, although Ch-6 and
3D-6 (512 x 512 x 6) had the same input size as Con-data
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Fig. 7.
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Subset-wise ROC curves and AUC values of different models on each type of data. Points on the curves are the optimum cut-off points
that are selected by the maximum value of the Youden’s index .J.

TABLE Il
SUBSET-WISE AND CASE-WISE ACCURACY, FPR, FNR (BASED ON YOUDEN’S INDEX .J), AND RUNNING TIME (S) ON THE TEST SET

D Youden’s J Accuracy FPR FNR Running Time
ata Model -
subset  case subset  case subset  case subset  case subset  case
Slice-data 2D-AlexNet 0.638 0.720 0.819 0.860 0.127 0.120 0.235  0.160 1.9 45.6
D) [5]. [6] 2D-VGGI16 0.646  0.680 0.823 0.840 0.202 0.160 0.152 0.160 2.3 55.2
’ 2D-InResV2 0.728 0.800 0.864 0.900 0.145 0.080 0.127 0.120 3.9 93.6
Ch-3 2D-AlexNet 0.753 0.840 0.876 0.940 0.107 0.080 0.140 0.040 1.9 30.4
(2.5D) ‘[10] 2D-VGG16 0.741 0.760 0.871 0.880 0.112 0.040 0.147  0.040 2.3 36.8
’ 2D-InResV2 0.806 0.840 0.903 0.920 0.095 0.120 0.099  0.040 39 62.4
Ch-6 2D-AlexNet 0.636  0.640 0.878 0.820 0.304 0.320 0.060  0.040 1.9 30.4
(2.5D) 2D-VGGl6 0.505 0400 0.753 0.700 0.348 0.440 0.147  0.160 2.3 36.8
’ 2D-InResV2 0.701  0.600 0.851 0.800 0.087 0.080 0.212  0.320 39 62.4
Con-data 2D-AlexNet 0.788 0.760 0.894 0.880 0.098 0.120 0.114  0.120 2.1 8.4
(2.5D, proposed) 2D-VGGl6 0.848 0.800 0.924 0.900 0.043 0.040 0.109 0.160 4.2 16.8
e 2D-InResV2 0.853 0.840 0.927 0920 0.087 0.120  0.060 0.040 4.1 16.4
3D-6 3D-AlexNet 0.745 0780 0.872  0.880 0.087 0.120 0.168  0.120 2.8 11.2
(3D) 3D-VGGI16 0.549 0.520 0.774 0.760 0.342  0.440 0.109  0.040 4.2 16.8
3D-24 3D-AlexNet 0.587 0.520 0.793 0.760 0.196 0.280 0.217  0.200 3.0 3.0
(3D) 3D-VGGl6 0478 0.520 0.739 0.760 0.370 0.440 0.152  0.040 5.6 5.6

*Here we take the n of 24-slice case to calculate case-wise times.

(3072 x 512), they had different information structures,
which led to the difference in the result. Some information
among slices of Ch-6 and 3D-6 was lost during the op-
eration of 2D and 3D convolution and pooling, but these
information was maintained by rearranging those slices
into the same channel (Con-data).

Difference between subset-wise and case-wise results: It
is worth noting that subset-wise and case-wise accuracy
were almost the same on Con-data, 3D-6, and 3D-24,
whereas huge differences appeared on Slice-data, Ch-3
and Ch-6. This means the proposed 2.5D method could
represent a 3D case using a 2D image, and we could
directly obtain case-wise classification using a single
piece of Con-data.

3) Running time: Con-data could be more effective as it takes

much less time when predicting a whole case. Although
the prediction time per image for Con-data was the highest
among 2D models, it is feasible to use a single piece of
Con-data to represent a whole case based on 2). Thus,
we can further reduce the case-wise prediction time to
around 4 seconds.

B. Saliency Visualization

By applying the Grad-CAM, we could highlight areas thatrep-
resent the significant areas on the image for drowning prediction.
Fig. 8 shows the saliency visualization of Slice-data (b), Ch-3
(c), 3D-6 (d), and Con-data (e) on a 24-slice drowning case. The
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Original data

(®)
Slice-data
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Ch-3

(d)
3D-6

O]
Con-data

Fig. 8.

Saliency visualization (horizontally displayed for a better view) of six slices of a 24-slice drowning case with true positive predictions on

Slice-data, Ch-3, 3D-6 and Con-data using 2D and 3D-VGG16. Ch-6 and 3D-24 are omitted because saliency maps were the same for all channels
of Ch-6, and little variation can be observed from slices in each region of 3D-24. The most concerned areas of forensic specialists are marked out
with red circles. The solid/dashed circles represent the areas that the model had/had not paid attention to. (a) shows the pre-processed original
data. When using Slice-data (b), many unrelated areas were activated, and attentions between slices were inconsistent. The visualization on Ch-3
(c) was not readable because of the overlap of different channels. 3D-6 (d) could provide more consistent and readable attention than Slice-data
and Ch-3, but there were many messy and unrelated highlighting areas. Con-data (e) presented the clearest and the most consistent attention.

Ch-6 and 3D-24 are not displayed here because saliency maps
were the same for all channels of Ch-6 and slices in each region
were almost the same in 3D-24. Six original images from each
region (R to Rg, see Fig. 1) were displayed on the top and were
all correctly predicted as drowning by InResV2. Features/areas
that forensic specialists are concerned most during diagnosis
are marked out in (a) with red circles (e.g., lung lesions, liquid
in trachea and others). Corresponding highlighting areas of
InResV2 model are also marked out in (b), (d), and (e), where
the solid/dashed circles represent areas the model had/had not
focused.

It can be observed from Slice-data (b) that the model had
focused on correct areas but more on unrelated areas. Also, areas
among slices were inconsistent, suggesting the model learned no
contextual information. For Ch-3 (c), although high prediction
accuracy can be achieved on it, the visualization was not even
readable because of the overlap of different channels. Compared
to other data, 3D models with 3D-6 (d) can capture the relative
positions of the trachea and esophagus, and lung lesions. How-
ever, it is also because of 3D operators and the noncontinuous
data leading to the unneeded activation on body, spine, and

even artifact on the background. Finally, the clearest and most
consistent attention was obtained on Con-data (d), with almost
the same highlighting areas as forensic specialists’ concerns,
except those marked with dashed circles. In the autopsy process,
solid or fluid in the trachea (unfocused areas) would be one of
the considerations for drowning. However, it is not a specific nor
discriminative factor, as such a situation can occur in subjects
who suffer from heart failure or other diseases. It is reasonable
for the model to predict only based on lung lesions because of
the non-specific pathophysiology of drowning. Still, we expect
models to see all features as much as possible while paying no
attention to unrelated parts as forensic specialists do. Detailed
findings in different data types will be discussed in the next
section.

IV. DISCUSSIONS

Although models have shown high classification perfor-
mance, it is necessary to give explainable results considering the
black-box nature of deep learning. Fig. 9 shows the same 24-slice
drowning case as Fig. 1. The forensic specialists’ concerned
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(a) Original data

Fig. 9.

Findings of a 24-slice drowning case with true positive predictions on Slice-data, 3D-6, and Con-data. The solid/dashed lines represent

areas that the model had/had not paid attention to, respectively. We marked out findings that were most concerned by forensic specialists in (a)
with red circles, some unrelated highlighting areas with yellow, and some not significant but correct highlighting areas with brown.

areas are marked out with red. These area included typical
findings of liquid in the trachea and esophagus (dashed circle) in
(a) R, granular opacities (arrow) in (a) Ro, reticular interstitial
pattern (arrow) and pleural effusion (arrowhead) in (a) R5, and
ground-glass opacities (arrow) in (a) Rg. When using Slice-data
and 3D-6, the model would focus on many other incorrect areas
(yellow), such as vessels (arrow) in (b) Ry and (c) Ry, ribs
(arrowhead) in (b) R3-R5, and spines (arrowhead) in (c) Rs-Rg.
Forensic specialists did not consider these unrelated areas during
diagnosis and thus cannot prove the validity of prediction results.
Highlighted areas of Con-data (d) corresponded to most findings
marked in (a), and some other correct but not significant areas
(brown) can also be found, such as ground-glass opacities in
R5. As we mentioned in the former section, the unfocused part
of the trachea and esophagus in Con-data is not specific to
drowning, so it is reasonable for the model to give prediction
based on lung lesions. By showing the comparison above, Fig. 9
has proved that 2D models with Con-data could perform well
and give explainable results that correspond to the drowning
diagnosis. Nevertheless, we still would like to improve models
in our future work to make the models’ attention closer to how
forensic specialists diagnose drowning (taking all factors into
consideration whether they are specific or not).

However, models might fail to classify some hard cases that
were difficult to diagnose even from the perspective of autopsy

due to their complicated pathophysiology. For example, Fig. 10
shows a non-drowning case misclassified as drowning using
Con-data. Three models in this study failed to classify it using
all types of data. Models wrongly focused on the diaphragmatic
surface of the liver in R (yellow) but correctly focused on many
typical findings in images, such as ground-glass opacities that are
marked out with red in Ry, R3, and R5. However, these findings
may also appear in other diseases or symptoms like edema.
We can see edema-like pattern caused by the cardiopulmonary
resuscitation in this non-drowning case. Such lung lesion and
liquid in the airway made this case very similar to a drowning
case even for forensic specialists. Considering the complex
pathophysiology of drowning, in addition to referring to the
results provided by MSCT, it is still necessary for forensic
specialists to give a final diagnosis based on other information,
such as the environmental situation and what circumstances
bodies were found.

Besides, we can find some inconsistency among models’ high-
lighted areas in Fig. 10. Although the three models gave the same
prediction of drowning and focused on mostly the same areas,
some inconsistent activation existed in R4 and 5. This might be
caused by the differences in models’ architecture. Such incon-
sistency problems should be handled carefully in future work
by adding a strong constraint to models’ attention to provide
more convincing and explainable results. Furthermore, due to
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AlexNet VGGI16 InResV2
Fig. 10. A false positive example on Con-data of a 24-slice non-drowning case and its visualization on AlexNet, VGG16, and InResV2. Three

models gave the same prediction of drowning. A common finding (e.g., ground-glass opacities) is marked out with red circles. An incorrect focusing
of the diaphragmatic surface of the liver is marked out with the yellow circle.

the particularity of autopsy images, we did not perform external
validation because it is tough to obtain reliable dissection-proved
autopsy imaging data. However, we would like to conduct data
normalization or generalized domain adaption to deal with data
from different imaging and verify the generalizability of the
system in our future studies.

V. CONCLUSION

In this study, we proposed a 2.5D deep learning-based CAD
system for drowning diagnosis. Different 2D and 3D-DCNN
models were trained using 2D data (Slice-data), 2.5D data
(Ch-3, Ch-6 and Con-data), and 3D data (3D-6, 3D-24). Then
the Grad-CAM was applied to obtain saliency visualization
of models. Experiment results had shown the superiority and
effectiveness of Con-data, as it could provide accurate case-wise
classification and decent visual feedback to forensic specialists.
Further research could be carried out to regularize the attention
of models or utilize spatial information better by using channel-
attention or depth-wise convolution to Ch-3, Ch-6, or other 3D
data and evaluate whether features extracted by models agree
with forensic knowledge.
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