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Abstract—The aim of this study is to develop an explain-
able late-onset sepsis (LOS) prediction algorithm using
continuous multi-channel physiological signals that can be
applied to a patient monitor for preterm infants in a neonatal
intensive care unit (NICU). The algorithm uses features on
heart rate variability (HRV), respiration, and motion, based
on electrocardiogram (ECG) and chest impedance (CI). In
this study, 127 preterm infants were included, of whom 59
were bloodculture-proven LOS patients and 68 were control
patients. Features in 24 hours before the onset of sepsis
(LOS group), and an age-matched onset time point (con-
trol group) were extracted and fed into machine learning
classifiers with gestational age and birth weight. We com-
pared the prediction performance of several well-known
classifiers using features from different signal channels
(HRV, respiration, and motion) individually as well as their
combinations. The prediction performance was evaluated
using the area under the receiver-operating-characteristics
curve (AUC). The best performance was achieved by an
extreme gradient boosting classifier combining features
from all signal channels, with an AUC of 0.88, a positive
predictive value of 0.80, and a negative predictive value
of 0.83 during the 6 hours preceding LOS onset. This fea-
sibility study demonstrates the complementary predictive
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value of motion information in addition to cardiorespiratory
information for LOS prediction. Furthermore, visualization
of how each feature in the individual patient impacts the
algorithm decision strengthen its interpretability. In clinical
practice, it is important to motivate clinical interventions
and this visualization method can help to support the clini-
cal decision.

Index Terms—Early warning model, heart rate
variability, late-onset sepsis, machine learning, motion,
multi-channel physiological signal, preterm infants,
predictive monitoring, respiration, sepsis prediction.

I. INTRODUCTION

N EONATAL sepsis is one of the main causes of neonatal
mortality, accounting for 15% of total neonatal deaths

worldwide [1]. Neonatal sepsis can be categorized into either
early-onset sepsis (EOS) or late-onset sepsis (LOS). EOS usually
appears within the first 72 hours of life, representing vertical
mother-to-infant transmission, whereas LOS represents infec-
tion within the hospital environment or the community and
appears at least 72 hours after delivery [2]. For preterm infants
admitted in a neonatal intensive care unit (NICU), the mortality
rate of LOS can reach 11.3% [3]. These infants are especially
vulnerable to LOS due to their immature immune systems and
prolonged hospital stays [4]. The detailed differences between
EOS and LOS can be found in [5].

Timely diagnosis of LOS and starting antibiotic therapy lower
the mortality of LOS [6]. However, the current gold standard
for diagnosing LOS is based on the results of blood culture
analysis which takes more than 24 hours to obtain results [7].
Therefore, in clinical practice, the antibiotic therapy starts at the
moment of blood culture ordering (often denoted as a Cultures,
Resuscitation, and Antibiotics Started Here (CRASH) moment),
based on the clinical signs of infection, even though these clinical
signs may be nonspecific and inconspicuous [2]. Therefore many
studies focus on the development of data-driven clinical decision
support algorithms for the early detection of neonatal sepsis, as
recently overviewed by Persad et al. [8] whose systematic review
shows that there are two main types of algorithms for LOS pre-
diction. One type is focusing on laboratory data and observations
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from electronic medical records (EMRs), usually containing
data in lower temporal resolution. The second type is based on
continuous signals, using higher temporal resolution data. Many
models also include demographic data such as gestational age
(GA) and birth weight (BW) to the algorithms [8], [9], since low
GA corresponds to immature innate leading to an increased risk
for LOS [10]; however, it is challenging to determine unbiased
datasets that can be used in the development of prediction algo-
rithms [8]. In EMR-based studies, clinical signs are commonly
used in the prediction algorithm, for which particularly lethargy
is considered an important clinical sign for LOS prediction [9].
The second type with continuously measured vital signs allows
for calculating heart rate variability (HRV) features, which are
most often used in LOS prediction, as reviewed by Sullivan
et al. [4]. The use of changes in HRV preceding LOS has led
to the development of an HRV-based risk score that is shown to
rise 24 hours before CRASH [11], [12]. Moreover, continuous
HRV monitoring in very low birth weight neonates has shown
to be associated with a reduction in sepsis-associated mortal-
ity [13], [14]. Later studies also show the added value of other
vital signs, such as respiration [4], and cross-correlation between
different vitals [15] on the prediction performance, though the
evaluation of its effectiveness is still needed [4], [8]. Although
lethargy is one important clinical sign associated with LOS,
only a few studies report using continuous measurement of body
motion to automatically detect lethargy preceding the onset of
LOS [16], [17] since there is no accepted standard for measuring
and quantifying motion patterns continuously.

Despite these promising findings on neonatal LOS prediction,
there are limited algorithms that use multiple vital sign data to
improve prediction performance [4]. In this feasibility study, we
aim to predict upcoming LOS in preterm infants using features
derived from the multiple physiological signals of a patient
monitor including HRV (obtained from electrocardiogram or
ECG), respiration (measured by chest impedance or CI), and
motion (derived from ECG and CI waveforms), as well as
patients’ demographic data including GA and BW. In particular,
for clinical practice, it is relevant to understand which features
change and impact the prediction of LOS. Therefore we use an
explainable method to visualize the real-time feature impact on
the LOS prediction.

II. PATIENTS AND DATA ACQUISITION

The present study included a total of 127 hospitalized preterm
infants born before 32 weeks of gestation, admitted to the NICU
of the Máxima Medical Center in Veldhoven, the Netherlands,
from July 2016 to December 2018. The medical ethical commit-
tee of the hospital provided a waiver for this retrospective study
under the Dutch law on medical research with humans.

Patients with clinical signs of a generalized infection accord-
ing to the Vermont Oxford Criteria [18], having treatment with
antibiotics after at least 72 hours of life and isolated pathogens
from blood culture, were included in the LOS group. To prevent
introducing contaminated blood cultures, the C-reactive protein
(CRP) level in the identified LOS patients should be greater than
or equal to 10 mg/L at least once within 5 days after the clinical

TABLE I
CHARACTERISTICS OF THE PATIENT POPULATION

onset of LOS [19]. Only the first proven episode of LOS was
included in this study for each LOS patient. The control group
consisted of preterm infants without clinical suspicion of sepsis
and no need for taking any blood culture.

As most features derived from physiological signals in pre-
mature infants are known to change with maturation [20], we
first defined the CRASH moment [21] for each LOS patient as
the ‘anchor’ point and then searched for one or more control
patients with a GA within 3 days younger or older than the LOS
patient. For the control patients, we subsequently calculated
an ‘equivalent CRASH moment’ to determine which 24-hour
period to analyze in control patients, with a postmenstrual age
(PMA) close to the LOS patients.

The ECG (250 Hz) and CI (62.5 Hz) waveforms of all pa-
tients were obtained from the routine neonatal patient monitors
(Philips IntelliVue MX 800, Philips, Hamburg, Germany). Data
were stored in a data server (PIIC-iX, Data Warehouse Connect,
Philips Medical Systems, Andover, MA) and retrospectively
collected from the data warehouse. The waveforms from 24
hours before to 24 hours after the anchor point were used in
this study.

Table I summarizes the characteristics of the studied patients
in the full dataset. Even though we used a matching procedure,
patients in the LOS group were more premature than in the



552 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 1, JANUARY 2023

Fig. 1. Schematic diagram of the pipeline for the LOS prediction algorithm development. ECG - electrocardiogram, CI - chest impedance, HRV -
heart rate variability.

control group. As immaturity (i.e. low GA and BW) is associ-
ated not only with LOS but also with changes in physiological
signals [10], [20], we defined a variant of the dataset to reduce
the influence of different maturation: a matched subdataset con-
taining only 32 patients in the control group that were precisely
matched to 32 sepsis patients. In this subdataset, there was no
significant difference in maturation (i.e. GA, BW, and PMA)
between two groups. Details of characteristics can be found in
our previous study [17]. Unless stated differently, we performed
all the following machine learning experiments using both the
full dataset and the matched subdataset.

III. METHODOLOGY

The schematic diagram to develop the machine learning algo-
rithm for LOS prediction is shown in Fig. 1. This diagram con-
sists of three blocks including physiological signal processing,
feature extraction, and prediction evaluation. Similar to our pre-
vious studies [16], [17], we applied a peak detection algorithm to
detect R-peaks in ECG waveforms of all patients [22], followed
by calculating R-R intervals (RRI), resulting in the HRV signal
(i.e. RRI time series). The CI (respiration) waveform was first
filtered to remove cardiac artifacts, then the peaks and troughs of
the waveform were detected [23]. To estimate the body motion of
infants, we developed a continuous motion signal by quantifying
motion artifacts in both ECG and CI waveforms. This motion
quantification method combines the signal instability index (SII)
and the low-frequency motion component based on continuous
wavelet transform (CWT) [24] in both ECG and CI waveforms.

Specifically, we first implemented the CWT to convert ECG and
CI waveforms into scalograms. We set a fixed threshold of beat-
to-beat interval, 1.5 s for ECG and 0.4 s for CI. A window size
of 6 s was utilized for both signals with a moving step (sampling
period) of 0.4 s. The middle 0.4-second scalogram was averaged
along the temporal axis. When the period is greater than the
corresponding threshold, the maximum value of the averaged
scalogram was taken as the instantaneous motion measure to
estimate the intensity of the motion. Then we implemented
kernel density estimation which can be interpreted as a smoothed
histogram on both waveforms with the same sampling period.
The bandwidth of the kernel was extracted as the SII to quantify
the motion. Afterwards, the average of both motion measures
was taken as our motion signal. This combined motion signal
showed better performance than using either single component
(SII or CWT) when validating against the annotated videos in
our previous study. For details of this method, we refer to our
previous work [25].

A. Feature Extraction

Each signal was divided into non-overlapping 1-hour seg-
ments. The segments prior to CRASH in the LOS group and
equivalent CRASH moment in the control group were labeled
as LOS (labeled as 1) and control (labeled as 0) segments,
respectively. We first calculated features from the entire 1-hour
segment. In addition, to characterize physiological changes for
a shorter period, we then split each segment into periods of
5 minutes and computed the same features for each 5-minute



PENG et al.: CONTINUOUS LATE-ONSET SEPSIS PREDICTION ALGORITHM FOR PRETERM INFANTS 553

subsegment. The mean, standard deviation (SD), maximum,
and minimum of the features from all the subsegments were
computed as ‘statistical’ features for each 1-hour segment.

We considered four categories of features including HRV
features (from HRV signals), respiration features (from respira-
tion signals), motion features (from estimated motion signals),
and demographic features. The features in each category are
introduced in the following.

1) HRV Features: HRV features were extracted from RRI
time series. Features in time domain were computed including
the mean and SD of the RRIs (RRM and SDNN), the root
mean square of successive RRI differences (RMSSD) [26],
the percentage of deceleration (pDec), the SD of RRIs that
contribute to pDec (SDDec) [27], the sample asymmetry (Sam-
pAsy) [28], and the average acceleration and deceleration re-
sponse (AAR and ADR) [29]. We also extracted frequency-
domain features by first resampling RRI time series to 4 Hz
and then calculating normalized low frequency power (LFnu)
within a frequency range of 0.02-0.2 Hz, normalized high
frequency power (HFnu) ranging from 0.2 to 2 Hz, and their
ratio (LF/HF). Approximate entropy (ApEn) of RRIs (RRApEn)
was also extracted to measure the regularity of heart rate
changes [30].

2) Respiration Features: The respiratory rate and inspiration
to expiration ratio (IER) time series were calculated from the
preprocessed respiration signals. We extracted features from
respiratory rate including median, interdecile range, skewness,
kurtosis, and ApEn (denoted by RespMED, RespIDR, Re-
spSkew, RespKurt, and RespApEn, respectively) [16]. Skew-
ness is a measure of the asymmetry of signal values around
the mean in terms of their distribution. For instance, apnea
and/or bradypnea can result in a long left tail in respiratory rate
distribution, which can be reflected by a negative skewness value
of the distribution. Kurtosis is a measure of the shape distortion
compared to a Gaussian distribution of the signal. For instance,
a positive kurtosis indicates more respiration rate values located
around the mean rather than in the tails of the distribution.
Additionally, we also extracted features by computing the mean
and SD of the IER (RespIERM and RespIERSD) [31].

3) Motion Features: Motion features were developed for this
study from the continuous motion signal to capture the motion
pattern of preterm infants before LOS. We computed the median,
interdecile range, skewness, and kurtosis of the motion signal
(denoted by MotMED, MotIDR, MotSkew, and MotKurt, re-
spectively) to characterize body motion. Low values of motion
interdecile range (MotIDR) and large positive values of mo-
tion skewness (MotSkew) can represent a lack of motion (i.e.,
lethargy). The ApEn of the motion signal (MotApEn) was also
computed to evaluate the repetitive motion pattern of infants. We
empirically set the embedded dimension of 3 and the tolerance
of 0.3 to calculate this feature. In addition, the cumulative time
of body motion (MotDur) and the number of occurrences of
body motion (MotFreq) were designed to represent the duration
and frequency of body motion of preterm infants. In order not to
include small motion from the head or limbs, we empirically set
3 as the threshold for the motion signal to define the presence of
body motion, as shown to be an adequate value [25].

4) Demographic Features: GA and BW are known to be
important risk factors for neonatal sepsis and can represent the
physiological maturity at birth of preterm infants [10].

Features based on 1-hour segments and the corresponding
statistical features (i.e., mean, SD, maximum, and minimum)
from all 5-minute subsegments from the same segment, lead to
a total of 60 HRV, 35 respiration, and 35 motion features. All
the features and their descriptions are summarized in Table II.

B. LOS Prediction Evaluation

In this study, we first compared several commonly used
classifiers with different classification mechanisms, including
extreme gradient boosting (XGB), k-nearest neighbors (KNN),
logistic regression (LR), and support vector machine (SVM).
These classifiers have been used in previous studies for LOS
prediction and are generally accepted [8]. XGB is an imple-
mentation of gradient boosted decision trees with parallel com-
putation and additional regularization. KNN is a classifier that
stores all available samples and classifies new samples based
on a similarity measure. LR allows quantifying the relationship
between features and predictions. SVM can perform effective
non-linear classification by mapping the input features into
high-dimensional feature spaces and is known for its high gen-
eralization ability and robust performance [32].

Next, to evaluate the predictive value of different signal
channels or their combinations, we considered 5 feature sets for
comparison, 1) HRV features, 2) respiration features, 3) motion
features, 4) the combination of HRV and respiration features, and
5) the combination of all features. Note that the demographic
features (i.e., GA and BW) were always included in different
feature sets. As shown in Fig. 1, we used 10-fold cross validation,
which for the full dataset with 127 patients meant leaving 12 or
13 patients out in each iteration of cross validation, to split the
feature set into training and test sets. For the matched subdataset
of 64 patients, 6 to 7 patients were left in each test set of each
iteration. Within each training set, patient-independent 5-fold
cross validation was applied to optimize the window length
(number of hours before CRASH) and other hyperparameters
used for modeling and prediction. Here we used the Bayesian
optimization for hyperparameter tuning and used grid search to
select the optimal window length, starting from −24 hours to
the CRASH moment with a step size of 1 h, to maximize the
performance of LOS prediction in training sets. Afterwards, the
classifier trained with the optimized parameters was tested on the
test set during each iteration of cross validation. As illustrated in
the study by Leon et al. [30], the 6 hours prior to CRASH contain
the most predictive information of LOS, we also used the AUC
of prediction during 6 hours prior to CRASH to determine the
best performing classifiers for the following analyses.

Finally, the best performing classifiers (i.e. greatest AUC dur-
ing 6 hours before CRASH) in the test sets were used to analyze
the hourly performance before CRASH. We calculated hourly
AUC values for each feature set by combining the predictions in
test sets for all patients at each hour before CRASH to analyze the
‘time-to-CRASH’ prediction performance. We then displayed
the predicted probability per hour by calculating the average



554 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 1, JANUARY 2023

TABLE II
DESCRIPTION OF FEATURES

and standard deviation of the predicted probability in test sets
for all patients at each hour before CRASH. Visualizing the
probability over time can provide clinicians an early warning
tool for clinical decision making.

C. Feature Importance

It is essential to understand how a model makes an individ-
ual prediction in the applications of clinical decision support
algorithms since the consequences are for individual patients.
Typically, simple models (e.g. linear models) are preferred
because of their ease of interpretation; however, there is often
a trade-off between the performance and interpretability of a
model on the data in clinical practice. Furthermore, the popular
feature attribution methods embedded in classifiers (e.g. gain
and split count for tree ensembles) are inconsistent [33], making
a meaningful comparison of attribution values across features
difficult. One of the recent advances for explanation models to

estimate feature importance is the Shapley additive explanations
(SHAP) [34], a local interpretability technique based on Shapley
Value. Several studies have started to take advantage of SHAP
to interpret clinical decision support algorithms [35], [36].
SHAP assigns each feature an impact value for an individual
prediction, showing the positive or negative relationship for
each feature with the prediction. A positive SHAP value or a
negative SHAP value indicates the feature pushes prediction
more positive (LOS) or negative (control), respectively. A SHAP
value of zero represents no impact on the prediction. As an
approach to allocating feature importance, SHAP is consistent,
accurate, and more in line with human intuition [34], [36]. In
this study, we utilized SHAP to estimate the feature importance
of the best-performing classifiers to gain more insight into the
decision-making process and how the predictions are impacted
by each feature of each instance. In addition, we further propose
to make the model explainable by visualizing the individualized
feature attribution of SHAP. In this visualization, we display
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Fig. 2. Feature time series for HRV (top), respiration (middle), and motion (bottom) over 24 hours before and after CRASH. For each hour, the
mean value over all patients in each group is presented.

the predicted probability and SHAP values of top-10 features
evolving over time for the predictions of individual patients as
an example for the real-time application in the NICU.

IV. RESULTS

A. Feature Time Series Analysis

To show the changes in features before and after the CRASH
moment, we present the time series of 6 features for the 59 LOS
and 68 control infants (full dataset) as shown in Fig. 2. Regarding
the features of HRV, the pDec decreases significantly in LOS
infants in comparison with control infants prior to CRASH.
Similarly, HFnu also drops but to a less extent. Regarding
respiration features, both RespIDR and RespApEn in the LOS
group increase a few hours before CRASH (e.g., −3 to −1 h).
For motion features, higher MotMED values can be observed
before CRASH in the LOS group, reflecting more subtle body
motion. The MotApEn values in LOS infants are also much
higher than those in control infants during almost the entire 24
hours before CRASH, indicating the presence of a more irregular
motion pattern in LOS patients.

B. LOS Prediction Performance

Table III presents the prediction performance of compared
classifiers using different feature sets in the full dataset and
the matched subdataset. XGB does not necessarily perform best
when individual feature sets are used, but when using the combi-
nation of all features, it stands out in both datasets for predicting
LOS during the 6 hours before CRASH, with a mean (SD) AUC
of 0.88 (0.09) and 0.85 (0.07) respectively. By including the
motion features the performances of most classifiers increase.
Using multi-channel features outperforms using single-channel
features alone (HRV, respiration, or motion). This indicates that
the three physiological signals can be used individually but
are also complementary with respect to predictive value for
LOS prediction. In general, the performance using all features
outperforms that of cardiorespiratory features and each single-
channel features. It can be observed that the matched subset,
which is smaller but is exactly matched on GA and PMA on a
subject-to-subject basis, performs worse than the full dataset
(likely due to the smaller number of patients in the training
set), but the added value of the motion features is still visible.
When using all features, there is an even larger improvement in
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TABLE III
LOS PREDICTION RESULTS (AUC) USING DIFFERENT CLASSIFIERS AND FEATURE SETS IN BOTH DATASETS DURING 6 HOURS BEFORE CRASH

TABLE IV
METRICS OF PREDICTION IN BOTH DATASETS DURING 6 HOURS BEFORE CRASH FOR XGB

Fig. 3. Comparison of LOS prediction performance (AUC) versus time to CRASH using different feature sets extracted from different signal
channels or combinations in both datasets.

performance. As mentioned before, from this point on, the best
performing classifier (XGB) is used for all following analyses.
The hyperparameters we chose to tune in the training process for
XGB are the maximum depth of a tree, learning rate, number of
estimators, and the minimum sum of instance weight needed in a
child.

Table IV reports the XGB performance in LOS prediction
in both datasets including sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV), accu-
racy, and AUC. The metrics were calculated by the classifier’s
decision-making threshold of 0.5. It can be seen that the model
using features from all physiological signals achieves the highest
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Fig. 4. Prediction probability over time before CRASH for both LOS and control groups in both datasets. The values in lines are the average of
probabilities, the shadow around lines means the standard deviation of the predicted probabilities. The dashed line represents an example of the
decision-making threshold of 0.5.

values in all metrics in each dataset. The metrics in the full
dataset outperform those in the matched subdataset.

Fig. 3 shows, for different feature sets in both datasets, how
the performance of XGB in LOS prediction changes over time
from −24 hours to CRASH. A clear upward trend starting from
12 hours before CRASH can be observed for all feature sets,
the trend reaches the peak at −1 h in the full dataset and at
−2 h in the matched subdataset. In particular, the AUC obtained
using only motion features starts increasing consistently from
−14 hours, earlier than that using other feature sets, and reaches
the maximum value at −6 hours in both datasets. Combining
all features leads to the highest AUC of 0.93 at the time of
1 and 2 hours before CRASH in full and matched subdataset,
respectively.

Fig. 4 shows the XGB predicted probability of LOS (mean and
SD over patients) using all features in the range of −24 hours to
CRASH in both datasets. It can be seen in the full dataset that
on average the model can separate LOS from the control group,
the trend of the prediction probability in both groups is similar
for both datasets, but the distinction between two groups is less
when the time is far from CRASH in the matched subdataset.
As expected, for both datasets, the overlapping area of SDs of
the two groups is large when the time is far from CRASH.
The predicted probability for control infants does not change
over time, whereas that for LOS infants increases after around
−12 hours. This change indicates more predictive information
of LOS is obtained by the model when the time is closer to
CRASH. Additionally, the SD of predicted probability at each
hour is large, in most hours the ‘lower boundary’ (mean - SD)
for control patients can even reach zero. Note that the predicted
probability is different from the infection probability of LOS but
assumed to be highly correlated with it.

C. Feature Importance

To interpret how features impact the predictions of the model
in both datasets, the feature importance (top 10) of the XGB
model using all features is presented and compared in Fig. 5. It is
defined as the average absolute SHAP value (in square bracket)
over all predictions, indicating the ‘impact on model output’
of a feature. The scatter-dense plots show the SHAP value
distributions of the features. It can be seen in the full dataset,
on average, GA has the largest impact on the prediction. A low
GA (blue) pushes the prediction toward LOS while a high GA
(red) pushes the prediction toward the control class. As expected,
the GA disappears in the top 10 list of the matched subdataset
because of the precise matching. MotIDRmean (mean of 5-min
motion interdecile range) and MotMEDmin (minimum of 5-min
motion median) stand out for both datasets, showing the low
MotIDRmean and high MotMEDmin lead the predictions toward
LOS. In addition, in both datasets, more top-ranked features (7
out of 10) are features extracted from 5-min subsegments. It
is also important to note that the list includes features obtained
from all signal channels (HRV, respiration, and motion), showing
that the three physiological signal channels are complementary
for LOS prediction. Fig. 6 illustrates the boxplots of SHAP val-
ues and the Mann-Whitney U test of feature values for the top 10
features in both datasets. It can be seen the distribution of SHAP
values of the top 10 features in both groups can be split well.
Most top 10 features are significantly different in both groups.

Fig. 7. displays examples of real-time predictions for two
individual patients, one per group in both datasets. It contains
the predicted probability and the corresponding explained top
features evolving over time, which allows clinicians to better
interpret the model. It can be observed that in the matched
subdataset, the predicted probability of this particular LOS
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Fig. 5. Feature importance (top 10) in both datasets based on SHAP analysis. For each feature, the value in the square bracket represents the
mean absolute SHAP value. The color bar represents the feature values. The features that appear in both models are presented in bold.

Fig. 6. Boxplots of SHAP value for top features in both datasets. * and ** correspond to a significant difference in corresponding feature values
between LOS and control groups, with p < 0.05 and p < 0.01, respectively. The features that appear in both models are presented in bold.

patient becomes septic from −6 hours as a result of decreased
pDecmean, increased RespIDR, and decreased MotIDRmean.
The control patient was wrongly predicted as LOS at −8 h
mainly because of the sharp decrease of MotIDRmean which
can represent lethargy.

V. DISCUSSION

The results of this study indicate that an upcoming LOS can
be predicted earlier than in current clinical routine by machine
learning classifiers using multi-channel physiological signals
obtained from a patient monitor, potentially providing an ex-
tended therapeutic period for clinical intervention for LOS pa-
tients. We show that the inclusion of the derived motion features
can provide complementary predictive value to cardiorespiratory
features for LOS prediction.

By analyzing features extracted from HRV, respiration, and
derived motion signals, we confirm previous findings that the
features extracted from physiological signals change over time
several hours preceding the onset of LOS [16], [30]. In par-
ticular, the changes of motion features (e.g. MotMED and
MotApEn) start earlier than that of cardiorespiratory features
(Fig. 2), improving prediction performance for LOS when time
is far from CRASH (Fig. 3). Although several clinical studies
have demonstrated that the lack of spontaneous motion (i.e.,
lethargy) is a valuable clinical sign that can be used to predict
LOS, they did neither quantify nor continuously measure body
motion [12], [37]. In our previous study [17], the motion was
continuously estimated based on the SII of ECG, a feature that
changed before the CRASH moment. We now improved the mo-
tion estimation method by combining SII and the low-frequency
component of ECG and CI, showing that the motion features
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Fig. 7. Real-time prediction for individual patients. The upper line plot represents the predicted probability of each hour before CRASH, with the
dashed line representing an example of the decision-making threshold of 0.5. The lower heat map represents top features evolving over time to
CRASH for individual patients.

in themselves can perform similarly to HRV features for LOS
prediction. This may be an effect of the extracted low-frequency
component of physiological signals, which is not only related to
motion but also the information of ECG and CI (e.g. bradycardia
and apnea). Hence, independent motion measurement is needed
to further analyze the predictive value of continuous motion
signals for LOS prediction.

In this study, we observed that motion features, which are
available from continuous monitoring, are among the top-
ranking features and add complementary information to conven-
tional cardiorespiratory features for LOS prediction. Besides, the
top-ranked motion features (Fig. 5) reveal notable findings. For
instance, a higher median of the motion signal (MotMEDmin -
minimum of 5-min motion median) and a lower range in this
signal (MotIDRmean - mean of 5-min motion interdecile range)
may suggest that more subtle motion but less gross motion
is indicative of upcoming sepsis in LOS patients. A higher
MotApEnmean (mean of 5-min motion approximate entropy)
is associated with more irregular changes of motion patterns
preceding CRASH in LOS infants. A higher MotKurt (kurtosis
of motion) in LOS infants could be due to the presence of
sepsis-associated lethargy.

Even though many algorithms show potential for early de-
tection of sepsis, the comparison of prediction performance is

still difficult because of the limited standardization [8], [9].
The heterogeneous datasets, varying sepsis definitions, and
different reported metrics complicate the performance compar-
ison of LOS prediction algorithms. Nevertheless, we compared
our prediction performance to several comparable studies. For
instance, a comparison between the results in our full dataset
and results from a study by Leon et al. [30], whose dataset
also contained significantly different maturation between two
groups and who used the same metric (AUC during 6 hours
before CRASH) for performance evaluation shows a similar
performance (AUC of 0.88). They showed added predictive
value of more advanced HRV features, indicating further in-
formation can be explored from the physiological signals to
improve the prediction performance. We also compared the
prediction performance of the refined algorithm to the pre-
diction performance in our previous study when used on the
same data, the subdataset of age-matched infants [17]. Our
new algorithm outperforms the previous algorithm at every
hour shown before CRASH, indicating the improvement of
motion signals and the developed pipeline for LOS prediction.
Interestingly, we can observe that the performance at the last
hour before CRASH dropped significantly. This might likely
be caused by the nurse handling due to the increasing number
of critical alarms (e.g. desaturation, bradycardia, and apnea)
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associated with sepsis. The measured signals therefore became
less reliable because of this external disturbance at the last hour
before CRASH, which would likely lead to decreased prediction
performance.

The method could be deployed for continuous monitoring in
a NICU setting, as it uses commonly available vital signs from a
routine patient monitor. Moreover, unlike other methods which
need an observation period (e.g. first 48 hours) as a baseline
reference for each patient [30], our new method can be applied
without this observation period. This is particularly useful for
newly admitted patients in NICU. Furthermore, the prediction
probabilities and explained features evolving over time on an
individual patient basis (Fig. 7) allow clinicians to easier un-
derstand the model and even ‘correct’ some false predictions
based on information from individual features combined with
clinical symptoms. For instance, as shown in Fig. 7, the predicted
probability of the LOS patient keeps increasing from 6 hours
before CRASH because of the abnormal changes of pDecmean,
RespIDR, and MotIDRmean, this can trigger the clinicians to
earlier check the physiological status of the patient. Additionally,
the one-time increase in infection probability demonstrated by
the control patient can be ‘corrected’ by a clinician through
physical examination which may indicate that in this case the
decreased MotIDRmean is caused by for instance normal sleep.

One of the main limitations of our study is the difference
in maturation between LOS patients and controls in the full
dataset. First, we can observe a difference in GA between LOS
and control groups (Table I). This difference in GA is inherent
to the higher risk for sepsis in more immature infants. Second,
the difference in PMA is related to the procedure of defining
equivalent CRASH moment in controls, which is needed to
perform our analysis. In our study, we defined an equivalent
CRASH moment at a corresponding PMA of the CRASH mo-
ment in LOS patients. However, due to the more immature
LOS patients, not all LOS patients could be age-matched with
controls. As a consequence, a one-week difference in PMA
remained between both groups. This difference may influence
those features (HRV, respiration, and likely motion) that are
known to have maturation dependency [20]. Hence, we defined
the matched subdataset to address this limitation. It can be
seen that the performance of the subdataset is less than that
of the full dataset, indicating that the model performance in
the full dataset may be slightly overestimated because of the
significant difference in maturation. However, immaturity per se
is an important indicator for LOS prediction, and the matched
subdataset deliberately excludes this potential benefit for LOS
prediction. This indicates that it would be interesting to use the
current algorithm on a bigger dataset with a larger range of gesta-
tional ages. Besides, even though using methods that inherently
include feature selection or penalization to reduce overfitting
effects and the use of cross validation was also aimed to prevent
model overfitting, the relatively large number of features used
in this study might still lead to some overfitting in our current
small dataset, which might explain the relatively large standard
deviation in prediction performance as shown in Table IV. This
encourages us to further validate our algorithm on a bigger

dataset. Another limitation is that this is a single-center study.
The model needs further external validation with data from other
hospitals, since some inevitable issues may be introduced by
therapeutic policies within the hospital. As discussed in several
reviews [8], [38], a collaboration between institutes to develop
multicenter studies should be performed, but this also requires
not only the standardization of the clinical definitions and pro-
tocols but also the data. One of the main difficulties nowadays
is that not all data are stored at a high temporal resolution,
not all vital signs are measured for all patients, and different
centers use different types of sensors for their clinical patient
monitoring, further complicating the collaboration. Moreover,
the case-control design in this feasibility study did not represent
the true risk or prevalence of LOS in the population of preterm
infants. In future work, further validation on the dataset from
the full NICU course (random selection of patients) is needed.
Lastly, commonly used features were extracted for physiolog-
ical signals at a fixed segment length in this study. In future
work, varying segment length [39], and more advanced features
and algorithms such as network-based features or deep neural
networks could be investigated for LOS prediction to further im-
prove the LOS-related physiology conveyed in the physiological
signals. These may also better capture the temporal information
relating to disease development [40]. More fusion of physiolog-
ical signals such as temperature and blood pressure should be
considered in future work because of their clinical implications
on sepsis [4]. The end-to-end solutions based on deep neural
networks are also planned as future works, since such methods
have been successfully applied to several disease predictions
such as ventricular fibrillation [41], sepsis in adults [42], and
sleep arousal disorder [43]. Besides, the model used segments
of 24 hours before CRASH to predict LOS, for a few patients
these segments were located in the transitional period, meaning
within 72 hours after birth. We did not eliminate this transitional
period, because it allows earlier prediction for LOS. Further
investigation on the characteristics of the transitional period is
required. Moreover, the datasets were built by the segments from
each patient which are time dependent, the models focused on
binary prediction without attention on time-to-event outcomes,
the impact of these repeated measures and the temporal infor-
mation in LOS development also needs further investigation in
future work.

VI. CONCLUSION

In this study, we demonstrated the potential for predictive
monitoring of LOS based on multiple physiological signals
readily available through routine patient monitoring in NICUs.
We showed that motion features obtained from cardiorespira-
tory signal waveforms can add complementary information to
electrocardiogram and chest impedance features in predicting
LOS in preterm infants. Furthermore, the visualization of how
each feature was weighted by the algorithm can strengthen its
interpretability and motivate clinical interventions based on a
combination of physiological aspects when applying the pro-
posed LOS prediction model in NICUs. In future work, a bigger
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and cross-center dataset should be used to further validate the
performance and generalizability of the model.
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