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PESA R-CNN: Perihematomal Edema
Guided Scale Adaptive R-CNN for

Hemorrhage Segmentation
Joonho Chang , Inchul Choi , and Minho Lee , Member, IEEE

Abstract—Intracranial hemorrhage (ICH) is a type of
stroke with a high mortality rate and failing to localize
even minor ICH can put a patient’s life at risk. However,
its patterns are diverse in shapes and sizes and, some-
times, even hard to recognize its existence. Therefore, it is
challenging to accurately detect and localize diverse ICH
patterns. In this article, we propose a novel Perihematomal
Edema Guided Scale Adaptive R-CNN (PESA R-CNN) for
accurate segmentation of various size hemorrhages with
the goal of minimizing missed hemorrhage regions. In our
approach, we design a Center Surround Difference U-Net
(CSD U-Net) to incorporate Perihematomal Edema (PHE)
for more accurate Region of Interest (RoI) generation. We
trained CSD U-Net to predict PHE and hemorrhage regions
as targets in a weakly supervised manner and utilized its
prediction results to generate RoI. By including more infor-
mative features of PHE around hemorrhage, this enhanced
RoI generation allows a model to reduce the false-negative
rate. Furthermore, these expanded RoIs are aligned with
the Scale Adaptive RoI Align (SARA) module based on their
size to prevent the loss of fine-scale information and small
hemorrhage patterns. Each scale adaptively aligned RoI
is processed with the corresponding separate segmenta-
tion network of Multi-Scale Segmentation Network (MSSN),
which integrates the results from each scale’s segmenta-
tion network. In experiments, our model shows significant
improvement on dice coefficient (0.697) and Hausdorff dis-
tance (12.918), compared to all other segmentation models.
It also minimizes the number of missing small hemorrhage
regions and enhances overall segmentation performance
on diverse ICH patterns.
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I. INTRODUCTION

INTRACRANIAL hemorrhage (ICH) is a serious medical
condition in which blood leaks into brain tissue because of

a ruptured cerebrovascular. Its overall mortality rate is approx-
imately 40% to 50% [1], [2], and it frequently occurs in older
people. Its symptoms include severe headaches, vomiting, and
paralysis, and it brings severe disabilities, such as hemiplegia,
language and speech disorders, and cognitive impairment, once
it occurs [3]. As a result of physical and pathological damage [4],
[5], 75% of survivors are unable to return to normal life even after
a year. If ICH occurs, brain tissue begins to be damaged at the
time of bleeding, and it causes edema and inflammatory response
to the tissue around the bleeding regions and leads to apoptosis
and neurological damage, which degrades brain function and
frequently results in death. Therefore, an automatic hemorrhage
segmentation system is required for a fast and highly accurate
diagnosis and to minimize missed hemorrhage regions [6].

Computerized Tomography (CT) scan is a widely used med-
ical imaging technique for hemorrhage diagnosis because of
its low cost and high sensitivity for detection [7]. However,
scanning and analyzing procedures take a long time and require
trained radiologists to analyze the obtained CT scan. It also suf-
fers from inter-rater variability according to a radiologist due to
manual delineation. To reduce such inconsistency in diagnosis,
it is important to provide radiologists with reliable hemorrhage
segmentation results, which can help them make a more accurate
diagnosis and prevent missing any lesion areas. However, there
are some challenges when segmenting hemorrhage regions in
the brain, compared to other types of lesion, such as tumors. 1)
Hemorrhage patterns vary in shape and size, making accurate
detection difficult. 2) Additionally, numerous small hemorrhage
patterns are easily overlooked but pose a significant risk to
patients if missed. Moreover, 3) hemorrhage sometimes shows
ambiguous patterns in CT scans due to its low contrast to
the normal tissue around it. Because of these factors, small
hemorrhage regions with low contrast are frequently missed and
normal tissue with similar brightness to the lesion is sometimes
mistakenly regarded as a hemorrhage.

To address these problems, we propose a novel method
for accurate hemorrhage segmentation. Our model considers
hemorrhage-induced tissue deformation, Perihematomal Edema
(PHE), as an informative cue for hemorrhage regions, and
designs a Center Surround Difference U-Net (CSD U-Net)
to identify tissue deformed regions as candidate hemorrhage
regions while learning to predict real hemorrhage. Our CSD
U-Net predicts hemorrhage and tissue deformed regions and
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uses them to generate region proposals. By treating both regions
as Region of Interest (RoI) candidates, we obtain adaptively
expanded RoIs, which aid our model in making a more accurate
segmentation with a lower false-negative rate by providing more
information around the hemorrhage. Also, our model addresses
a fixed-size RoI alignment problem and an imbalance in RoI
size distribution with Scale Adaptive RoI Align (SARA) and
Multi-Scale Segmentation Network (MSSN). While conven-
tional two-stage models [8] align various size RoIs to a single
fixed-size, our model applies the SARA method to each RoI
based on its scale. Because informative details are easily lost
during a fixed-sized RoI aligning, especially for small-sized
targets, the small hemorrhage region can also be lost with its
boundary information. To prevent this problem, SARA classifies
RoI into 3 groups based on its height and uses each group’s
representative size for alignment. Furthermore, aligned RoIs are
processed with MSSN with dense connections. Each aligned RoI
is provided to a corresponding segmentation network in MSSN,
and all segmented results from each network are combined into
a single final result. The imbalance in RoI size distribution is
addressed in this approach by adopting a separate segmentation
network for each scale. In experiments, our model outperforms
other state-of-the-art models in terms of segmentation perfor-
mance, and all of the novel components of the model are proven
to be effective for accurate segmentation without missing small
hemorrhages.

Our main contributions are as follows:
1) We propose a novel method for enhancing the small re-

gion detection performance of hemorrhage segmentation
models. Although the performance of the state-of-the-art
hemorrhage segmentation models has significantly im-
proved, the majority of them still fail to detect small-sized
hemorrhage regions. In contrast, our model can effec-
tively detect various sizes of hemorrhage patterns and
also minimize the false-negative rate of small hemorrhage
regions.

2) We show that using the features of deformed tissues
around the hemorrhage region, known as the PHE, can
enhance the segmentation performance of a model. By
using additional informative cues for hemorrhage, the
proposed model’s overall segmentation performance has
improved. Our model trains CSD U-Net to estimate both
candidate regions for hemorrhage and PHE as targets in
a weakly supervised manner and provides an expanded
RoI using the predicted results of CSD U-Net.

3) We minimize the loss of information in the fine scales
of a feature map during RoI Align by adaptively using
different feature map sizes according to each RoI’s size.
Instead of aligning RoI to produce a single fixed-size
feature map, we classify all RoI candidates based on the
size criteria and use a larger feature map for a smaller
RoI to prevent information loss at the fine-scale. This
SARA strategy significantly improved the segmentation
accuracy, especially for small hemorrhage regions.

4) We address the imbalance problem in the number of RoIs
based on RoI size in the two-stage segmentation model.
ICH shows different patterns according to its region size,
but the number of samples for each pattern in the given
dataset is not well-balanced. Furthermore, the region pro-
posal network (RPN) tends to generate larger RoI regard-
less of the target size. To address this imbalance problem,
we adopt the scale adaptive RoI aligning with a separate

segmentation network for each scale of RoI and combine
scale-wise segmentation results at the model’s final stage.
These SARA and MSSN approaches enable our model to
detect and localize diverse sizes of hemorrhage patterns
in CT scans more accurately.

II. RELATED WORKS

A. Intracranial Hemorrhage Segmentation

Many automated segmentation models have been proposed
for reliable hemorrhage segmentation and to aid radiologists
and doctors in diagnosis. In machine learning-based models,
researchers have used several machine learning algorithms such
as decision tree, Fuzzy C-mean, random forest [9], [10], [11], and
Level-Set algorithm [12] for the detection of disease. However,
to apply those machine learning-based models to hemorrhage
segmentation, significant domain expertise and human expert
intervention are required, such as identifying and analyzing
hemorrhage characteristics to reduce data complexity, and post-
processing estimated results for accurate diagnosis. Further-
more, they were not robust enough to noise and scale variations,
and did not have enough accuracy for practical application.

In recent years, deep learning-based models have been applied
to hemorrhage segmentation and showing promising perfor-
mance. Li et al. [13] used a U-Net to segment CT images,
they concatenated the flipped image of the original CT slice
as an input for the network to enhance the contrast between
the ICH region and normal brain tissue. They also adopted
adversarial training to improve the accuracy of the segmentation.
Li et al. [14] modeling the hematoma expansion and variations to
share the information between adjacent slices in 3D CT images.
Based on the segmentation result of adjacent slices (upper,
center, lower) from the U-Net, they integrated the information
to the center slice and refine the final segmentation result with
uncertainty estimation. Hu et al. [15] used FCN [16], which
has an encoder-decoder structure called ED-Net, to address the
problem that the network with more layers has lower resolution.
It extracted multi-scale features to prevent information loss that
comes from scale variation. Arab et al. [17] also used U-Net with
a deep supervision method that integrates features from segmen-
tation layers at different levels of the network with element-wise
summation. Wang et al. [18] proposed a modified U-Net struc-
ture that adopts a multi-task semi-supervised attention-based
model with a curriculum learning strategy. Their model reduced
the number of layers for both the encoder and decoder by using
transposed convolutions and compensated for losses from both
networks. Moreover, for semi-supervised learning, they applied
attention mechanism and auto-encoder structure. Compared to
conventional machine learning-based algorithms, most of those
models performed well, however, their segmentation accuracy
on diverse size hemorrhage regions was not good enough for
practical application.

B. Small Object and Lesion Detection

Small objects are difficult to detect due to their low resolution
and size, and even when detected, the region details are obscured
due to low contrast. Moreover, when various sizes of objects
exist in an image, large objects can be the main focus of seg-
mentation because of their rich features, making small objects
segmentation worse. In an attempt to address such problems,
several models have been proposed.

Mask-Refined R-CNN [19] proposed an improved version of
the Mask R-CNN that accurately localizes the semantic regions
at different scales. It was inspired by Feature Pyramid Network
(FPN) [20] structure and combined the information from feature
maps of different scales. Context union edge network (CEN)
[21] used two paths, semantic stream, and edge stream, for
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accurate small object and edge segmentation. The semantic
stream adopted dilated ResNet-101 to extract semantic features
in the global scope, and the edge stream extracted semantic edges
at full resolution to preserve edge details. Then, an information
exchange mechanism was used to implement each stream’s
shortcomings and refined the boundaries of small-scale objects.

In biomedical image applications, the lesion detection method
must have high prediction accuracy for practical use because
its prediction accuracy is directly related to the patient’s life.
However, it is not easy to obtain accurate results with conven-
tional segmentation models, which sometimes miss small target
regions. For this reason, models should be designed specifically
for the medical image domain, especially when segmenting a
small target, as in recent studies. ESTAN [22] was an encoder-
decoder model, which adopted two encoders to extract image
context information at different scales and then combines that in-
formation for accurate breast tumor segmentation. Moreover, to
effectively localize small tumors, it obtained feature maps from
both square and large row-column-wise kernels. Li et al. [23]
extended 3D U-Net by adopting a dense connection design and
a 3D multi-pooling feature fusion strategy to the encoding stage
and enhancing the performance for the small volume of critical
anatomical organs. Its densely connected blocks maximized the
information flow for extracting low-level features, and 3D multi-
pooling fusion allowed for the effective use of multi-scale and
multi-level features. In infantile brains’ segmentation problem of
the punctate white matter lesion (PWML), Liu [24] heuristically
expanded RoI to improve performance by introducing more
information around the PWML. However, such a method lacked
reasonable criteria for determining how much RoI should be
expanded and why. In both medical and nonmedical domains,
conventional models have adopted various methods to find
small lesions or objects, such as reducing feature information
loss through dense connection or obtaining additional features
separately. However, such overheads introduced significantly
more feature engineering, and even with such efforts, there
is still a risk of missing small ICH regions when the target
region contrast is low compared to the normal tissue around it.
Furthermore, to effectively assist medical staff in their diagnosis
in the actual medical field, it is highly recommended to predict
all potential anomalies to minimize false negatives of prediction.
For this purpose, in this article, we propose a novel two-stage
hemorrhage segmentation model, PESA R-CNN. In the first
stage, our CSD U-Net learns information from small and low
contrast regions distinguished from normal tissue, and leverages
PHE, to generate expanded region proposals for hemorrhage
segmentation. Furthermore, in the second stage, our model scale
adaptively aligns RoIs to prevent information loss at fine-scale
and segments regions according to the given RoI size to address
the imbalance imbalance of RoI size distribution. Based on these
novel approaches, our model achieves state-of-the-art segmenta-
tion performance on the diverse sizes of hemorrhages compared
with all other hemorrhage segmentation models.

C. Perihematomal Edema for Hemorrhage Detection

The hemorrhage causes neural cells in the vicinity of the lesion
to undergo unfavorable ultrastructural changes known as PHE,
which can result in neurological deterioration and dysfunction
[26]. PHE represents the condition of tissues surrounding the
hemorrhage region where the volume of brain tissue is increased
due to abnormal increases in brain cell content [27], [28], [29]. In
clinical studies, once ICH occurs, PHE starts to evolve within 6
hours of the hematoma formation and keeps growing rapidly for
1 to 3 days after the first onset [30], [31]. Its volume increases to a
maximum by 7-10 days, then it gradually decreases. Statistically,
PHE grows to 50% of its maximum volume within 6 hours
and reaches 75% within a day [29]. Furthermore, the relation

Fig. 1. Differences in tissue characteristics between PHE (purple) and
ICH (red) [25].

between the hemorrhage volume and the PHE volume is linear
as shown in the analysis [32].

In several studies of ICH and edema [33], [34], [35], on CT
scans, hemorrhage is shown as a hyperdense region that clearly
contrasts with neighboring tissue. In contrast, PHE is rather
a hypodense region that is difficult to be distinguished from
normal tissue [36] or other low density regions (ex. infarction)
[37]. As shown in Fig. 1, the bright, highly dense region is
the ICH region, and the dark area around the ICH corresponds
to the PHE region [25]. Usually, PHE has the lowest tissue
density than both ICH and normal tissues regions, it appears
to be darker than other nearby tissue areas. However, the bound-
aries of PHE become less clear as it grows. Because of these
properties, previous studies that attempted to measure PHE did
not explicitly clarify the method for tracing PHE [38], [39],
[40]. In some ICH researches [29], [34] applied midline shift
(MLS) to measure PHE, but it only showed a correlation with
total hemispheric swelling. Automatically measuring only PHE
region is a difficult problem, however, because PHE and ICH
have a high correlation, we can still leverage PHE as a useful
cue for learning to detect ICH regions.

This article proposes a novel approach that leverages PHE for
accurately segmenting the ICH regions from brain CT scans.
Inspired by the fact that most PHE surround the ICH regions
and have their own patterns, our model learns to estimate PHE
regions with a weakly supervised learning method and uses the
learned estimation results as RoIs to enhance the segmentation
accuracy. As far as we know, no other brain hemorrhage re-
searches have used PHE features to segment ICH.

III. PESA R-CNN

A. Model Overview

The proposed PESA R-CNN is a two-stage instance seg-
mentation model similar to the Mask R-CNN. This model’s
segmentation performance is majorly enhanced by three compo-
nents, CSD U-Net with pseudo PHE target, SARA, and densely
connected MSSN, as shown in Fig. 2.

In the first stage of our model, there are two branches of input.
In the first branch, an input CT scan is processed by CSD U-Net,
which is trained in a weakly supervised manner with the pseudo
PHE target labels and provides both hemorrhage regions and
PHE to RPN. The RPN learns to generate RoI based on these
pseudo target regions. For the weakly supervised learning of
CSD U-Net, original target hemorrhage regions are expanded
with dilation operations to include PHE around the hemorrhage
and used as pseudo target regions for training CSD U-Net. The
trained CSD U-Net prediction results are combined with original
target hemorrhage regions with the ‘OR’ operation and used
for RPN target regions. The RPN-generated expanded RoIs are
classified according to their scale to form RoI groups for SARA
operations and the second stage of the model.

The second input branch obtains a feature map of an input CT
scan from the backbone network (ResNet-101) [41] and provides
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Fig. 2. The architecture of our proposed PESA R-CNN. It is mainly enhanced by CSD U-Net, SARA, and the MSSN.

it to the SARA module to assign a feature map to each RoI
candidate. SARA classifies the RoI into three groups based on
its scale and each group is aligned with a pre-defined feature map
size larger than the original size for the small RoI region. After
adaptive alignment, the aligned RoIs are provided to MSSN
in the second stage. All layers in each segmentation network
of MSSN are densely connected to preserve fine details of
input features, and this architecture aids in reducing information
loss and improving localization. The final layer of the MSSN
integrates the results of all segmentation networks into a single
final prediction using pixel-wise addition.

In the classification and box regression branch, the feature
map of the aligned RoI is processed with Fully Connected (FC)
layers, and the output feature vector is fed into the classifier to
obtain the class scores. In the bounding box regression branch,
the bounding box coordinate values are adjusted for each class
with the FC layer as in the Mask R-CNN.

For the target loss function, we adopt a multi-task loss
(LPESA) of the Mask R-CNN, which combines losses from each
task (classification, box regression, segmentation) and optimize
them simultaneously. For the classification loss (Lcls), the prob-
ability distribution p = (p0, p1) for 2 categories (hemorrhage +
background) is computed for each RoI to estimate the class of
the RoI (where p is Softmax output of the FC layer), and cross
entropy loss is measured for the p of each RoI and the ground
truth (u) to obtain the classification loss.

Lcls = − log pu (1)

For the box regression loss (Lbox), we apply the smoothL1

function to the target box (v= (vx, vy , vw, vh)) and predicted box
(tu = (tux , tuy , tuw, tuh )) of each RoI, and compute the difference
between the predicted box coordinates and the target box.

smoothL1(x) =

{
0.5x2 if|x| < 1

|x| − 0.5 otherwise (2)

Lbox =
∑

i∈x,y,w,h

smoothL1
(tui − vi) (3)

For the segmentation loss (Lmask), the mask prediction net-
work produces a binary mask for each pixel of RoI, and binary
cross entropy loss between the prediction result and the ground
truth is computed to obtain Lmask. Finally, the multi-task loss
of PESA R-CNN is represented as follows:

LPESA = Lcls + Lbox + Lmask (4)

Fig. 3. The architecture of the CSD U-Net.

B. Center Surround Difference (CSD) U-Net

In clinical considerations of ICH, the hemorrhage itself can
deform the brain tissue around it, or neurological deterioration
frequently occurs due to nerve damage and edema. This tissue
deformation, known as PHE, causes secondary damage to the
patients. Based on this prior knowledge, we propose a novel
CSD U-Net (Fig. 3) which enables a model to leverage PHE for
hemorrhage segmentation. Although we do not have exact labels
for PHE, we can adopt a weakly supervised learning approach
for the coarse-grained estimation of labels.

For the weakly supervised training of PHE regions, we first
obtain the initial coarse-grained pseudo labels for PHE by di-
lating the ground truth labels of hemorrhage. To ensure that the
initial pseudo label fully covers the ground truth PHE regions,
we applied the 3 times of dilation for each hemorrhage region
and regarded the entire expanded region as the abnormal tissue
regions, which include both hemorrhage and PHE. To refine
the initial pseudo labels by learning the low-level features from
the deformed tissue regions, we adopt the CSD algorithm [42]
to U-Net structure and estimate the saliency of each pixel in
the pseudo target regions, after training our CSD U-Net with
the expanded pseudo target regions. In this weakly supervised
learning process, the salient features existing in the incremented
part of target regions are learned as pseudo candidate regions for
PHE. We train the RPN with these refined pseudo target labels
to introduce additional features from the deformed regions to
the Region Proposal generation process for the segmentation of
hemorrhage. Each component of CSD U-Net is illustrated in
Fig. 3.
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Fig. 4. Procedure of CSD algorithm.

1) Center Surround Difference: The CSD algorithm com-
pares ‘the center’ pixels in a fine-scale feature map to ’the
surrounding’ pixels in coarse-scale feature maps to reveal salient
regions compared to their neighboring area. More specifically,
it is focusing on the pixel-wise difference between fine and
coarse scales of feature maps derived from Gaussian feature
pyramid results. For example, as shown in Fig. 4, when we have a
Gaussian feature pyramid with 8 scales, the center, c ∈ {2, 3, 4},
is a scale value of feature map we want to compute CSD, and the
surround, s, is the scale value of feature maps coarser than the
center, s = c+ δ, where the scale difference is set as δ ∈ {3, 4}.
Then, the center surround difference at c = 2 (I(2, 5) + I(2, 6))
is obtained by the sum of the pixel-wise difference between the
center feature map and the surround feature maps, which have
resized to the same size of the center feature map.

CSDc =
∑
δ

I(c, c+ δ) =
∑

s=c+δ

|I(c)� I(s)| (5)

This process has the effect of identifying the saliency of each
pixel in the feature map when it has a density difference with its
neighboring points. In equation (3), � represents the pixel-wise
difference between two feature maps.

2) U-Net: It is a well-known segmentation network for
biomedical images. It is primarily made up of three structures: a
contracting path (encoder), an expansive path (decoder), and
skip connections. The contracting path captures the overall
context of an image, and the expansive path performs accurate
localization to obtain high-resolution segmentation results. This
structure effectively captures contextual information from the in-
put, but fine-scale information could easily be lost, and it reduces
the overall segmentation accuracy. To prevent this problem, skip
connection transfers feature details from contracting layers to
expansive layers to provide better target localization.

In our CSD U-Net, we integrate the CSD algorithm into
the U-Net architecture by modifying the skip connections. It
applies the CSD algorithm to encoder layer feature maps and
provides a CSD feature map, Sx, to each decoder layer as shown
below.

Sx =

n−1∑
k=x

n∑
y=x+1

|Fk � Fy| =
n−1∑
k=x

CSDk (6)

where n is the total number of downsampling steps, x is the step
where skip connection proceeds, and Fx denotes a feature map
from the last layer of x-th step in the contracting path.

With this modification, CSD U-Net can learn salient regions
from an input more effectively while learning expanded target
hemorrhage regions. We trained our CSD U-Net to predict both
the target hemorrhage regions and all tissue deformed regions
and use these prediction results as targets for RPN. While learn-
ing from these PHE included regions, RPN adaptively expands
the regions for RoI candidates, and these expanded RoIs help
minimize false negatives of hemorrhage regions, especially for
small ones, by using more information around the hemorrhage.

Fig. 5. Scale Adaptive RoI Align (SARA).

C. Scale Adaptive RoI Align (SARA)

Regardless of input RoI size, every RoI in the original Mask R-
CNN is aligned to only one specific size (usually 7× 7) feature
map. However, aligning diverse size RoIs into a small fixed-size
feature map inevitably introduces information loss at fine-scale
features of an image. This fine-scale feature loss affects various
size RoIs, but it has more negative effects on the small-size
RoI, because, compared to the large-size RoI where coarse-scale
features are dominant, the small-size RoIs are mostly composed
of fine-scale features. Especially for CT images of hemorrhage,
losing small target regions or details of hemorrhage regions can
severely degrade the performance.

To address this problem, we introduce the SARA approach
for the RoI Align process. In SARA, all RoIs are clustered in 3
groups based on their size and adaptively aligned with a feature
map with pre-defined sizes to minimize information loss. To
begin the clustering of RoI, we sort the ground truth target boxes
by height and obtain the criteria for classifying hemorrhage
regions by size. For the University Hospital (UH) dataset, we
divide the sorted boxes into 3 parts so that each partition has the
same number of boxes, and then get the reference size. Based
on the size criteria, 3 RoI groups are constructed and a larger
group can be a superset of smaller ones. As shown in Fig. 5, if
G1, G2, and G3 are RoI groups, they satisfy G1 ⊃ G2 ⊃ G3.
G1 includes all generated RoIs, and G2 is composed of RoIs
with a smaller height than the pre-defined medium-size (128)
and a subset of G1. Similarly, G3 is composed of RoIs with a
smaller height than 64, and it is a subset of G2. For each of these
groups, we apply a different feature map size for RoI aligning.
The entire set RoI group,G1 is aligned with a 7× 7 feature map,
and medium and small-sized RoI groups,G2 andG3, are aligned
with a 14× 14 feature map. By aligning medium and small-size
RoI to the larger feature map than the conventional aligning size,
we keep fine-scale features of small hemorrhage regions and
preserve the boundary details of hemorrhage. Furthermore, the
way we constructed RoI groups (larger group includes smaller
one) enables the larger group to focus on scale across features,
while smaller RoI groups can keep more fine-scale information.
Since we adaptively align RoI with SARA, we also apply a
separate segmentation network for each scale feature map in the
following section.

D. Multi-Scale Segmentation Network (MSSN)

In medical image segmentation, small-sized target regions
have less feature information and have a smaller number of
instances than other large regions in the dataset. Furthermore, in
many hemorrhage datasets, most target regions are either a large
region or the collection of several hemorrhage regions, which
produce large RoIs from RPN. Moreover, RPN tends to produce
a larger number of large-size RoIs than smaller ones, because
the larger bounding box is less sensitive to the target deviation
error in terms of the Intersection over Union (IoU) measure [43].
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Fig. 6. Multi-Scale Segmentation Network (MSSN).

Therefore, this imbalance problem in RoI distribution degrades
the segmentation performance in small-sized target regions.

To address this problem, we design a densely connected
MSSN (Fig. 6). In contrast to the original Mask R-CNN, which
uses only a single segmentation network for all RoI sizes, we
apply a separate segmentation network for each scale’s RoI
group. We also adopt a different number of network layers
in each segmentation network branch based on the size of the
input RoI. For the deepest segmentation network, the whole RoI
group G1 is provided as an input, similar to the original Mask
R-CNN segmentation network, and each of the medium-sized
RoI group G2 and the small-sized RoI group G3 is assigned to
the MSSN’s medium and shallow depth networks. In the deep-
est segmentation network branch, the model learns contextual
patterns of hemorrhage across all scales, and other shallower
segmentation network branches more focus on the fine-scale
features of smaller hemorrhages that can be easily missed in the
deeper network. For the small-size RoI segmentation, we adopt
a shallow segmentation network with two layers to preserve
the pixel-wise information and obtain accurate target boundary
information with rich details. The RoI group of medium-size
hemorrhage is fed into a three-layer segmentation network to
obtain context and fine details of the medium-size hemorrhage
regions. Additionally, every layer in the segmentation networks
is densely connected [44] in MSSN to strengthen the feature
propagation and reuse in all segmentation networks. In the last
stage of MSSN, the final segmentation result is produced by
combining the results from each segmentation network with
pixel-wise addition. In MSSN, an imbalance between large and
small RoI groups is effectively relieved by adopting a separate
segmentation network for different RoI groups and merging
them with equal weights on every scale. Furthermore, the
multi-scale segmentation approach enables learning finer-scale
features of hemorrhage and minimizing the missing hemorrhage
regions. The following experiment section shows the effective-
ness of each novel component of our model and overall improved
performance.

IV. EXPERIMENTS

A. Dataset

a) UH dataset: The University Hospital (UH) dataset
consists of 223 CT scans with multiple types of hemorrhage
such as intraventricular hemorrhage, subarachnoid hemorrhage,
and subdural hemorrhage, that were collected at Kyungpook
National University Hospital (KNUH) between July 2014 and
May 2018. The hemorrhage masks are manually labeled by
radiologists using MITK Workbench (Version Nov. 2016) and
confirmed by experts on brain hemorrhage. The dimensions
of the CT scan is 512× 512× 30, and the voxel size is 2×

2× 5 mm3. Among the 223 collected data, 176 CT slices are
randomly selected for training, 20 CT slices for validation, and
27 CT slices for evaluation. This dataset was approved by the
KNUH institutional review board on July 11, 2018.

b) CT-ICH physionet (PHY) dataset: The Physionet
Dataset (PHY) [45], [46] collected 82 CT scans of patients with
hemorrhage. Each CT scan includes about 30 slices with a slice-
thickness of 5 mm and a size of 512× 512. Two radiologists
recorded hemorrhage types and delineated the ICH regions. It
has 75 subjects in NIfTI format. From the dataset, 184 CT slices
are randomly selected for training, 20 CT slices for validation,
and 21 CT slices for evaluation.

c) Data pre-processing: We slice the 3D data into 2D
slices, based on the manual and the code provided. For all
CT slices the cranium is delineated by simple intensity-based
thresholding, and only brain regions are extracted. Because
datasets consist of CT slices for both ICH and normal brain,
we do not manually choose the ICH layers, and all CT slices in
the datasets are used for model training.

d) Target region size-wise data grouping: For the
evaluation of model performance according to the hemorrhage
region size, we divided the target dataset into three groups based
on the height of the hemorrhage region in each dataset. The
parameters for data grouping are determined by the experimental
evaluation results and clinical studies [47], [48]. For the UH
dataset, hemorrhage regions with a height greater than 128
are classified as a large-sized group, and regions smaller than
64 are assigned to a small-sized group. Hemorrhage regions
with the height in-between the two criteria are classified as a
medium-sized group. For the PHY dataset, the division boundary
for the large-sized group is set to 64, and for the small-sized
group is set to 32. The rest of the hemorrhages are assigned to
a medium-sized group. We use the same criteria for classifying
RoI groups before the SARA module in PESA R-CNN, except
that the large-sized group should include all smaller RoI groups.

B. Training Details

To generate the pseudo labels from both hemorrhage datasets,
we apply the dilation operation with a 3× 3 kernel whose
values are all set to 1, and repeat it 3 times. In the CSD U-Net,
the learning rate, decay rate, drop out, and epochs are set to
0.6× 10−6, 0.95, 0.75, and 30, respectively. We adopt the Adam
optimizer and apply 3 down sampling steps to the CSD U-Net.
For the PESA R-CNN, the learning rate and the decay rate are
set to 0.65× 10−3 and 0.99, and we trained the model for 250
epochs. The batch size is set to 1 for both PESA R-CNN and CSD
U-Net. For the backbone networks, we use ResNet-101. For the
training of RPN, the RPN anchor scale is set to [32, 64, 128, 256,
512], which represents the height of a square anchor in pixels,
and the anchor ratio is set to [0.5, 1, 2]. In addition, only 100
RoIs (positive:negative = 1:2) per image are used for training.
For data augmentation, Affine transform, Gaussian blur, and
Sharpening are applied. The whole model is implemented with
Keras and Tensorflow library, and all experiments are performed
on a desktop machine with a single NVIDIA Quadro GV100
GPU (32 GB).

C. Performance Evaluation Metrics

We evaluate the proposed model’s performance using the Dice
Similarity Coefficient and Hausdorff Distance, which are widely
used metrics for evaluating segmentation performance.

a) Dice similarity coefficient (DSC): The Dice Sim-
ilarity Coefficient measures the similarity by calculating the
overlap between the prediction result and the ground truth label.
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Fig. 7. Comparisons between U-Net and CSD U-Net. The 5th column shows overlapped results of the target and the U-Net prediction, and the 6th

column shows overlapped results of the target and the CSD U-Net prediction.

The DSC is formulated as follows:

DSC =
2|P ∩G|
|P |+ |G| (7)

where P indicates the prediction result and G indicates the
ground truth label. DSC ranges from 0 to 1. 1 means the labeled
area was exactly the same as the predicted area and 0 means
there were not overlapped.

b) Hausdorff distance (HD): The Hausdorff distance is
a metric for measuring the shape difference. It selects the closest
point among the ground truth label from the predicted result and
calculates the distance by finding the farthest point. The HD is
formulated as below:

HD = max

{
sup
p∈P

d(p,G), sup
g∈G

d(P, g)

}
(8)

where P, p indicates the prediction result and G, g indicates
the ground truth label. Also, sup represents the supremum and
d(p,G) quantifies the distance from point p to G. Smaller distance
values were defined as having a shape similar to the ground truth
label and predicted result.

D. PHE and Hemorrhage Estimation With CSD U-Net

The purpose of CSD U-Net is to provide an approximate
estimation of target labels for both PHE and the potential hem-
orrhage regions to enhance the overall performance. Because
we do not have ground truth labels for PHE, we adopt weakly
supervised learning approaches [49], [50] to estimate pseudo
labels for PHE and hemorrhage regions. In the conventional
pseudo label-based weakly supervised instance segmentation
approaches [51], [52], pseudo labels are generated with two
steps: first, localize the target instances with coarse-grained
pseudo labels that are consistent with prior assumption or predic-
tion results of pre-trained segmentation model, then propagate
or refine the initial guess of pseudo labels based on pixel-wise
property or a saliency estimation for each pixel. Inspired by
this process, we apply a dilation operation to the ground truth
hemorrhage targets to obtain the initial coarse-grained pseudo
labels for PHE and hemorrhage regions. Based on the clinical
definition of PHE, we only consider the tissue surrounding
hemorrhage regions as potential candidates of PHE, and leverage
dilated hemorrhage target labels to train the CSD U-Net to refine
the pseudo labels of non-normal tissue regions (hemorrhage
and PHE). To ensure initially guessed pseudo labels are fully
covering the ground truth PHE regions, we apply 3× 3 kernel
dilation operation to the hemorrhage target for 3 times, and the
total amount of target expansion is decided by the clinical studies
on PHE. CSD U-Net is designed to focus on salient regions that
contrast with its neighboring regions, and this property helps
CSD U-Net effectively learn tissue deformed regions that are

Fig. 8. Feature clustering with t-SNE and K-means algorithm.

even slightly different from normal tissue regions. Although it
is difficult to estimate PHE directly, CSD U-Net learns to predict
the pseudo labels for both PHE and hemorrhage regions based
on our weakly supervised approach and CSD algorithm. As
shown in Fig. 7, CSD U-Net predicts slightly expanded regions
surrounding the hemorrhage target labels, and these regions
are different from merely dilated target areas. From initially
expanded target regions, CSD U-Net learns to predict salient
regions around hemorrhage, which may be a potential candidate
for PHE. Furthermore, CSD U-Net predicts regions with more
target hemorrhage than baseline U-Net results. As a result, CSD
U-Net has a better chance of detecting target hemorrhage regions
that were previously missed. Although the prediction results
of CSD U-Net do not perfectly correspond to the ground truth
hemorrhage and PHE regions, it is good enough to provide more
accurate RoI regions to the RPN in the two-stage model. To
support our argument, we visualize the feature discriminability
of every class in Fig. 8, and also show the effectiveness of our
learning-based RoI generation approach by comparing it to the
simple heuristic RoI expansion scheme [24].

1) Class-Separability Between Normal Tissue and Lesion:
Fig. 8 shows the clustering results of features from each region
(hemorrhage, PHE, and normal tissue). We classify each point
of CT into one of three class labels based on the CSD U-Net
prediction results after training it with pseudo target labels. The
feature vector of each point is obtained from the feature pyramid
of trained CSD U-Net, and every feature is clustered with t-SNE
and K-means algorithms to show how much the learned lesion
areas are distinguishable from normal tissue. The data used for
Fig. 8 are 27 unseen samples from the hold-out test set of the
UH dataset. As clearly shown in Fig. 8, feature points from
hemorrhage and PHE are clustered as a single group, and their
features are densely gathered to a cluster center. Also, the inter-
class distance between the cluster of normal tissue (blue points)
and the cluster of deformed tissue (green and red points) is far
enough for clear class separability. This result shows that CSD
U-Net successfully learns the common feature characteristics for
both PHE and hemorrhage regions, and they clearly distinguish
themselves from normal tissue regions. Furthermore, because
the PHE and hemorrhage consist of almost a single group,
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TABLE I
SEGMENTATION PERFORMANCE OF HEURISTIC EXPANSION ALGORITHM AND CSD U-NET

Fig. 9. Comparison of the average number of final positive RoI and
RoI over threshold.

the features from the PHE surrounding the hemorrhage can be
used to improve the segmentation performance. The features
from PHE not only enrich features for hemorrhage detection
but also enlarge small hemorrhage regions, reducing missed
hemorrhage regions. The hemorrhage patterns with low contrast
or hypodense PHE regions are easily ignored and not included
as RoI candidates in the conventional hemorrhage segmentation
models because of their ambiguous patterns. However, CSD
U-Net finds features for such ambiguous regions after learning
from both PHE and hemorrhage and provides expanded RoI with
more accurate localization to improve performance.

2) Learned RoI Expansion vs Heuristic RoI Expansion: We
compare the segmentation performance of CSD U-Net-based
Mask R-CNN with Refined Segmentation R-CNN (RS R-CNN)
[24], which uses a heuristic RoI expansion algorithm to demon-
strate the effectiveness of our learned RoI expansion approach.
In our evaluation, we only modify the RoI generation part of
Mask R-CNN to use either a pre-trained CSD U-Net or heuris-
tic algorithm and compare the performance of two different
versions of the model while linearly increasing the expansion
control factor, k, of the heuristic algorithm. Table I shows the
performance of the RS R-CNN ask is increased linearly from 1.0
to 2.0. According to the results, the heuristic expansion of RoI
slightly improves the performance however, it is not consistently
enhanced with increasing k and sometimes even worse than the
baseline performance. In contrast, our CSD U-Net-based expan-
sion method shows the best performance compared with all the
cases of k, even though its average expanded RoI area far less
than the expanded area of the heuristic algorithm. Therefore, our
expansion method adaptively includes more meaningful areas,
which correspond to PHE, and shows improved performance
compared to the heuristic algorithm, which includes unrelated
normal tissue regions in RoI.

3) RoI Localization Accuracy: The learned RoI expansion
method provides more accurate RoI positions for segmentation
by introducing feature regions of PHE around the target
hemorrhage. The top-K RoI candidates in the baseline
Mask R-CNN are chosen based on the objectness score and
Non-Maximum Suppression (NMS). For the best prediction
results, it is preferable to have more positive RoI candidates
with higher objectness scores from RPN. As shown in Fig. 9,
our CSD U-Net-based RoI expansion method provides far more

Fig. 10. RoI examples from RPN of baseline and CSD U-Net applied
model.

TABLE II
COMPARISON OF SEGMENTATION PERFORMANCE OF THE PROPOSED

APPROACH AND OTHER METHODS & ABLATION STUDY

positive RoI candidates compared to the baseline model, and
even after final RoI selection, our approach has twice as many
RoI candidates as the baseline model. RoI examples are shown
in Fig. 10, with its targeted region. As a result, one of the
best candidate RoI of Mask R-CNN does not cover all target
hemorrhages and misses a small hemorrhage region. However,
our CSD U-Net-based approach provides more accurate RoI
localization and bounding box size, which includes every target
region. When comparing the CSD U-Net applied Mask R-CNN
case with PESA R-CNN, PESA R-CNN shows slightly better
localization because SARA with MSSN gives more weights on
small target regions during training.

E. Segmentation Performance of PESA R-CNN

1) Ablation Study on PESA R-CNN: We evaluate the con-
tribution of each component of PESA R-CNN to the overall
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Fig. 11. Segmentation examples from ablation study of PESA R-CNN.

segmentation performance of the model. Table II shows an
ablation study of the proposed model. As shown in the results,
each of our novel components, provides significant performance
enhancement to the baseline Mask R-CNN. The baseline shows
relatively good HD contrast to its low DSC, because it has fewer
false positives than false negatives for hemorrhage regions. By
adding CSD to the baseline, there are significant improvements
in DSC and HD because of the enhanced RoI localization.
For the case of CSD + SARA and MSSN without dense con-
nection, SARA and MSSN help to find more details in the
small hemorrhage regions. Moreover, the dense connection in
MSSN is especially effective for improving overall performance
when it is incorporated with other components. In Fig. 11, we
also show segmentation results of the ablation study. From the
results in row 1 and 4, Mask R-CNN failed to include a small
hemorrhage region in its predicted bounding box. In contrast,
our CSD U-Net adopted model is able to detect more small
hemorrhage regions, and adding SARA + MSSN provides more
details of the predicted hemorrhage boundary. For the images
from the UH dataset, CSD U-Net applied model detects smaller
hemorrhages in which Mask R-CNN was missed, and SARA +
MSSN with dense connection affect refining the segmentation
result. Also, for the images from the PHY dataset, both CSD
U-Net and SARA + MSSN enabled a model to localize very
small hemorrhage regions of the target correctly.

2) Experiments on RoI Group Configurations: We compare
the performance of the PESA R-CNN on the different RoI
group configurations. First, we sort the target bounding boxes of
hemorrhage based on the height of the box, then select the n (n
= 2, 3, 4) so that we can almost equally divide the whole dataset
into n groups. For example, when n = 2, the data is divided into
two equal-sized groups based on the RoI height of 100 for the
UH, 45 for the PHY dataset.

As shown in Table III, the performance of 2 group is worse
than 3 group. The performance of 4 group is slightly better than 3
group, but, in the experiment, it takes too much time for training
compared to 3 group. Therefore, for the practical performance,
the 3 group configuration is used for all experiments in our
article.

3) Comparison of RoI Size Distribution: In most fields of
research [53], [54], [55], [56], various imbalance problems cause

TABLE III
PERFORMANCE COMPARISON ACCORDING TO DATA GROUPING

Fig. 12. Average of RoI size distribution.

performance degradation. In the two-stage segmentation model,
obtaining correctly localized and scaled RoI is crucial for overall
performance because the segmentation network of the two-stage
model learns only from RPN-provided RoIs. Therefore, we
expect RPN to generate more RoIs that are close to the target
in size and location. However, in the original Mask R-CNN,
the number of large-size RoIs was typically far greater than
the number of small-size RoIs, and this imbalance in RoI size
distribution degrades the model’s segmentation performance on
small or medium-size hemorrhages. To demonstrate how much
each model component influences the number of RoI generated
from RPN, we compared the average number of RoI for each size
group for the different combinations of our model components,
just as we did in the ablation study. As shown in Fig. 12, RPN
in the Mask R-CNN always produces larger RoIs than smaller
ones, regardless of the target size. However, if we apply our
novel model components, the imbalance is alleviated according
to the target region size. For the small-sized target case, CSD
U-Net has the effect of increasing the number of small-size
RoI by adaptively expanding the small-size RoI candidates. For
SARA + MSSN, it increases the small-size RoI and decreases
the number of large-size RoI from distribution. By adding dense
connections to MSSN, PESA R-CNN has the additional effect
of fine-tuning the RoI distribution for optimal performance. For
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Fig. 13. Segmentation examples of diverse size hemorrhages obtained from PESA R-CNN and other models.

Fig. 14. Segmentation examples of small-sized hemorrhages obtained from PESA R-CNN and other models.

the medium-sized target, the overall RoI distribution is adjusted
so that the number of medium-size RoI is increased while the
number of large-size RoI is decreased. In the large-sized target
case, CSD U-Net increases both small and large-size RoI, but as
more components are added, overall RoI distribution is adjusted
so that there are more large-size RoIs than the original Mask
R-CNN case.

4) Comparison With Other Segmentation Methods: We
evaluate the segmentation performance of the proposed model
and other state-of-the-art segmentation models in Table II. The
UH dataset consists of diverse sizes of ICH, and the PHY dataset
consists of many small-size ICH. From this result, FCN8 and
FCN32 show relatively better HD scores than U-Net, which
means they have low false-positive rates. PSPNet and U-Net
have a high HD because of their high false positives. Compared
to other U-Net variants, U-Net++ shows a large improvement
in HD because adopting the dense connection preserved more
fine-scale information. The R-CNN-based models show lower
HD than other U-Net-based models. The overall results show
that our PESA R-CNN outperforms all other models on both
datasets. Fig. 13 shows examples of segmented CT images from
all evaluated models. In the first row, the prediction results of
FCN8, FCN32, and SegNet are inaccurate and even regard nor-
mal tissues as hemorrhage (high false-positive rate). U-Net++
predicts regions close to a target shape, but still shows false
positives. The results of TransUNet and Swin-Unet show much
worse performance than some CNN-based models, because our
dataset is not large enough for the training of Transformer-based
networks [63]. For the PHY dataset, most other models show
incorrect localization and some false positives. In comparison
to these models, PESA R-CNN accurately segments every target
region for both large and small cases and does not miss small
ICHs without introducing false positives.

TABLE IV
COMPARISON OF SMALL-SIZED HEMORRHAGE SEGMENTATION

PERFORMANCE OF PROPOSED APPROACH AND OTHER METHODS

5) Segmentation Performance on Small-Sized Hemorrhage
Regions: We evaluate all models for the pre-defined small-sized
hemorrhage group to show the proposed model’s effectiveness
on small-sized hemorrhage regions. Table IV shows the per-
formance of various models on the small-sized hemorrhage
groups. For the UH dataset, most other models show slightly
worse or similar performance than the entire hemorrhage group
results which represents their weakness on the small-sized
hemorrhage segmentation problem. Even for Swin-Unet and
TransUNet, their attention mechanisms show no benefit for the
small-sized hemorrhage segmentation. Also, most U-Net-based
models show worse performance on the small-sized hemorrhage
segmentation. However, our model significantly outperforms all
other models in both DSC and HD. Moreover, it is even better
than the results of using the entire UH dataset. For the PHY
dataset, many models miss small ICH and show severely poor
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performance in HD. However, PESA R-CNN shows better per-
formance than all other models with a large margin, especially
for HD, demonstrating its major performance enhancement in
small hemorrhage segmentation. Fig. 14 shows examples of
small-sized hemorrhage segmentation results from PESA R-
CNN and other state-of-the-art models. Most other models fail to
detect the very small and low contrast target in the first row. Even
some models, Mask R-CNN and U-Net++, for example, detect
unrelated normal brain regions as hemorrhage. In contrast, the
proposed model detects and segments target hemorrhage regions
without error. FCN32 and PSPNet fail to find any hemorrhage
in the second row. SegNet and U-Net++ detect only a part of the
target region. However, PESA R-CNN correctly localizes and
segments the target region. For the example of the UH dataset,
the target region in the third row consists of two small hemor-
rhages, and among them, a relatively large hemorrhage region
is segmented by all evaluated models, however, FCN8, FCN32,
and PSPNet predict a large number of false positives and false
negatives, and their predicted hemorrhage region boundaries
differ significantly from the targets. Furthermore, most other
models fail to segment a smaller hemorrhage region. The target
of the fourth row also has very low contrast and a small-size
region. Therefore, most of the other models can’t segment any
hemorrhage regions and predict normal tissue as hemorrhage.
However, in contrast to those results, PESA R-CNN correctly
detects and segments the target hemorrhage regions without
any missing small regions. Also, the boundary and shape of
the predicted region are closest to the target region. Especially
for small-size hemorrhages, it shows the most accurate result
without introducing many false positives or false negatives.
From these experiments, we demonstrate the strength of our
PESA R-CNN on segmenting diverse size hemorrhages and also
show that PESA R-CNN can learn to discriminate low contrast
small hemorrhage regions from normal tissue regions, which
previously failed in many models.

V. DISCUSSION

In this study, we experimentally demonstrate that intro-
ducing PHE-induced features significantly improves the over-
all performance. Additionally, we demonstrate that scale
adaptively aligning RoI and applying MSSN are highly
effective for diverse size hemorrhage segmentation, especially
for small-size ICH. In numerous pre-clinical and clinical studies,
it has been demonstrated that PHE is a promising surrogate indi-
cator of secondary brain injury after ICH. Despite its importance,
directly measuring PHE is difficult due to its low clarity on CT
scans. Therefore, instead of aiming to segment PHE regions ac-
curately, we approximately estimate potential candidate regions
of PHE and use features from those regions to clarify the RoI
of ICH. Although this approach does not accurately segment
PHE, its hypodense tissue pattern can provide an additional
informative cue for identifying ICH.

We introduce CSD to U-Net architecture to emphasize the
salient regions that contrast with neighboring regions, and devise
CSD U-Net. We train it to learn patterns from both ICH and PHE
in a weakly supervised manner and use its prediction results for
obtaining expanded RoI. The experiments clearly demonstrated
that the PHE is a useful cue for accurately segmenting small
and low contrast hemorrhage regions. During this research, we
discovered that target boxes in the hemorrhage dataset mainly
focused on the detection of ICH in a CT scan. Thus, even if
there are several small-size hemorrhages in a CT scan, they do
not tend to be labeled as a separate bounding box. This type
of labeling convention can cause small-size regions to be easily

lost during region proposal or the RoI Align process. We will
conduct additional research to determine how much the labeling
scheme affects the accuracy of hemorrhage segmentation.

VI. CONCLUSION

In this article, we propose PESA R-CNN, a novel, highly
accurate hemorrhage segmentation model. In our model, we
devise a CSD U-Net to learn the PHE region around the hem-
orrhage and use its predicted regions for expanding RoI. This
expansion method provides extra feature regions for enhancing
the localization of small-sized hemorrhages. Furthermore, to
prevent missing small hemorrhage regions or boundary details
during the segmentation process, we scale adaptively align RoI
candidates with SARA, and adopt MSSN according to each
aligned RoI size. In our experiments, each novel component
of PESA R-CNN effectively enhanced the overall performance
of the baseline model, and also minimized the missed small
hemorrhage regions while correctly detecting other diverse size
hemorrhages. As a future work, we will further optimize SARA
based on the RoI size distribution, so that the model can segment
more effectively with respect to input target sizes.
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