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A Spatiotemporal Graph Attention Network
Based on Synchronization for
Epileptic Seizure Prediction

Yao Wang

Abstract—Accurate early prediction of epileptic seizures
can provide timely treatment for patients. Previous stud-
ies have mainly focused on a single temporal or spatial
dimension, making it difficult to take both relationships into
account. Therefore, the effective properties of electroen-
cephalograms (EEGs) may not be fully evaluated. To solve
this problem, we propose a spatiotemporal graph atten-
tion network (STGAT) based on synchronization. The spa-
tial and functional connectivity information between EEG
channels was extracted by using the phase locking values
(PLVs) first, which allowed multichannel EEG signals to be
modeled as graph signals. Afterward, the STGAT model was
used to dynamically learn the temporal correlation proper-
ties of EEG sequences and explore the spatial topological
structure information of multiple channels. Experimental
results demonstrated that the STGAT model was able to ob-
tain spatiotemporal correlations and achieve good results
on two benchmark datasets. The accuracy, specificity and
sensitivity were 98.74%, 99.21% and 98.87%, respectively,
on the CHB-MIT dataset. Moreover, all evaluation indices of
the private dataset had reached more than 98.8%, with the
area under the curve (AUC) reaching 99.96%. The proposed
method is superior or comparable to the state-of-the-art
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models. Extensive experiments demonstrate that our end-
to-end automatic seizure prediction model can be extended
to design clinical assistant decision systems.

Index Terms—Epilepsy, graph attention network, seizure
prediction, spatiotemporal correlation, synchronization.

|. INTRODUCTION

PILEPSY is a brain disorder caused by abnormal syn-
E chronous discharges of neurons. Seizures affect the en-
tire central nervous system, manifesting as conscious, motor,
vegetative and psychiatric disturbances. The disability-adjusted
life years (DALYSs) of epilepsy rank second among neurological
disorders [1]. Approximately 50 million people worldwide are
currently suffering from epilepsy [2], which severely affects all
aspects of life, including their physiological and psychological
function. A major challenge that results from this disease is
the unpredictability and uncontrollability of seizure attacks.
If a reliable seizure prediction algorithm can be designed, it
can enable health care workers or patients to take effective
measures in advance to reduce or even avoid the damage caused
by seizures. Furthermore, it may promote the improvement of
automatic diagnosis, prediction and analysis systems of epilepsy,
which is of practical significance to reduce patient distress and
improve their quality of life.

EEQG is a recording of voltage fluctuations caused by electri-
cal activity on the surface of the scalp. As one of the oldest
neurophysiological techniques, it facilitates the identification
of normal and abnormal events occurring in the human brain
and reveals the dynamic changes caused by seizures. Hence, it
is widely used in studies related to seizure detection [3], [4],
[51, [6], seizure prediction [7], [8], [9] and the localization of
epileptic focus [10], [11], [12].

The seizure process of epilepsy is progressive, with distinct
state changes in EEG signals at different periods [13], [14].
Researchers have divided the seizure process into four distinct
periods: the interictal, preictal, ictal and postictal stages. The
focus of seizure prediction is the accurate identification of the
preictal stage. It is achieved by defining the length of preictal
data for different tasks and discriminating between interictal and
preictal data to select the preictal signal.

Traditional machine learning methods are based on a manual
feature extraction approach, which usually can only focus on a
single dimension of information and can only classify a single
channel or focused channels [15], [16], [17]. Since the brain
is a global structure, this undoubtedly results in the loss of
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important EEG information. EEG signals have millisecond tem-
poral resolutions as well as spatial resolutions on the centimeter
scale. Therefore, to achieve accurate seizure prediction, both the
spatial correlation and temporal dependence of EEGs must be
considered. Benefiting from the development of deep learning,
researchers have started to use it for the integrated analysis
of EEG spatiotemporal information and have obtained good
results [18], [19].

Noting that current studies of EEG signals have focused on
time-frequency analyse and ignored the influence of spatial
factors, Ma et al. [20] introduced the channel and spatial atten-
tion (CASA) into batch normalization long short-term memory
(BNLSTM) [21] to preserve the spatial and temporal informa-
tion of EEGs. Sun et al. [22] proposed the channel attention
dual-input convolutional neural network, which can synthesize
the time-domain, frequency-domain and spatial information of
EEG data to achieve accurate seizure prediction of real, repre-
sentable EEG signals.

However, the electrode distribution properties of EEGs
present a non-Euclidean topological structure. Therefore, rep-
resenting the EEG as a two-dimensional signal may cause a loss
of information about the connectivity between functional brain
regions. EEG studies based on graph theory analysis have been
applied in different psychiatric disorders [23], [24], [25], [26]
to explore the functional connectivity patterns of the brain. Due
to the high requirement of time series information for seizure
prediction tasks, graph analysis techniques are currently focused
on seizure detection tasks [27], [28], [29] and relatively few
prediction studies.

Zhao et al. [30] used a graph attention network (GAT) com-
bined with the focal loss to solve the problem of unbalanced data
classes in a seizure detection task. In the work of Chen et al. [31],
a multi-dimensional enhanced seizure prediction model from
the multi-level consideration of “frequency + space + time’
based on graph convolutional networks (GCN) was constructed.
Lian et al. [32] built a global-local graph convolutional neu-
ral network that uses a data-driven approach to optimize the
learned patient-specific graph and feature representations. These
methods have explored the rules of epileptic EEG signals in
spatial and temporal relationships to a certain extent. However,
the current graphical representation process for EEG data is
mainly based on Pearson correlation analysis to construct the
adjacency matrix, which cannot show the information specific to
EEG.

Epileptic seizures involve different areas of the cerebral cor-
tex, resulting in interactions between different electrodes. This
influence changes dynamically with the seizure process and is
highly dynamic [33]. The correlation shows the differences in
EEG among different electrodes. This suggests that synchro-
nization of the brain can be measured at a local scale spatially.
Significant changes in synchronization occur 5-30 minutes be-
fore a seizure [34]. Thus, synchronization can also be investi-
gated on different time scales. Phase synchronization analysis
methods have high sensitivity and have been widely used to
analyze the interaction of brain regions during seizures [35],
[36], [37]. In this article, we use PLV as a measure of EEG
synchronization to construct the adjacency matrix.

The traditional graph neural network (GNN) cannot represent
the dynamic change information of the brain network during
epileptic seizures well in the global training process. To solve
the above problems, a synchronization-based STGAT model is
proposed in this study. Considering the functional connectivity

information implied by EEGs, it combines the degree of EEG
temporal correlation and the spatial topology information of
multi-channel electrodes. The main contributions of this study
are summarized as follows.

1) A new deep learning model is proposed to implement the
seizure prediction task based on EEGs. We construct a
prior graph from the perspective of synchronization and
extract EEG information using the STGAT model. This
method can directly process full-lead EEG signals and
achieve end-to-end seizure predictions.

2) The spatial information and functional connectivity in-
formation implied between EEG channels are extracted
by using PLV. Then we model the multi-channel EEG as
graph signals, thus obtaining real and identifiable syn-
chronization relationships of EEG signals.

3) Our framework incorporates the temporal and spatial
correlation of EEGs by combining GAT and gate recurrent
unit (GRU). It can capture the spatial relationship between
multi-channel electrodes and learn the complex topology
and dynamic changes of EEGs, which enhances the ability
to utilize spatiotemporal information.

4) We conduct extensive experiments on the private dataset
and the CHB-MIT dataset to validate the model using
different validation methods. Experimental results show
that the STGAT algorithm performs significantly better
than other studies using the same dataset.

The organization of the rest of this article is as follows. In Sec-
tion II, the synchronization-based STGAT model is introduced
in terms of the overall model structure, synchrony analysis, spa-
tiotemporal information extraction and algorithm description.
Section IIT describes the private dataset and CHB-MIT dataset
and provides a detailed analysis of the results under different
experimental methods. Analysis and discussion are given in
Section IV, and the conclusion is provided in Section V.

[I. METHODS

A. General Structure

In this section, we propose a synchronization-based seizure
prediction model, which consists of three steps. Fig. 1 illustrates
the main workflow of our method. The raw EEG signal is first
processed to calculate its PLV to obtain the synchronization
information of different channels and complete the construction
of the graph. The contents are given in detail in Section II-B.
Then, the feature vector and electrode correlation matrix are
used as the input of the STGAT layer to obtain the spatiotemporal
information of EEG, which is introduced in Section II-C. Finally,
the recognition results are acquired on a fully connected layer
with feeding the output result of the fusion model. Section II-D
is the algorithm description of the proposed seizure prediction
model. For brevity, the variables used in this section are sum-
marized in Table I.

B. Synchronization Analysis of EEG

The clinical signs of epilepsy and the formation of epileptic
foci are produced by the combined drive of different areas of
the cerebral cortex. Peripheral nerve discharge is abnormal and
EEGs in certain areas of the brain show significant changes
during seizures. Because the brain is a complexly connected
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Fig. 1. The overall architecture of proposed model.
TABLE |
IMPORT NOTATIONS IN OUR MODEL
Variables Description
z(t) The input EEG signal at the time t.
Z(t) The EEG signal after the Hilbert transform.
ZTan(t) The analytic signal of x(t).
A(t), ¢(t)  The instantaneous amplitude and instantaneous phase of x(t).
V, E The set of nodes/edges.
A The adjacency matrix of V.
a The learnable weight vector.
W . The learnable weight matrix.
%
h;, R The input/output feature vectors of Node i in the graph
attention layer.
€ij The influence degree of Node i on Node j.
a;j The attention coefficient.
z(t) The update gate.
r(t) The reset gate.
h(t) The current candidate state.
h(t) The current state.

organ, this discharge will surely continue to spread, resulting in
strong correlations between adjacent regions.

The PLV measures the absolute value of the average phase dif-
ference between any two signals [38]. It can reflect the strength
of the association between channels from the perspective of
the instantaneous phase to be used to study the changes in
EEG data caused by epilepsy. Higher regional synchronization
indicates a closer fluctuation pattern between two signals, which
in turn indicates a relatively strong association between the two
signals. Conversely, it indicates that the fluctuation mode is more
independent, and the coupling is poorer as well.

The bandpass filtered time series z(t) is subjected to the
Hilbert transform as shown in (1).

—+o00
#(t) = %P.V./ (1) 4 )

o t—T

where P.V. denotes the Cauchy principal value. By constructing
its analytic signal x,,, (), the complex signal can be decomposed
into two parts, the amplitude A(t¢) and phase o(t).

Tan(t) = 2(t) +izg(t) = At)e™?® (2)

spatiotemporal information

Preictal

Interictal

STGAT layer

Extraction of

Fully connected layer ~ Result

where A(t) = \/2(t)> + x5 (t)? represents the instantaneous

amplitude, and ¢(t) = arctan mfit) denotes the instantaneous

phase. For two Nodes ¢ and 7, their PLVs can be defined accord-
ing to (3), thus excluding the effect of instantaneous amplitudes
and assessing the degree of phase synchronization.

N
1 .
_ (D (1)
PLV = n§:1j PUCN2Y 3)

where Ag;;(t) = (¢i(t) — ¢;(t)) means the instantaneous
phase difference between ¢ and j at the moment ¢, and N is
the length of the selected time window. Afterward, we use the
correlation between multi-channel EEGs to establish the edges
of the graph nodes and then construct the adjacency matrix A,
which can be denoted as:

{iij = (1), if PLV <71 @
ij = 0, others

where 7 is a fixed threshold. A;; denotes the simultaneity
relationship between Nodes 7 and j.

In conclusion, this model uses PLV to describe the coupling
relationship of EEG signals. By calculating the connectivity
between electrodes, it can assess the information interaction
between brain regions and represent the synchronization rela-
tionship between EEG channels. We combine the PLV and EEG
feature matrix as the input of the STGAT layer to study the
relationship between the seizures and the synchronization of
brain regions.

C. Extraction of the Spatiotemporal Information

Fig. 2 depicts the process of EEG-based spatiotemporal infor-
mation extraction. We input an EEG sequence of the duration 7'
into the model, and then the spatiotemporal correlation of this
sequence is extracted through the GATs layer and GRUs layer.
At the end of the model, the period of the sequence is judged
using the fully connected layer, and the recognition result is
subsequently output.

We setup 7' GAT's in the GATSs layer to extract the topological
information of T-second EEG data. The GATs layer can calculate
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Fig. 2. The process of extracting spatiotemporal information.

the features of any two different nodes of the graph domain.
Thus, we can obtain the internal relationship of each cell. After
converting all the above information into label vectors, the
GRUs layer is used to attain the time domain information and
then memorize important temporal dynamic characters in EEGs.
Finally, the conversion of signal dimensions is completed in the
fully connected layer, and the classification results are output.

1) Multi-Channel Spatial Information Extractions: In recent
years, GNNs have been widely used in text classifications [39],
traffic flow predictions [40], image analyses [41], emotion
recognitions [42], and molecular predictions [43] due to their
powerful topological structure analysis capabilities. EEG signals
are spontaneous electrophysiological activities performed in
multiple functional regions of the brain that are not located
in Euclidean space. GAT is a new neural network structure
that organically combines the attention mechanism and graph
convolution [44], which can eliminate the high dependence of
GCN on the Laplacian matrix. It can handle the nodes and graph
data of arbitrary topology and solve the problems caused by
different structures of graphs.

Seizures are often accompanied by cross-area brain activity.
EEG signals have different propagation patterns in different peri-
ods, which leads to a complicated evolution process. Therefore,
a GAT model is used in this study to obtain the dynamic spatial
features of EEGs. The idea is to perform the high aggregation of
feature information by calculating the hidden state of each node
and output it as label vectors to improve modeling flexibility.
The details of the ¢-th GAT structure are shown in Fig. 3.

G = (V,E,A) is used to represent a connectivity graph,
where V' represents the set of IV nodes [27]. Each node in the
diagram represents an EEG channel. E denotes the set of edges.
The value of edge indicates the closeness between two channels.
Meanwhile, a larger edge value indicates stronger synchroniza-
tion between the channels. A € RV*¥ is the adjacency matrix
of V, which is calculated through PLV in this article.

For each node in the graph, the GAT layer performs a self-
attention mechanism, which assigns different weights. Then it
aggregates the nodes and adjacent nodes according to the weight

magnitude. For two nodes with the input feature vectors h;

and i_ij, the influence degree of Node ¢ on Node j, e;;, can be
expressed as follows:

- =
eij = a (Whi, W) 5)
where W denotes the weight matrix of the graph, which can

achieve the relational mapping between the input features and
the output features by completing the feature transformation of

the nodes. The attention mechanism a(-) is a feedforward neural
network that maps features to a real number. Using a softmax
function to perform a regularization of attention, the attention
correlation coefficient a;; can be expressed as:

exp (e45)

= P 6
S e (en) O

a;; = softmax; (e;;)

To avoid a certain value of the attention coefficient being much
larger than the other values which is not easy to train, and to
improve the generalization ability of the model, the nonlinear
activation function LeakyReLU(-) is used to activate a;; with a
slope of 0.2.

exp (LeakyReLU (BT [WZHWE;} ))

A5 = - — @)
Srew, exp (LeakyReLU (@7 [Whi|[ 7))
where [-||-] denotes the feature vector after connecting Vertices
iand j, and ‘@ represents the transpose.

The ability of single-layer attention to learn the surrounding
nodes is relatively weak. To obtain more accurate features, a
multiple attention mechanism is introduced in this study [45].
Using multiple attention mechanisms to calculate the attention
coefficients of surrounding nodes can make the learning process
of the model more stable. For the calculation results under &
independent attention mechanisms, the k-average g used instead

of the connection. The final feature output result k) after fusing
the information of the neighboring nodes can be expressed as:

Py 1 kyirk
h=o EZZ%W h; (®)
k=1j€eN;

where o(-) is the activation function, and af, is the result
of normalizing the attention coefficient through the attention
mechanism of the k-th order.

In this section, the attention mechanism is introduced to auto-
matically capture the spatial features with the highest correlation
based on the input data to obtain the topological relationship
between the central node and surrounding electrodes. Further-
more, the structural features of the channel dimension of EEG
data are fully utilized to obtain the spatial dependence between
EEG signals.

2) Time Correlation Modeling: With a powerful internal stor-
age and the ability to analyze sequential data, recurrent neural
networks (RNN) have been shown to be well suited for learning,
classifying and predicting the time-series data from the experi-
ence to the process. GRU [46] and long short-term memory
(LSTM) [47] belong to the same RNN variant. Both can solve
the long dependency problem in RNN and the gradient problem
in backpropagation. In comparison, GRU has a simpler unit
structure and faster training speed. Hence, we choose GRU to
learn the dynamic dependencies within EEG data to obtain the
temporal information.

The internal structure of the GRU is shown in Fig. 4. r(¢) de-
notes the reset gate. It determines whether to ignore the previous
hidden state. The smaller its value, the less state information is
written. The update gate is represented by z(¢), which mainly
determines what information is forgotten and retained. The
smaller its value, the less state information is brought in from
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Fig. 3. The structure of graph attention network.
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o
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Fig. 4. The structure of GRU.

the previous moment. The equations of the GRU are as follows.

2(t) = o (W - (h(t — 1), z(t)) +b.) ©)
r(t) =0 (W, (h(t—1),z(t)) + b,) (10)
h(t) = tanh (Wy, - (r(t) * h(t — 1),2() +bz) (1)
h(t) = (1 — 2(t) % h(t — 1) + 2(t) * h(t) (12)

—

where h(t) is the candidate state stored at the moment ¢. The
model inputs the hidden state at the moment £ — 1 and the multi-
lead EEG signal at the moment ¢ to obtain the information at the
moment ¢. In the meantime, it is able to maintain the trend of
EEG changes at the historical moment and finally output the
EEG information at the moment ¢.

D. Description of the STGAT Algorithm

We define Y; as the actual label vector, and EAQ denotes the
predicted label. In (13) shows the loss function of the model,
where 6 is the model parameter, and « indicates the regular-
ization weight. «||f]|3 is used to avoid the problem of model
parameter overfitting. The purpose of the cross entropy function
cross_entropy(-) is to calculate the inconsistency between the
true label of the model and the predicted value.

Loss = cross_entropy (Yy, ;) + /6] (13)

Algorithm 1: The Description of STGAT Based on
Synchronization.

Input: Raw multichannel EEG data
Output: The recognition result of the model
1: Calculate the PLV of the preictal and interictal EEG
signals to obtain the appropriate graph structure A
according to (1), (2), (3), and (4).

2: Divide EEG fragments into 5 seconds as the input data
X. Input X, A and the ground truth label vector Y;
into the model as the training data, D.

Y, + 0 > Initialize the predicted label vector Y, to 0.
for (X, A,Y:) in D do

for j in time-step do

Hidden-state < GRU(GAT(X[j],A),Y;)
Y, + Hidden-state

end for

Y, « sigmoid(W  Y; + B)

parameters to be trained
11: Calculate Loss according to (13).
12: 0 < 0 — AVEO > Xis learning rate, and V6 denotes

gradient.
13: end for

YR XIINE®

> W and B are

Algorithm 1 describes the detailed algorithm of the proposed
seizure prediction model.

[lI. EXPERIMENTS AND RESULTS

A. Datasets

In this section, we conducted validation experiments on a
private epileptic dataset and a public CHB-MIT EEG dataset to
evaluate the classification performance of the proposed STGAT
model. For the two different datasets, we used different methods
to validate the accuracy of the model, which will be shown in
detail in Sections III-B and III-C.
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TABLE Il
CHARACTERISTICS OF PRIVATE DATASET

TABLE IlI
SUMMARY OF DATASETS

Patient Gender Age Consciousness Time(hours) Number

1 Male 62 Wake—Sleep 24 8
2 Male 19 Wake-Sleep 24 4
3 Female 16 Wake—Sleep 24 7
4 Female 15 Wake—Sleep 24 3
5 Female 15 Wake—Sleep 24 4
6 Female 22 Wake—-Sleep 48 7
7 Female 40 Wake—Sleep 24 5
8 Female 16 Wake-Sleep 24 5
9 Female 26 Wake—-Sleep 24 6
10 Female 31 Wake—Sleep 24 8
11 Male 20 Wake—Sleep 24 5
12 Male 46 Wake—Sleep 24 4
13 Female 15 Wake-Sleep 24 6

The private dataset used in this study was derived from the
neurology EEG center of a tertiary care hospital. It contained 72
seizures from 13 patients (4 males, 9 females, aged from 15 to
62 years). The sampling frequency was 500 Hz. All EEG data
were obtained using the international 10-20 system. Full-lead
EEG signals were used because the dataset format is relatively
uniform. Detailed EEG data information is shown in Table II.

The CHB-MIT dataset [48] was collected by Boston Chil-
dren’s Hospital and contained 198 seizures from 5 male (3-22
years) and 17 female (1.5-19 years) patients. The EEG of Chb21
was obtained by the re-monitoring of Chb01 patient after 1.5
years, and the information of Chb24 patient was unknown. The
download link is https://physionet.org/content/chbmit/1.0.0/.
All signals were sampled at a rate of 256 samples per second
at a 16-bit sampling rate. All samples were collected by the
International 10-20 system and stored in EDF format.

Because of the poor normality of the CHB-MIT dataset, we
screened it to select a suitable subset for the experiment. The
requirements for selecting subsets were as follows. 1) Seizure-
free recordings for at least 35 min before seizures were included
in the analysis. 2) The last consecutive EEG recording was used
to supplement data that did not last 35 minutes. 3) If the interval
between two EEG recordings exceeded 5 seconds, they were
marked as discontinuous. After selection, we used data collected
from 66 seizures for the following experiments.

In addition, most patients in this dataset used different elec-
trodes, so we selected 18 identical channels, including FP1-F7,
F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4,
F4-C4, C4-P4, P4-0O2, FP2-F8, F8-T8, T8-P§, P8-02, FZ-CZ
and CZ-PZ.

B. Implementation Details

Seizure prediction is a difficult task, and there are no clear
criteria for the concept of the pre-seizure. It has been noted
that patients with epilepsy show significant fluctuations in EEG
signals 30 minutes before a seizure [49]. From the clinical
perspective, 30 minutes is enough to draw the attention of
patients and health care professionals to reserve time to make
interventions as well. Therefore, EEG segments from 35 minutes
to 5 minutes before each seizure in epileptic patients were
extracted as the preictal period.

In addition, we selected a corresponding number of interictal
EEG signals from the EEG recordings of each patient. The

Number of EEG segments

Datasets Categories

(interictal/preictal)
Training set 22680
The private dataset Validation set 5184
Testing set 2592
The CHB-MIT dataset Total 27838

The number of interictal and preictal segments was the same because we
selected the interictal segments corresponding to the number of preictal

segments.
TABLE IV
MAIN PARAMETERS OF STGAT MODEL
Activation Input size Output size Heads
Input layer RELU (~,20,1280) (~,20,12,1)
GAT-1 RELU (~,20,12,1) (~,20,12,64) 4
L GAT-2 RELU (~,20,12,64) (~,20,12,64) 4
GATSs layer o catenate (~20,12,64)  (~,20,12,128) -
Pooling (~,20,12,128) (~,12,128)
GRUs layer Tanh (~,12,128) (~,128)
Output layer Sigmoid (~,128) (~,1)

~ represents the value of batch size.

remaining EEG data were excluded. We used a 5-second sliding
window to analyze the EEG records. Considering the limited
duration of seizures and the unbalanced sample size, a 20%
window overlap rate was used to divide the preictal data.

The partitioned training, validation and testing segments of
the private dataset with 72 seizures are listed in Table III. Since
the CHB-MIT dataset was validated for different patients with
leave-one-seizure-out and leave-one-subject-out experiments,
only the total number is given here for convenience.

For the experimental environment, all the experiments were
completed using the NVIDIA P6000, based on the Pytorch
library. The hyperparameters of the model were set as follows:
the learning rate was le-3, the dropout was 0.3 and the batch
size was 256. Moreover, 7 was set to 0.4. The Adam optimizer
was employed in the experiments. We used 2 GATs for model
training and connected them with the skip connection, where
each layer had 4 head nodes. The main parameters of the model
are shown in Table IV.

C. Subject-Independent Experiments on the Private
Dataset

Subject-independent means that the EEG fragments of all
patients are randomly divided into training set, validation set
and testing set. In this kind of experiment, the model is able to
perform as a global classifier to achieve seizure prediction for all
patients in the dataset. To ensure the randomness of the dataset
when segmenting it in the ratio of 7:2:1, a 5-fold cross-validation
was used in this article. All results are given as the mean =+
standard deviation.

We chose the 2-layer GCN, 2-layer GAT and GRU as base-
line methods for seizure prediction. The treatments were kept
uniform for all experiments. Table V illustrates the test results
on different models. It can be seen that our proposed STGAT
model achieved more than 98% for all evaluation metrics, with
the AUC reaching 99.96%. The F1-score, as the summed average
of precision and recall, is able to systematically evaluate the
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TABLE V
SUBJECT-INDEPENDENT EXPERIMENTS USING PRIVATE DATASET

Accuracy(%)  Specificity(%)  Sensitivity(%) AUC(%) F1-score(%) Kappa Time (seconds/epoch)
GCN*#* 66.56+3.65 79.89+3.41 87.06+3.55 72.17+£3.41 67.11+£3.39 0.2071+0.0093 1.30
GRU##* 66.87+£2.37 77.65+£2.28 88.22+2.34 78.56+1.98 70.77£2.52 0.1099+0.0074 1.37
GAT#* 97.03+£1.57 97.62+1.26 98.25+0.53 98.83+1.12 96.44+1.57 0.5158+0.0062 1.43
STGAT 99.01+0.35 98.82+0.43 99.10+0.22 99.96+0.02 99.98+0.01 0.9737+0.0086 1.61
The differences in accuracy between STGAT and other methods are highlighted with stars (x * *p<<0.001, % * p<0.01).
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Fig. 5. Comparison of STGAT with baseline models. (a) The area under the ROC curves, (b) calibration curves and (c) decision curve analysis of

prediction models.

overall metrics of the classifier. Furthermore, we also used
Kappa coefficients to evaluate the classification results of the
method more comprehensively. Among all models, the STGAT
had the highest Fl-score and Kappa coefficient, which proved
that our model had better performance.

GAT shows superior performance in capturing the topological
structure of non-European space, but it cannot make full use of
the time information carried by EEG signals. Therefore, there
is room to improve GAT in seizure prediction. We introduced
GRU into the GAT mechanism to make full use of the time
domain characteristics of EEGs. Under the same experimental
conditions, the accuracy of our model was increased by 1.98%
compared with that of GAT. The specificity and sensitivity of
the model were improved by 1.2% and 1.13%, respectively.

To observe the effect of the spatiotemporal characteristics of
EEG on the computational efficiency, we designed experiments
to calculate the computational time of the model. More specif-
ically, we calculated the time needed to iterate through each
epoch during training. Table V shows the average training time.
The GCN, GRU and GAT only extracted separate temporal or
spatial features, while our model covered the spatiotemporal
information of EEGs. The multilayer architecture of our model
inevitably increased the training time. However, considering the
performance and computational cost of the model, our model
reached an acceptable training time.

Fig. 5(a) shows the area under the curve for several different
methods. We also plotted calibration curves to avoid overfitting
the model, as shown in Fig. 5(b). The STGAT model exhibited a
higher consistency between the actual results and the predicted
probabilities. This provided further validation of the discrimina-
tive and calibration capabilities of the model. A decision curve
analysis was able to determine the clinical utility of the model by
quantifying the net benefit at all threshold probabilities. Fig. 5(c)
shows that the STGAT model has the best net benefit.

Our proposed model achieved better results in different ar-
eas compared to baseline algorithms. The experimental results
demonstrate that our model has greater potential to process the
classification of EEGs. The superiority of the fusion model is
mainly reflected in that it can make full use of the information
carried by EEGs by integrating the spatial characteristics and
temporal information.

D. Patient-Specific Experiments on the CHB-MIT
Dataset

Patient-specific validation means that each experiment is con-
ducted for only one patient, with none of the remaining patients
participating in the experiment. In this section, we conducted
leave-one-seizure-out experiments and leave-one-subject-out
experiments using the CHB-MIT dataset. Specifically, in the
leave-one-seizure-out setting, we trained our model using one
seizure data of the patient as the testing set and the remaining
seizure signals as the training set. For the leave-one-subject-out
experiment, all EEG signals from 22 patients were used to train
the model and the data of one patient were used for testing to
check the generalization performance of the model. The results
of the experiments are shown in Table VI. The results in the
leave-one-subject-out table are the results of the experiment
whenever that patient is used in the test set.

As seen from the table, in leave-one-seizure-out experiments,
the average accuracy of the model was 98.74%, the specificity
was 99.21%, and the sensitivity was 98.87%. For most patients,
the accuracy was above 98%, and the sensitivity reached 100%
in 9 patients.

Since new models were not trained using EEG data specific
to the test datasets, the variability of EEG signals poses a signifi-
cant challenge to leave-one-subject-out experiments. The results
of the leave-one-subject-out experiments will undoubtedly be
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TABLE VI
PATIENT-SPECIFIC EXPERIMENTS USING CHB-MIT

Leave-one-subject-out |

Leave-one-seizure-out

Accuracy(%)  Specificity(%)  Sensitivity(%) | Accuracy(%)  Specificity(%)  Sensitivity(%) Seizure prediction time (minutes)
Chbo01 90.56 89.36 92.47 99.00 100.00 98.00 28.82
Chb02 90.68 92.38 94.52 99.00 99.00 99.00 35.34
Chb03 94.25 91.62 92.58 100.00 100.00 100.00 35.48
Chb04 90.38 88.86 86.34 98.77 99.17 99.36 20.83
Chb05 92.36 88.46 89.68 99.18 99.34 100.00 33.42
Chb06 97.42 94.38 96.56 100.00 100.00 100.00 15.12
Chb07 94.54 92.27 96.31 98.56 100.00 98.38 28.57
Chb08 94.83 94.90 96.80 99.63 99.90 99.80 24.51
Chb09 93.53 97.12 95.48 97.53 99.17 96.48 46.08
Chb10 87.63 88.78 89.56 99.88 99.87 100.00 24.09
Chb11 88.25 89.64 85.32 98.15 98.89 97.22 33.25
Chb13 90.49 84.35 89.68 98.15 98.89 98.68 23.78
Chb14 92.56 90.75 92.45 100.00 100.00 100.00 31.69
Chb15 91.53 90.56 87.36 99.38 99.44 100.00 29.98
Chb16 83.64 89.17 90.25 98.20 99.27 99.56 15.92
Chb17 94.59 92.85 93.71 99.59 99.80 99.71 39.41
Chb18 94.67 92.76 91.58 99.69 99.74 100.00 28.62
Chb19 91.57 90.37 92.38 100.00 100.00 100.00 59.20
Chb20 96.38 93.91 91.49 96.30 97.78 97.29 32.48
Chb21 95.36 94.17 97.58 100.00 100.00 100.00 19.80
Chb22 88.38 87.78 90.15 98.77 99.72 97.95 17.13
Chb23 90.03 91.32 92.16 95.06 95.56 94.44 5.20
Chb24 91.45 92.34 93.48 96.14 96.24 98.12 50.44
Mean 91.96 91.22 92.08 98.74 99.21 98.87 29.53
TABLE VII
A COMPARISON OF THE PROPOSED METHOD WITH THE STATE-OF-THE-ART
Author Year Dataset Method Accuracy(%)  Specificity(%)  Sensitivity(% )

Duan et al. [50] 2019  CHB-MIT MT-CRNN 94.80 97.70 91.70

Zhang et al. [51] 2020 CHB-MIT CSP-CNN 90.00 - 92.20

Ma et al. [20] 2021 CHB-MIT BNLSTM-CASA 95.60 91.50 96.20

Sun et al. [22] 2021  CHB-MIT CADCNN - 95.60 97.10

Chen et al. [31] 2021  CHB-MIT MESPF 98.78 98.95 98.61

Proposed model 2022  CHB-MIT STGAT 98.74 99.21 98.87

slightly worse than those of the leave-one-seizure-out experi-
ments. Even so, the average sensitivity still reached 92.08%. This
proved that our model has a strong generalization performance
for every patient, which greatly benefits the supplementary
diagnosis of the physician.

To be applicable in a clinical environment, it is required
that our proposed seizure prediction method be able to predict
seizures in a reasonable time horizon with as high an accu-
racy as possible. In the leave-one-seizure-out experiments, we
calculated the actual prediction time of the model. The model
was validated by using all periods of EEG recordings, and the
prediction results are presented in Table VI.

From the results, the model was able to predict seizures within
29.53 minutes with 90.91% accuracy out of 66 seizures. The
longest prediction time was 59.20 minutes and the shortest time
was 5.20 minutes, proving that our model is trustworthy.

At the same time, we also compared the performance of other
algorithms that also use the CHB-MIT dataset, and the results
are presented in Table VII. As seen from the table, our model
had a better stability and a more balanced performance in all
metrics, compared to the outstanding ability of other models in
a certain metric.

Sensitivity and specificity can reflect the accurate classifica-
tion ability of the predictor, which are meaningful indicators
for clinical diagnoses. Compared with other models using the
same dataset, our model has better performance, and it is more

conducive to clinically assisted decision-making. Specific pa-
tient validation experiments show that the present model is a
practicable solution for seizure prediction.

IV. ANALYSIS AND DISCUSSION

A. Influence of the Prior Graphs

1) Visualization of the EEG Synchronization: The temporal
asynchrony of the hypersynchronous discharges in each region
of the brain results in a weaker correlation of the interictal stage.
When a seizure is impending, the random discharges of the EEGs
in the normal state will turn into rhythmic discharges in the
epileptic state. There was a significant increase in this correlation
during the seizure period. The correlation reaches a maximum
when the brain reaches global hypersynchronous discharges,
signaling the imminent end of the seizure. Therefore, there were
significant differences in the synchronization between periods
during seizures. We visualized the EEGs of some patients for
validation.

We calculated the PLV during the interictal and preictal
periods in private dataset of Patients 1, 3 and 6. Fig. 6(a)—(c)
show their PLV box plots. The EEGs of Patient 1 is taken
as an example, which contains 22 channels of EEG signals.
As shown in Fig. 6(a), there is a more significant increase
in the values of the preictal period compared to the PLV of
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Fig. 6. Box plots of the PLV of the Patients 1, 3 and 6.
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Fig. 7. PLV correlation matrices of the Patient 1. The horizontal and vertical coordinates indicate the EEG leads respectively, and the different

colors represent the magnitude of the PLVs between the electrodes.

the interictal period. There was a significant difference in the
PLV between the two periods (p = 0.0001 < 0.05). This is
because there is already a high degree of synchronization in
neuronal activity before the seizure. This can also be seen in
the correlation matrix plot between the different channels, as
shown in Fig. 7. Fig. 7(a) represents the interictal period of the
Patient 1 and Fig. 7(b) is the preictal period. We also found
that the degree of synchronization of the EEG signals was also
related to the relative distance of the electrodes. Synchroniza-
tion between closer electrodes was higher than that between
more distant electrodes. This reflected the spatial and tempo-
ral variability of EEG synchronization at different periods of
seizures.

2) Selection of the Prior Graphs: To demonstrate the impor-
tance of phase synchronization of EEGs in seizure prediction,
we calculated the Pearson correlation coefficients as the com-
parison experiment. As shown in Fig. 8, the model based on
the PLV showed some improvement compared to the Pearson
correlation. A 1.34% rise in the accuracy and F1-score of the
model were enhanced by 2.74%, which proved that the phase
synchronization index of EEGs had some superiority for the
graph representation process.

The full-lead EEG data were used to calculate the PLV to
construct the adjacency matrix as a representation of the con-
nection relationship between different electrode channels. The
adjacency matrix was set to 1 when the correlation between the
electrode channels was larger than the threshold value, while
the other was set to 0.

a Pearson [ PLv
100 [~
0 L — _
98 :
97
96 H
Accuracy ISpecificity ISensitivityl AUC IF1-score

Fig. 8. Results based on Pearson and PLV.

To evaluate the impact of the selected threshold on the model
performance, we conducted correlation experiments. Fig. 9 illus-
trates that our model achieved the best results when the threshold
was set to 0.40, so we used 0.40 as the threshold value for
subject-independent experiments. Considering the differences in
brain synchronization caused by individual differences, we used
the optimal thresholds for different patients in patient-specific
experiments.

We visualized the connectivity based on the degree of corre-
lation between electrodes, using 0.40 as the threshold. Fig. 10
shows the brain connectivity maps of the Patient 1 at different
stages, where Fig. 10(a) represents the interictal period and
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TABLE VIII
IMPACT OF PARAMETERS ON ACCURACY

Layers of GAT muIl-:iz‘titser(:fion Hidden size  Accuracy(%)
1 4 98.62+0.15
2 4.4 64 99.87+0.04
3 4,44 99.91+0.02

4.4 99.01+0.35

2 4.8 64 99.89+0.03
8.8 99.94+0.05

2 64.37£3.11

4 78.72+0.66

8 97.31+1.31

2 4.4 16 98.82+0.51
32 99.61+0.08

64 99.87+0.04

128 99.86+0.05

Fig. 10(b) is the preictal period. The strength of connectivity was
significantly lower in the interictal period than in the preictal
period. The differences between the connectivity maps of the
two different periods were visible.

B. Influence of the Key Parameters

To investigate the robustness of the STGAT, we presented
the effects of the key parameters on the accuracy, including the
number of GAT layers, the number of attention heads and the
hidden size. Table VIII shows the effect of different parameters
on the model performance.

First, the STGAT model is not quite sensitive to the number
of layers of the GAT and attention heads. Choosing the right
value can slightly improve the optimal results. From the results,
the increase in GAT layers and attention heads in the model
only had a weak effect on the accuracy. In the experiments,
we used 2 layers of GAT, which provides a 1% improvement
in the accuracy. In particular, the first layer of GAT mainly
improved the data dimensionality and extracted the primary
information, while the second layer of GAT extracted richer
spatial information.

In the multi-head attention layer, more heads lead to higher
accuracy. However, it reduces the gain increase and increases

the computational cost. Considering the performance and com-
putational efficiency of the model, we finally decided to use the
4-head attention mechanism in each GAT layer.

The initial increase in the hidden units will greatly improve the
performance, which then helps it to reach arelatively stable state.
This is because when there are fewer hidden units, the model ex-
tracts less information with much information being lost. When
the hidden layer size is large enough, the gain from increasing the
hidden size is minimal while the computational cost increases
exponentially. Given that there is a certain randomness in the
training, we chose 64 hidden units for the experiments.

C. Visual Verification

A t-stochastic neighbor embedding (t-SNE) [52] algorithm
was applied in visualization experiments to compare the feature
representation capabilities of different methods. By convert-
ing the similarity between the data points into probability, the
high-dimensional data were mapped into a two-dimensional
map. Fig. 11(a)—(c) are the visualization figures that intuitively
observe the feature distributions.

For many sequence modeling tasks, the feature extraction
ability of GRU has been proven [53], [54]. EEG is generated by
the interaction of multiple neurons, so it is not feasible to process
multi-channel signals only in chronological order. As shown in
Fig. 11(a), GRU is weak in classifying preictal data and interictal
samples. GAT can automatically extract the multi-channel EEG
correlation and assign weights to adjacent nodes. However, there
is still some room for improvement, which can be verified from
Fig. 11(b).

Compared to Fig. 11(a) and (b), the features in Fig. 11(c)
show better separation ability through t-SNE visualization. The
STGAT model can process the information of the intra- and inter-
channel signals. Therefore, it further improves the performance
of both models. This means that the combined neural network
has superior performance to the single type of network approach.

D. Limitations and Prospects

The performance of STGAT relies on the construction of
prior graphs to some extent. The more accurate graph learned
by the model will theoretically lead to better results. However,
we found from actual experiments that the model performed
excellently in every subject-independent experiment, while the
results of patient-specific trials varied from patient to patient.
We analyzed the related possibilities, mainly because specificity
experiments used less data, which limited the performance of
model recognition. Considering that our previous work related
to the construction of the epilepsy-specific database will acquire
more patient information, we can compensate for this deficiency
later by building an EEG database for each patient follow-up and
updating the graph data regularly.

In actual clinical practice, the goal of seizure prediction is to
alert the patient to prepare for an impending seizure. Therefore,
studies that rely solely on offline EEG data cannot achieve this
goal. Both the use of datasets and the construction of models in
this article are considered based on offline data, and excellent
results have been achieved. Although the computation time of
the model is acceptable now, we will still look for algorithms to
make improvements on the efficiency of the model in future re-
search work. We will focus on the construction of online seizure
prediction systems to achieve real-time seizure prediction on
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Fig. 10. Brain connectivity maps of the Patient 1 obtained through PLV for different periods. The connections between different nodes are

represented by different colors.

1

1 1 il N
my
Dlll‘t‘x 1
1 ll}ll
1313 tmyl 2
‘ 111“1.‘!11 )

spimani e s s,
§Y ‘:"ﬂ&l’ 1\:1«)‘

o
-
e
o
-
RS

Fig. 11.

(b)
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Feature distributions of interictal and preictal using t-SNE algorithm: (a) Features extracted from GRU, (b) features extracted from GAT

and (c) features extracted from STGAT. Orange represents preictal EEGs and blue denotes interictal samples.

EEG data to provide practical and effective help to patients.
The combination of seizure prediction algorithms and wearable
devices will also be considered to achieve clinically assisted
diagnoses and treatment of epilepsy.

V. CONCLUSION

In this article, we presented a synchronization-based model
for seizure prediction in spatiotemporal graph attention net-
works. This model took full advantage of the phase synchroniza-
tion information between full-lead EEG signals and modeled
each EEG channel as a node of the graph model, which high-
lighted the contribution of synchronicity to EEG classification
in seizure prediction. To integrate the spatial characteristics
and temporal information of signals, we fully exploited GAT
and GRU in their professional fields, using fusion models to
mine the spatiotemporal correlation of EEG sequences. Finally,
the validity of this model was confirmed by taking different
measures on public and private datasets.
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