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Passivity Enforcement by Residue Perturbation via
Constrained Non-Negative Least Squares

Bjørn Gustavsen , Fellow, IEEE

Abstract—Passivity is a fundamental requirement for rational
models to guarantee stable behavior when included in general
time domain simulations. This paper introduces a new variant of
one passivity enforcement scheme that is based on residue matrix
perturbation. The constrained least squares problem associated
with the passivity condition is transformed into a least distance
problem which is solved as a non-negative least squares problem
while utilizing the sparsity pattern that arises with multi-terminal
problems. The resulting method is very fast and requires only
a small amount of computer memory, thereby being applicable
to models with many terminals and high orders. The method is
demonstrated to be suitable for frequency-dependent modeling of
subnetworks, transformer winding branch impedances, and mea-
sured transformer admittance data.

Index Terms—Passivity enforcement, residue perturbation, non-
negative least squares, FDNE, transformer modeling.

I. INTRODUCTION

FREQUENCY dependent modeling has over the years be-
come widely applied in electromagnetic transient (EMT)

programs. The most common usage is in traveling wave models
for representation of the propagation characteristics [1]–[3]. An-
other emerging application is the representation of subnetworks
by a frequency dependent network equivalent (FDNE) to save
computation time [4]–[9]. In the latter application, the typical
modeling procedure is to generate frequency samples represent-
ing the terminal (port) admittance, followed by model extraction
via rational function approximation. Finally, the model is sub-
jected to passivity enforcement by perturbation of the model’s
parameters, thereby ensuring stable time domain simulation
results with any terminal condition. While the initial model can
be reliably calculated using methods such as vector fitting [10] or
Löwner tangential interpolation [11], [12], the passivity enforce-
ment is much more difficult and has hampered the widespread
use of FDNEs in electromagnetic transient simulations. The
lack of a good passivity enforcement method is also a major
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obstacle in some other modeling applications, e.g. transformer
black-box modeling from frequency sweep measurements [13],
white-box transformer modeling with inclusion of frequency-
dependent branch impedance effects [14], and grounding mat
frequency-dependent modeling [15].

The passivity enforcement of a model requires the ability to
1) detect and quantify passivity violations, and 2) remove the
passivity violations. While the assessment of passivity violations
can be achieved by frequency sweeping [16] or by checking
eigenvalues of test matrices [17], [18] the passivity enforcement
itself is more difficult. A general procedure for passivity enforce-
ment was introduced in [19] where the model’s residue matrices
are perturbed such that the passivity violations are removed.
The mathematical formulation involves a constrained linear least
squares problem that can be solved as a quadratic programming
(QP) problem. This residue perturbation method (RP) requires
iterations because the relation between residue perturbation and
the passivity condition is non-linear. The experience with RP is
that it can be prohibitively slow in the case of problems with
many terminals and/or high model orders.

Several modifications to the RP method have been proposed to
improve its performance. The calculation time is reduced when
perturbing only a limited number of residue matrices [20], [9]
or a limited number of elements in each residue matrix [20], but
such approach is heuristic and can involve loss of accuracy in the
final model. The lack of a sparse solver for the quadratic problem
solver in early Matlab versions inspired the development of
the “Fast RP” method (FRP) where the eigenvalues of the
residue matrices are perturbed [21]. This reduces the number
of free variables, but the resulting method remains slow in the
case of models with many terminals. Other improvements have
been proposed that reduce large passivity violations via local
perturbations [22], but such approach is not general and must
often be followed by a final refinement using a general passivity
method. Other methods are based on enforcing the passivity by
perturbing eigenvalues of a passivity test matrix, [17], [23] but
those methods are limited to medium size problems because the
calculation of these eigenvalues is prohibitively slow for large
models.

In this paper, an alternative way of solving the residue pertur-
bation (RP) problem is introduced that is computationally more
efficient than usage of QP. The original RP problem is via QR-
decomposition transformed into a least distance problem (LDP)
that is solved as a non-negative least squares (NNLS) problem
[24]. The computational effort of the QR-decomposition is
with multi-terminal problems reduced by utilizing the sparsity
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pattern of the least squares (LS) system matrix. To further
enhance the computational speed, the implemented method also
permits to perturb subsets of residue matrices, and/or a subset
of residue matrix elements. The performance of the resulting
method (RP-NNLS) is demonstrated for FDNE modeling, FEM-
based white-box transformer branch impedance modeling, and
measurement-based transformer black-box modeling.

II. PROBLEM STATEMENT

The model to be passivated is a pole-residue model (1) that
represents a terminal admittance matrix Y. The admittance
matrix defines the relation between n terminal voltages v and
ditto terminal currents i (2). Y is symmetrical and the poles ai
are stable. The poles and residue matrices Ri are real or complex
conjugate. The (real) matrices R0 and R−1 are possibly not
included in the model.

Yn×n(ω) = jωRn×n
−1 +Rn×n

0 +
N∑
i=1

Rn×n
i

jω − ai
(1)

in×1(ω) = Yn×n(ω) · vn×1(ω) (2)

The objective is to calculate a minimal perturbation (3a) to
the residue matrices Ri such that the passivity condition (3b) is
satisfied [16], i.e. the eigenvalues of G = Re{Y} are positive
for all frequencies. (Positive eigenvalues of a general matrix A
is written “A > 0”).

ΔY(ω) ≈ 0 (3a)

G(ω) + ΔG(ω) > 0 ∀ω (3b)

Introducing (1) in (3a) and (3b) gives (4a) and (4b). Positive
eigenvalues are also required for R0 (4c) and R−1 (4d).

jωΔR−1 +ΔR0 +

N∑
i=1

ΔRi

jω − ai
≈ 0 (4a)

Re

{
R0 +ΔR0 +

N∑
i=1

Ri +ΔRi

jω − ai

}
> 0, ∀ ω (4b)

R0 > 0 (4c)

R−1 > 0 (4d)

The same passivity condition also applies when the model (1)
represents an impedance matrix Z. In that case, Z substitutes Y.

To simplify the presentation, it is assumed that the model
includes R0 but not R−1. (The actual implementation also
allows to include none or both terms).

III. PASSIVITY ASSESSMENT AND ENFORCEMENT

The passivity enforcement is combined with a passivity as-
sessment step as shown in Fig. 1. The passivity assessment
identifies frequencies with maximum passivity violations using
frequency sweeping [19], [25] or test matrices, [17], [18]. The
frequency points are passed to the passivity enforcement step
which calculates a model perturbation that attempts to remove
the violations at these frequencies. The process of assessment
and enforcement is repeated until all passivity violations have

Fig. 1. Passivity assessment and enforcement.

been removed. The developments in this paper and presented
efficiency metrics refer only to the passivity enforcement step.

IV. RESIDUE PERTURBATION

This section briefly reviews the passivity enforcement scheme
known as residue perturbation (RP) [19]. This scheme seeks to
enforce the passivity condition (4b)-(4d) such that the change to
the original model (4a) is minimized in the LS sense.

A. Passivity Conforming Constraint

The relation between a matrix perturbation and the change
to matrix eigenvalues is non-linear. By utilizing the eigenvalue
perturbation lemma [26] one obtains a first-order linear approx-
imation (5a) between a perturbation of G and its jth eigenvalue,
where v and w denote right (column) and left (row) eigenvector,
respectively. This expression simplifies to (5b) when considering
the symmetry and realness of G and assuming the eigenvectors
vj have been normalized to unit length.

Δλj ≈ wj(ΔG)vj

wjvj
(5a)

Δλj ≈ vT
j (ΔG)vj (5b)

After writing (5b) for all eigenpairs and reordering the expres-
sion, one arrives [19] at the matrix-vector equation (6a) where
matrix operator vec(:) places all elements of ΔG in a column
vector. Matrix P is a sensitivity matrix of dimension n× n2

that defines how the eigenvalues of G change due to a (small)
change in the elements of G. One further introduces the (linear)
relation (6b) between a perturbation of the residue matrices and
the change to the elements of G. S is a sparse matrix with
n2(N + 1) non-zero entries and vec(ΔR) is a vector holding
all n2(N + 1)elements of the residue matrices.

Δλ ≈ P · vec(ΔG) (6a)

vec(ΔG) = S · vec(ΔR) (6b)

Eqs. (6a) and (6b) are combined to give the (linearized)
relation (7) between ΔR and eigenvalues, Δλ.

Δλ ≈ T · vec(ΔR) , T = PS (7)
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B. Constrained Linear Least Squares Problem

Eq. (4a) is expressed as a matrix-vector product (8) between
ΔR and ΔY, where M is a sparse matrix with n2(N + 1) non-
zero entries.

M · vec(ΔR) = vec(ΔY) ≈ 0 (8)

A minimal perturbation vec(ΔY) is obtained as the least
squares solution of (9a) where x = vec(ΔR). The (rectangular)
system matrix A is established by writing (8) for many frequency
samples with M constituting block rows of A. Eq. (9a) is com-
bined with the linear constraint equation (9b) where C is built by
writing (7) for frequency points with passivity violations, with
matrix T constituting block rows of C and with the required
eigenvalue shift Δλ constituting block rows of vector d. Equa-
tions (9a) and (9b) are solved simultaneously as a constrained
linear LS problem. It is remarked that a change of variable is
used [10] such that x and all matrices in (9) become real-valued.

min
x

||Ax|| (9a)

Cx > d (9b)

V. SOLVING VIA NON-NEGATIVE LEAST SQUARES (RP-NNLS)

The solving of (9) was in the original implementations of
RP and FRP achieved using Quadratic Programming (QP). The
calculation time can however become prohibitive for problems
with many terminals and high orders. In order to overcome this
problem, an alternative solving procedure [24] is introduced that
is based on non-negative least squares (NNLS).

A. Conversion to Least Distance Problem (LDP)

The (rectangular) system matrix A in (9a) is subjected to QR
decomposition

A = Q̄R̄ (10)

where Q̄ is orthonormal and R̄ is an upper triangular matrix.
This gives for (9a)

min
x

||Q̄R̄x|| s.t. Cx > d (11)

Pre-multiplying with Q̄T gives

min
x

||R̄x|| s.t. Cx > d (12)

Introducing a change of variable, y = R̄x, leads to a least
distance problem (LDP),

min
y

||y|| s.t. CR̄−1y > d (13)

B. Non-Negative Least Squares (NNLS)

It is proved in [24] that by introducing matrices (14), problem
(13) can be solved as the non-negative least squares (NNLS)
problem (15), where y and x are afterwards recovered by (16) and
(17) from the solution residual (18), with colE being the number
of columns of E. The dimension of E is n2(N + 1)× (L+ 1)

where L is the number of constraints (rows in C).

E =

[
(CR̄−1)

T

dT

]
, f =

[
0, . . . 0 1

]T
(14)

min
u

||Eu− f || s.t. u ≥ 0 (15)

y = −ε(1 : colE − 1)

ε(colE)
(16)

x = R̄−1y (17)

ε = f −Eu (18)

VI. IMPLEMENTATION

A. Block-Wise QR-Decomposition

The computation time of the RP-NNLS method is often
dominated by the time needed for the QR decomposition in (10).
This problem is overcome by building A as a block-diagonal
matrix where each block corresponds to one element of Y,

A =

⎡
⎢⎢⎢⎢⎣
A1 0 · · · 0

0 A2 0
...

. . .
...

0 0 · · · An2

⎤
⎥⎥⎥⎥⎦ (19)

Each matrix block has dimension 2K · (N + 1) where K is
the number of frequency samples. (The factor 2 results when
formulating the system matrices using real-only numbers). For
such matrix (with n2 blocks), the QR-decomposition can be
applied to its individual blocks (20) since any two columns
coming from different blocks are mutually orthogonal.

A = Q̄R̄ =

⎡
⎢⎢⎢⎢⎣
Q̄1R̄1 0 · · · 0

0 Q̄2R̄2 0
...

. . .
...

0 0 · · · Q̄n2R̄n2

⎤
⎥⎥⎥⎥⎦ (20)

Equation (20) can be written

A = Q̄R̄ =

⎡
⎢⎢⎢⎢⎣
Q̄1 0 · · · 0

0 Q̄2 0
...

. . .
...

0 0 · · · Q̄2
n

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣
R̄1 0 · · · 0
0 R̄2 0
...

. . .
...

0 0 · · · R̄n2

⎤
⎥⎥⎥⎦
(21)

and therefore

R̄−1 =

⎡
⎢⎢⎢⎢⎣
R̄−1

1 0 · · · 0

0 R̄−1
2 0

...
. . .

...

0 0 · · · R̄−1
n2

⎤
⎥⎥⎥⎥⎦ (22)

From this observation it follows that the QR decomposition
(10) can be applied to the individual blocks Aj of A indepen-
dently, and that the back-transformation by (17) can be achieved
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by applying individual matrices R̄−1
j to the corresponding par-

titions of the solution vector y,

xj = R̄−1
j yj (23)

In the actual implementation, the matrix inverse in (23) is
not performed as xj is calculated by solving yj = Rjxj by
a triangular solver via back substitution. Similarly, the matrix
inverse is not used when calculating E in (14) which involves
the term CR̄−1. Instead, blocks CjR̄

−1
j are calculated from Cj

and R̄jusing Matlab’s “slash” operator, again invoking solving
by a triangular solver using back substitution.

The symmetry of Y is utilized by including only the upper
triangle of Y, thereby reducing the number of blocks from n2

to ntri = n(n+ 1)/2. A further improvement is achieved in the
case that the LS frequency-dependent weighting is identical for
all elements (e.g. unitary weighting). In that case, all blocks Aj

are identical and QR factorization needs only be performed for
a single block.

B. Solving the NNLS-Problem

The actual solving of the NNLS problem (15) is achieved
by an algorithm described in [24], available in Matlab routine
lsqnonneg. This is an active set method that solves (15) in a finite
number of steps. The following outlines the algorithm, see [24]
for full details.

The elements of the solution vector are split between an active
set Z and an inactive set P. Elements in Z are kept at zero
(uZ = 0) while the elements of P (uP) are free to vary. The
calculation is initialized by setting u = uZ, P = �. This is a
feasible solution since it satisfies u ≥ 0. An outer loop is entered
where elements from Z are brought to P, one-by-one. In each
iteration, the gradient vector (24) is calculated. The element in
Z corresponding to the largest positive element of w is moved
from Z to P.

w = ET (f −EuZ) (24)

A sub-vector uP of u is calculated as the (unconstrained) LS
solution of

EPuP = f (25)

where EP contains the corresponding columns of E. (The re-
maining elements in u are are kept at zero value in sub-vector
uZ). The solving of (25) may result in that some elements of uP

become negative. In that case, an inner loop is entered which
refines the elements of uP such that the constraints are satisfied,
followed by an update of sets P and Z. The main loop involving
(24) and (25) is repeated until the set Z is empty or all elements
in w are non-positive.

VII. COMPUTATIONAL ANALYSIS

The scalability of the method is studied next. Consider a
single passivity enforcement step of a pole-residue model with
n terminals and N pole-residue terms by solving the constrained
LS problem (9) with K frequency samples and L passivity
violations. To simplify the analysis, it is assumed that symmetry
of Y is not exploited, i.e. all n2 elements are included in the

TABLE I
APPROXIMATE FLOP COUNTS FOR BASIC MATRIX OPERATIONS

system equations. Also, it is assumed that R0 and R−1are not
present in the model. The number of floating-point operations
(flops) for basic matrix operations are listed in Table I, with m
and n being general matrix dimensions.

A. Forming LS Equation

Each of the n2 blocks Aj is of dimension 2K ×N . The
building of each block requires k1KN flops while the QR de-
composition of each Aj requires ∼ 4KN2 flops, giving the total
count in (26a). In the case of common weighting, only a single
block needs to be built and subjected to QR decomposition,
giving the reduced flop count in (26b).

C1 ∼ k1Kn2N + 4Kn2N2 (26a)

C1 ∼ k1KN + 4KN2 (26b)

B. Forming Constraint Equation

The constraint matrix C in (9b) is built via matrix P (6a) and
the sparse S (6b).

The forming of P requires to perform the eigenvalue de-
composition of matrix G(ωj) of dimensionn× n for all
Kviolfrequency points with violation(s), and to calculate sensi-
tivities for violating eigenvalues via (5). The flop count is about

C2 ∼ 4

3
Kvioln

3 + 2Ln2 (27)

The forming of T in (7) requires to multiply each element of
P of dimension L× n2 with N elements from the sparse matrix
S, requiring Ln2N multiplications. The flop count is

C3 ∼ 2Ln2N (28)

C. Forming NNLS Problem

The constraint equation C is converted into matrix E from
n2 partitions Cj of dimension L×N and submatrices R̄−1

j of
dimension N×N by calculating terms CjR̄

−1
j . The calculation

time is about

C4 ∼ Ln2N2 (29)

D. Solving NNLS Problem

The computation time of NNLS is dominated by the solving of
(25). The computational efficiency of Matlab routine lsqnonneg
was improved by solving (25) using Normal Equations (30), i.e.

uP := (ET
PEP )

−1ET
P f (30)
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It is observed that the matrix to be inverted in (30) is equal
to the number of elements in set P, i.e. the number of inactive
constraints. The solving is performed repeatedly with the num-
ber of columns increasing by one in each iteration. In the actual
implementation, the calculation time is reduced as follows. At
the initialization, E is calculated with all columns included,

F = ETE (31)

In the iterations, the matrix ET
PEP in (25) is extracted as a

subset of F. The computational complexity of forming F is

C5 ∼ 2Ln2N (32)

During the repeated solving within NNLS, the matrix to be
inverted in (30) grows from unity (p = 1) up to the value pmax

where all constraints are satisfied. The computational cost is
given as a finite sum of powers (33) whose total is analytical
[28].

C6 ∼ k5

pmax∑
p=1

p3 = k5
1

4
(p4max + 2p3max + p2max) (33)

In a worst case scenario, one could end up with a single active
constraint and one needs to invert a matrix which increases in
dimension, p = 1, 2 . . . pmax = L. In the implemented code, the
number of constraints L (columns of E) is made small or mod-
erate by selecting only violating eigenvalues when building C
and d. As a result, most constraints in NNLS will be active, thus
limiting the number of inactive constraints, i.e. the maximum
value of p.

An additional cost results from the repeated calculation of the
gradient by the two matrix-vector multiplications in (24). The
cost of a single matrix-vector multiplication involving E is

C7 ∼ 2Ln2N (34)

VIII. IMPROVING COMPUTATIONAL EFFICIENCY

The block-wise RP-NNLS method has been implemented
with two options that can further reduce computation time.

A. Matrix Bandwidth Reduction

Following the procedure in [20], the user can limit the number
of elements in Y to be perturbed by specifying the matrix
bandwidth via parameter bw, defined by (35). For instance, spec-
ifying bw = 0 will only use diagonal elements while specifying
bw = n− 1 will use all elements. As a result, the number of
columns in A and C and thus rows in E is reduced accordingly.
This approach is useful for problems with a high number of
terminals as will be demonstrated in Section X.B.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 · · · n− 1

1 0 1 2
...

2 1
. . . 1 2

... 2 1 0 1

n− 1 · · · 2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)

B. Pole-Residue Term Reduction

The user can in addition specify an array of indices to pole
residue terms that are to be perturbed [20]. This approach is
useful for problems with a high number of pole-residue terms.
The pole-residue terms can for instance be selected in frequency
areas where passivity violations occur, e.g. by an automated
selection scheme as in [9]. Again, the number of columns in A
and C, and thus rows in E, becomes reduced.

C. Adjusted Step Length

The constraint equation is based on linearized eigenvalue
perturbation by (5b). Therefore, the solving of the passivity
enforcement step will in general not bring a violating eigenvalue
exactly to the zero line, often requiring additional iterations. The
problem is mitigated by slightly increasing the correction step
length, i.e. by replacing (9) with (36) where α ≥ 1. A threshold
value β is also available, see Section XI.C for details.

min
x

||Ax|| s.t. Cx > α · d+ β (36)

D. Single Building of Objective Function

The LS part (9a) is kept unchanged during the iterations,
similarly as in the previous works [19], [21]. Therefore, the
block(s) Aj and its associated QR-decomposition is calculated a
single time, giving a further reduction of the total computation
time.

IX. MEMORY REQUIREMENTS

The blocks Aj of A of (19) are built one at a time and subjected
to QR-decomposition. Since only a single block needs to exist
on the computer, the storage requirements are that of a single
matrix Aj of dimension 2K×N. The QR decomposition gives
ntri = n(n+ 1)/2 R̄j matrices that need to be stored for later
use in (23), requiring a total memory of ntriN

2. In the case that
the LS weighting is identical for all elements of Y (e.g. unitary
weighting), all blocks Aj are identical and so a single (small)
QR-decomposition needs to be calculated and only a single R̄j

matrix of dimension N×N needs to be stored. The largest matrix
that needs to be built is E in (14) which has dimension (ntri +
1)N × (L+ 1). That matrix is built sequentially from partitions
of P and S, and those matrices need therefore not be built in full
size. The number of constraints L is kept small by establishing
frequency bands of passivity violations. In each band, only the
maximum violation (of each violating eigenvalue) is included
as constraint [21].

X. EXAMPLES

Three examples are presented which demonstrate the per-
formance of the RP-NNLS passivity enforcement scheme in
Matlab version R2018a. The acceleration factorα in (36) is 1.05,
similarly as in [9]. The listed CPU times are for the passivity
enforcement steps, excluding passivity assessment (see Fig. 1).
All calculations start with a “clear all” statement in Matlab,
except for the CPU timing plots in Figs 4 and 9. All calculations
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TABLE II
COMPARISON OF PASSIVITY ENFORCEMENT TECHNIQUES FOR DIFFERENT

FDNE MODEL ORDERS. RMS-ERROR

TABLE III
COMPARISON OF PASSIVITY ENFORCEMENT TECHNIQUES FOR DIFFERENT

FDNE MODEL ORDERS. CPU TIME

are performed on a 64-bit Windows 10 laptop with 16 GB RAM
and an Intel i7-76000U @2.8 GHz CPU.

A. FDNE Modeling

This example considers the passivity enforcement of a
frequency-dependent network equivalent (FDNE) with K = 751
frequency samples and unitary LS weighting. The example data
set is the same as used in [9]. The useful frequency band is from
1 Hz to 1500 Hz, making the model suitable for simulation of
low-frequency transients. The initial model to be passivated has
five three-phase terminals (n = 15) and five alternative model
orders (N) are considered. The passivity enforcement considers
all matrix elements (bw = 14) and all pole-residue terms are
included. Passivity is enforced in two alternative ways: using
RP-NNLS or using the original RP formulation [19] with QP
as solver. The QP solution algorithm is an interior-point-convex
method implemented in Matlab routine quadprog.

Table II shows that the resulting RMS-error by the two
methods is practically the same. Both methods enforce passivity
in a single iteration, except for the last case (N = 150) where
RP-NNLS and RP-QP need three iterations.

Table III shows the resulting CPU times. With RP-NNLS, the
total time (building matrices and solving NNLS) is listed, as well
as the time for solving NNLS. With RP-QP, only the time used
for solving the QP problem is listed (“QP alone”). It is clearly
seen that solving the NNLS problem is much faster than solving
the QP problem.

Fig. 2 shows the impact of the passivity enforcement on the
eigenvalues of G(ω) with N = 150, with usage of RP-NNLS. It
is observed that the passivity violations have been successfully
removed, i.e. all eigenvalues are positive. Fig. 3 shows the impact

Fig. 2. Perturbed eigenvalues of G (n = 15, N = 150).

Fig. 3. Perturbed elements of Y (n = 15, N = 150).

Fig. 4. CPU time vs. number of pole-residue terms used in passivity enforce-
ment. First iteration result.

on the model’s admittance elements. The perturbation is seen to
be very small inside the fitting band, relative to the magnitude
of the admittance elements.

Fig. 4. shows the CPU time as function of the number of
pole-residue (PR) terms (Nsub) included in the passivity en-
forcement step (Section VIII.B), for the case with N = 150.
The CPU time is for the first iteration (out of 3), calculated as
the average of 50 runs. With a low number of PR terms, the total
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Fig. 5. Perturbed eigenvalues of Re{Zb} (n = 213, N = 10).

calculation time is dominated by the calculation of the constraint
matrix C. That matrix has a substantial computational effort
that is independent on Nsub: calculation of sample values for G,
eigenvalue decomposition of G, and calculation of eigenvalue
sensitivities (5b). In addition comes one term (28) which is linear
in Nsub.

The CPU cost for forming A is superlinear as can be expected
from (26b) which includes linear and quadratic terms in N.
(Only a single block Aj is calculated and subjected to QR
decomposition since unitary weighting is used).

The CPU cost for forming E and solving NNLS is weakly
superlinear in Nsub while a more quadratic growth was expected.
This discrepancy can in part be attributed to the time needed for
accessing and writing data to arrays, as well as overhead in the
computations.

B. White-Box Transformer Branch Impedance Modeling

This example considers frequency-dependent branch
impedance modeling as part of white-box (detailed) transformer
modeling [14]. The transformer is a single-phase 50 MVA
three-winding transformer with rated voltage 230/69/13.8 kV
at 60 Hz. The branch impedance matrix Zb has been calculated
as function of frequency using FEM. The data set is a matrix
of dimension 213×213, given as 14 logarithmically spaced
frequency samples between 60 Hz and 1.08 MHz. The matrix
Zb is fitted with a pole-residue model of order N = 10, with
inclusion of R0. The resulting model has passivity violations at
out-of-band frequencies, at both low and high frequencies.

Passivity is enforced using RP-NNLS with K = 14 frequency
samples and perturbation of all residue matrices and all matrix
elements, and with individual LS weighting for all impedance
elements (i, j),

weighti,j(ω) =
1√

Zb(i, j)(ω)
(37)

Figs. 5 and 6 (zoomed view) show the impact of passivity
enforcement on the eigenvalues of Re{Zb(ω)} while Fig. 7
shows the impact on the last column of Zb within the fitting
band. It is observed that passivity is successfully enforced as
all eigenvalues are positive. The traces of the perturbed model

Fig. 6. Zoomed view of Fig. 5.

Fig. 7. Last column of perturbed Zb of case #1 (n = 213, N = 10).

TABLE IV
PASSIVITY ENFORCEMENT OF TRANSFORMER BRANCH IMPEDANCE

MATRIX CASE

in Fig. 7 are virtually overlapping those of the original model,
implying a very small perturbation.

Table IV lists the weighted RMS-error and CPU time for
the calculation (average of 5 runs). Case 1 is for the above
calculation which uses all elements and all residue matrices as
free variables. Passivity is enforced in 16.0 sec with 3 iterations.
The next rows (Cases 2-4) show the result when reducing the
number of free variables. The reduction is achieved in two ways:
1) using only the diagonal elements in each residue matrix (bw
= 0, see Section VIII.A), and 2) including only the first and
last pole-residue term (Section VIII.B). The calculation time is
reduced to 0.9 sec with bw = 0. Usage of fewer pole-residue
terms gives in this example a substantial increase of the fitting
error. One test was also performed where the number of samples
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Fig. 8. Weighted RMS-error and CPU time vs. parameter bw.

Fig. 9. CPU time vs. number of perturbed elements in Y.

K was increased from 14 to 201. With Case 1, four iterations were
needed, and the total CPU time increased from 16.0 sec to 32
sec.

Fig. 8 shows the (weighted) RMS-error and CPU time as
function of the parameter bw, when including all pole-residue
terms. It is seen that usage of any low value of bw above zero
achieves a fast calculation with only a small increase of the
perturbation error.

Fig. 9 shows the individual contributions to the total CPU
time when increasing bw from 0 to n− 1 = 212 with use of all
pole-residue terms, plotted as function of the total number of
residue matrix elements that are perturbed. The contributions
are seen to increase about linearly with the number of free
variables. This result is as expected since most of the theoretical
CPU time contributions in Section VII are proportional to n2,
i.e. proportional to the number of elements. The CPU time for
building of the constraint matrix C is however seen to be nearly
constant. That matrix has a substantial computational effort that
is independent of bw: calculation of G, its eigenvalue decom-
position, and the eigenvalue sensitivities (5b). The number of
iterations in Fig. 9 varied between 3 and 6, staying constant at 3
above 11315 elements (bw > 61).

With usage of RP-QP, the calculation time is excessive with
the usage of the inverse weighting scheme (37). To see this,
passivity is enforced for a sub-part of the model,

Rsub,j = Rj(1 : nsub, 1 : nsub), j = 0, 1, . . . , N (38)

TABLE V
COMPARISON OF PASSIVITY ENFORCEMENT TECHNIQUES FOR ALTERNATIVE

SUB-PARTS OF MODEL. CPU TIME

TABLE VI
PASSIVITY ENFORCEMENT OF BLACK-BOX TRANSFORMER MODEL

Fig. 10. Perturbed eigenvalues of G (n = 9, N = 120)

Passivity is enforced using all elements (bw = nsub − 1) and
all N = 10 pole-residue terms. Table V lists the CPU time for
enforcing passivity, with alternative of values nsub. It is observed
that RP-NNLS offers superior computational performance.

C. Black-Box Transformer Modeling

This example considers the modeling of a DFIG wind turbine
transformer from frequency sweep admittance measurements.
The transformer is a 33/6/0.66 kV Dynyn unit with both neutral
points grounded. The admittance matrix has n = 9 terminals
and has been measured at K = 401 logarithmically spaced
frequency samples between 5 Hz and 10 MHz. The resulting
model extracted by vector fitting (N = 120) has several in-band
and out-of-band passivity violations.

Table VI lists the RMS-error and CPU time for the passivity
enforcement, using RP-NNLS with K = 401 frequency samples
and unitary weighting. Passivity is enforced in 0.28 sec. Fig. 10
shows the impact of the passivity enforcement on the eigenvalues
of G. All passivity violations are removed, resulting in positive
eigenvalues at all frequencies.
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XI. DISCUSSION

A. Frequency Samples Selection

Although the frequency samples for the LS part (9a) can be
freely chosen, one will normally use the same samples as was
used in the original model extraction by vector fitting (VF).
This sample selection permits to correct quite large out-of-band
passivity violations without corrupting the in-band model be-
havior since the out-of band frequencies are associated with
zero weight. A few additional frequency samples are added at
out-of band frequencies (with a low LS weight) to improve the
conditioning of (9a) [21].

B. LS Weighting and Accuracy

It is practical to use the same LS weighting strategy as was
used in VF when extracting the original model. That way,
one seeks to retain the accuracy at the same frequencies and
elements. Typical examples are unitary weighting and inverse
magnitude weighting for relative error control.

One must however be aware that accuracy in the frequency
domain does not translate into accuracy in the time domain.
In particular, the errors of an admittance model can be largely
magnified when the model is applied in a simulation with
high-impedance terminations. In the extreme case with currents
applied to all terminals, the terminal voltages become the re-
sponse to the current excitation. In this impedance case, the small
eigenvalues ofY(ω) become the large eigenvalues ofZ(ω) [29].
Therefore, if the fitting of the original Y and the subsequent
passivity enforcement of the model gives a substantial relative
error in the small eigenvalues of Y, very large errors will result in
the elements of Z and therefore also in a time domain simulation.
Special versions of VF (modal VF [29]) and RP (modal RP) [30]
were introduced to mitigate such situations, as well as the use
of similarity transformations [31].

C. Passivity Enforcement Tolerance

The constraint equation (36) makes use of an adjusted step
length by a factor α ≥ 1 and a threshold value β ≥ 0. A nonzero
threshold value implies that the passivity enforcement makes
the model slightly non-passive at frequencies with passivity
violations. The intention is the possibility of giving damping
to undamped oscillations.

The implemented code also includes a tolerance parameter
βR0

≥ 0 which acts on R0 in (4c). In the case of an R0 having
one or more negative eigenvalues, this parameter prevents the
passivity enforcement to give a matrix R0 with one or more
zero eigenvalues (singular matrix). Non-singularity of R0 is a
requirement when calculating bands of passivity violations using
test matrices [18].

D. Inner Loop Iterations

In some situations, with usage of strong weighting schemes
(e.g. inverse magnitude weighting), the passivity enforcement
can cause new passivity violations to arise. In such situation, the

Fig. 11. Eigenvalues of Re{Z} for FDNE example in Section X.A.

passivity scheme in Fig. 1 can be complemented with an inner
loop that adds additional constraints, e.g. as shown in [21]. That
approach has been included in the RP-NNLS implementation
but was not necessary to use in the presented examples.

E. Passivity Checking Using Z

The passivity checking and enforcement based on Y implies
that the final model behaves as a passive component under any
terminal condition. To verify this, consider the extreme case
with current excitation on all terminals such that the voltage
response is given by the model’s impedance behavior. Recall
from Section II that passivity of an impedance matrix Z implies
that the real part of Z has positive eigenvalues for all frequencies.
Fig. 11 shows the eigenvalues of Re{Z} for the FDNE example
in Section X.A, where Z has been calculated from the model’s
admittance matrix, Z(ω) = Y−1(ω), before and after passivity
enforcement. It is observed that the passivity enforcement of the
model’s Y results in that Re{Z} gets positive eigenvalues, as
expected. Comparison with Fig. 2 further shows that the band
with passivity violations of Z is identical to that of Y, ranging
from 1590 Hz to 1838 Hz.

F. Final Remarks

Further work in this area is still needed, for instance to reduce
the linearization errors associated with the passivity constraint
equation. Also, the possibility of inaccurate or unstable time
domain simulation results should be subjected to more research.

XII. CONCLUSION

A new implementation of the residue perturbation (RP)
method is presented. It is based on a conversion of the con-
strained least squares problem to a least distance problem (LDP)
that is solved as a non-negative least square (NNLS) prob-
lem. With multi-terminal models, the inherent sparsity of the
system matrix is fully exploited, allowing the required QR-
decomposition to be calculated independently for many small
sub-matrices rather than for a single large matrix. This feature
makes the method suitable for problems with many terminals.
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The resulting NNLS problem to be solved is characterized by
a system matrix having few columns and is efficiently solved
using an active set algorithm.

The method was successfully applied for passivity enforce-
ment to challenging examples: FDNE modeling with many
terminals (n = 15) and high orders (N = 90-150), transformer
white-box impedance branch modeling with a high number of
terminals (n = 213) but low order (N = 10), and measurement-
based black-box transformer modeling (n = 9, N = 120).

The use of this efficient passivity enforcement scheme opens
for more widespread application of rational modeling techniques
in power systems.
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