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Abstract—This paper addresses the integrated volt-var control
for distribution network operation via multiobjective optimiza-
tion. This paper seeks to explore the problem of energy savings
and peak demand relief through the voltage reduction procedure.
Currently, due to the emergence of the distribution smart grids,
these procedures are gaining renewed interest and attention. The
proposal presented here is for the operation phase, with a strategy
based on an hourly load forecast for the next day/week, taking
into account the active power intake reduction, and the voltage
deviation. Therefore, the result is a set of nondominated optimal
solutions, and then one may decide when, where, and how to
apply them to meet different goals. The obtained solutions, for
two typical distribution networks, describe relevant economic and
technical benefits.
Index Terms—Distribution systems, integrated volt-var control,

multiobjective optimization, voltage reduction.

NOMENCLATURE

Total energy savings.

Voltage drop at the substation bus.

Active load power at bus number .

Active load power at the rated voltage and
frequency at bus .

Reactive load power at bus number .

Reactive load power at the rated voltage and
frequency at bus .

and Voltage exponents of active and reactive
load power.

Voltage magnitude at bus number .

Nominal voltage of the system.

Voltage drop between buses and .

Line resistance between buses and .
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Line impedance between buses and .

Active power intake on the system.

Reactive power intake on the system.

Total active load power.

Total real power losses.

Objective function , of the multiobjective
problem, .

Set of buses.

Minimal voltage level.

Maximum voltage level.

Active power generation at bus .

Reactive power generation at bus .

Reactive power injection by capacitors at
bus .

Voltage angle.

Regulation ratio of the device at bus .

Selected tap of the device at bus .

Step of voltage variation of the device at bus
.

Minimum tap of the device at bus .

Maximum tap of the device at bus .

System power factor.

Minimal system power factor.

Maximum system power factor.

Selected position of the switched capacitor
at bus .

Maximum number of positions of the
switched capacitor at bus .

Step of reactive power variation of the
capacitor at bus .

Reactive power injection by the switched
capacitor on bus .

Active power injection on bus .
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Reactive power injection on bus .

Dimension of the population for NSGA-II.

Pareto frontier of nondominated solutions
.

Crowding distance of individual of frontier
.

Value of objective function of individual
of frontier .

Value of objective function of individual
of frontier .

Maximum value of objective function at
frontier .

Minimum value of objective function at
frontier .

SO Set of studied objectives.

Population of NSGA-II algorithm in the
generation .

Set composed by parent and offspring
population in the generation .

Offspring population in the generation .

MAX Set of nondominated solutions with
maximum energy savings.

MOD Set of nondominated solutions with moderate
energy savings.

MIX Set of nondominated solutions with the
MAX case for the peak-load period and
MOD for the rest of the day.

I. INTRODUCTION

T HE PROCEDURE of increasing energy efficiency by
voltage reductions on medium-voltage (MV) distribution

networks has received great attention, since relevant benefits
have been presented [1]. This approach has been called con-
servation voltage reduction (CVR) or conservative voltage
reduction [2], and can be considered from the utilities point of
view, a possibility for demand management, which is always
available and can be used once it is needed. Currently, due
to the emergence of the distribution smart grids, the CVR
procedures are gaining renewed interest [3].
These new networks should receive significant improvements

in computation and communication technologies, and the in-
tegrated volt-var control (IVVC) should become much more
effective than with traditional technologies, such as on-load,
tap-changing transformers (OLTCs), automatic voltage regula-
tors (AVRs), switched capacitors, and other devices operating
autonomously [4]. Moreover, the voltage control will be present
to enhance the performance of the distributed generation [5].
The necessary investment to transform the current distribution
networks into smart grids could be very high, and it has been
predicted that a third of the applications should be on integrated
volt-var control, including CVR [6].

Therefore, this paper seeks to mitigate the problem of voltage
reduction application via multiobjective optimization using a
nondominated sorting genetic algorithm (NSGA-II) [7]. The
proposal presented here is for the operation phase of the net-
work, with a strategy based on an hourly load forecast for the
next day/week, taking into account the demand reduction, and
the voltage deviation, considering the presence of OLTC, AVRs,
and capacitors. Thus, the result will be a set of nondominated
optimal solutions and then one may decide when, where, and
how to apply them to meet different goals, considering different
feeders or even different utilities. The new approach allows a
distinguished view over advantages and possible applications
for energy savings and MVA peak reliefs.
Many studies have been presented to solve the problem of

volt-var control, but mainly, for distribution planning purposes;
however, few contributions have emerged thinking in multiob-
jective optimization solutions and energy efficiency. The fol-
lowing sections will present an overview of some important
contributions on volt-var optimization and on CVR and loads
in MV distribution networks.

II. VOLT-VAR OPTIMIZATION, CVR, AND LOADS

Many methodologies have been designed for the optimal
allocation of volt-var control devices in distribution networks.
A detailed analysis of capacitor and AVR placement was
discussed in [8]; some years later, another well-known work
[9] presented a mathematical formulation for optimal capacitor
placement, modeled as a nonlinear mixed-integer program-
ming problem. Proposals using multiobjective optimization
have arisen recently: the authors of [10] have presented a
tabu-search-based approach to capacitor placements, trying to
solve the conflict between costs and loss reductions; in [2],
a solution has been presented for the capacitor allocations;
however, taking into account the CVR, the objectives to be
minimized were costs, voltage deviation, and the reduction
of losses and demand; [11] shows a micro-genetic algorithm
to AVR allocations, and the objectives were the power losses
and the reductions in voltage drops; in [12], a mixed-integer
linear programming model is used that considers the costs and
the voltage deviations as the objectives to allocate the AVRs;
in [13], a genetic algorithm is employed to simultaneously
solve the planning problem of capacitor and AVRs placement,
considering the losses, the voltage deviation, and the costs as
objectives, and in [14], a nondominated sorting genetic algo-
rithm is presented for the allocation of capacitors and AVRs
and for cable replacement, considering costs and the voltage
deviations.
All of these proposals have been designed to be applied to

the planning phase of the distribution networks and do not take
into account the utilization of CVR, with the exception of the
proposal [2] that considers the reduction of energy demand for
capacitor placement.
Although the problem of volt-var control for planning pur-

poses could be more complex in terms of combinatorial nature,
the operation problem, with CVR and several control devices,
gains importance as well due to the need for balanced solutions.
This case is to be dealt with multiobjective optimization. So the
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presented problem is not to be solved easily, and this work will
be applied in the NSGA-II algorithm.

A. CVR

The expression CVR is defined as being the practice of con-
trolling the voltage levels on the network in order to promote a
reduction in energy demand, considering that loads in the MV
networks are predominantly voltage dependent. It can be con-
sidered as a form of demand management, especially in net-
works with a strong presence of residential and commercial cus-
tomers. Mathematically, the CVR factor can be defined as fol-
lows [3]:

(1)

This factor can be indicative of the response of the system in
terms of total energy savings ( ) caused by a deliberate
reduction of the voltage on the head of the feeder ( ), and
might be used for comparative studies, but only in cases where
the voltage control is made at the head of the feeder.
Many practical applications have produced results with re-

markable energy savings, outlining a CVRf up to 2.4 [1], [15],
[16], and [17]. Lately, some approaches have sought to include,
in these studies, the dynamic load models [3], and to consider
the presence of distributed generators [18], showing encour-
aging results.
Nevertheless, it should be noticed that the percentage of gains

depends on the possibilities to perform voltage reduction (initial
voltage level sufficiently above the minimum regulatory value,
and control devices), and on feeder load characteristics.

B. Loads on MV Feeders

The loads on MV feeders are usually devices connected
through low-voltage distribution transformers, and can be
characterized as serving mainly residential, commercial, and
industrial consumers. The vast majority of these loads presents
voltage-dependent behavior. These devices can be represented
by a large number of static and dynamic models, and have
received great attention from IEEE and CIGRE task forces
in recent years. However, for most studies of MV networks,
two static models are highlighted [19]: polynomial (ZIP) and
exponential models. In this paper, the exponential model, as
shown in (2) and (3), will be considered

(2)

(3)

Values for the parameters of the exponential model can be
found in some publications [20]. Table I shows a sample, where
one can notice that feeders with many commercial customers
produce more energy savings (in kilowatt-hours), by the CVR
application, than those with a predominance of industrial con-
sumers. But this analysis cannot be so direct whenmany volt-var
control devices are present in the feeder.

TABLE I
VALUES OF AND FROM [20]

III. PROBLEM FORMULATION AND SOLUTION TECHNIQUE
The volt-var control, using CVR for distribution systems op-

eration, is a nonlinear, mixed-integer, and multiobjective op-
timization problem with a given number of equality and in-
equality constraints. The central point is to minimize the en-
ergy demanded from the substation, and the voltage deviation
on buses of the MV network, considering tap changing in OLTC
and AVRs, and capacitor switchings.

A. Objective Functions
When energy savings by voltage reductions are pursued, the

first function to be minimized is active power intake on the dis-
tribution system from the substation, as considered in [2]. This
power is the active power demand by the loads plus the active
losses on lines, both of which are voltage dependent, and then
the objective function to be minimized can be written as

(4)

where

(5)

(6)

Another function to be minimized is the voltage deviation on
buses of the network, and here will be considered a formulation
similar to [13], and that is written as (7). This function is fun-
damental because the best value of voltage is the nominal in all
buses

(7)

where

if
if

(8)

B. Constraints
The equality and inequality constraints are necessary to allow

the correct operations of all components of the networks. The
equalities, mathematically, are represented by the power flow

(9)
(10)

The inequalities are represented by voltage limits (regulatory
voltage quality conditions) on all buses, and power factor limits
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(technical and economic operational conditions) at the substa-
tion of the system, as shown in (11) and (12), respectively

(11)
(12)

Transformers with tap variables and voltage regulators are
devices which may control the output voltage through the load
tap-changing mechanism. Hence, these devices can lead to vari-
ations of the output voltage in steps ( ), values in per unit
or percent, with a specified number of tap positions. So the final
regulation ratio of these devices may be given by

(13)

where
The banks of switched capacitors have adjustments to con-

trol the capacity of reactive power injected into the distribu-
tion network. They are composed of several modules (with in-
dividual capacity ) and having a maximum number of steps
( ); therefore, they may assume positions in between
zero and . Hence, the power supplied in each condition
of operation ( ) is given by

(14)

where .

C. Solution Technique

The multiobjective algorithm “Elitist Nondominated Sorting
Genetic Algorithm – NSGA-II” [7], and [21] was chosen to
solve the previous formulated problem. The NSGA-II provides
good characteristics of convergence and it is easy to implement
and consumes low computational time. Concerning the practical
problem under analysis, the use of NSGA-II allows mapping the
discrete variables of the set of solutions of the problem through
an integer representation. The crossover and mutation operators
generate feasible solutions considering the radiality constraint
of the distribution electrical power systems.
For a multiobjective problem having objective functions to

be simultaneously minimized, a solution is said to dominate
the other solution if is better than for at least one objective
and is not worse for any other , where and
. The sets of solutions that compose the Pareto frontiers are

obtained through this dominance concept.
The algorithm is initialized with a parent population of size
which is randomly generated. This population is sorted ac-

cording to the nondomination individual levels, classifying in
frontiers of nondominated solutions (the sorting
is done considering that the smaller the rank of the front, the
better the solution). Tournament selection, crossover, and mu-
tation are applied to obtain an offspring population of size
[21].
The selection process used on NSGA-II is based on tour-

nament selection, and incorporates small changes to deal with
multiobjective problems. These changes refer to the use of the
crowding distance operator (15) during the tournament. This
operator calculates the population density around a solution,

Fig. 1. Main steps of the NSGA-II algorithm.

without requiring predefined parameters, enabling the more dis-
persed solutions in a specific frontier to be selected, providing
greater diversity to the population [21].

(15)

Thereafter, the parent and offspring population are com-
bined to form a population of size which is ranked in

fronts according to the level of nondomination.
Taking into account that solutions of the current popula-
tion can be part of the population , solutions of
should be discarded. Thus, the population is composed
of the individuals that belong to the fronts while

. Each set must be placed in its entirety
in . When inserting a set such that ,
only the more dispersed solutions should be
inserted in the population . Convergence criterion adopted
in this paper is based on a predefined number of generations.
Fig. 1 illustrates the main steps of the algorithm.
In the solution technique implemented here, the decimal cod-

ification was set up, where the chromosome was divided in three
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Fig. 2. UKGDS-95 buses system.

subsets to represent the capacitor banks, OLTC, and voltage reg-
ulator taps.
The crossover and mutation operators are applied indepen-

dently to the subsets that represent the capacitor banks, OLTC,
and voltage regulator taps. The convergence criteria adopted
is the maximum number of generations performed by the
NSGA-II, avoiding the premature process convergence.

IV. RESULTS
The results were taken from the UKGDS-95 buses system

[22], and the IEEE 34-bus feeder [23]. The data of the IEEE
34-bus feeder do not present any daily demand curves, and then,
in this paper, the method of [22] will be used to obtain the load
profile of each bus of the system.

A. UKGDS-95 System
The topology of this distribution system is shown in Fig. 2.

The operational limits used for this system were: 0.95
p.u.; 1.05 p.u.; 0.96; and 0.99 lag.
Notice that the lower voltage limit should include the voltage
drop along the distribution transformers, secondary lines, and
service drops. In general, the voltage limits are in between
10% and 10%, as in the U.K. [24] ( 10% and 6%) and

in Brazil [25] ( 5 and 7%).
For the tests performed here, some modifications were

done on the original network. Three new loads were added
on buses 18, 50, and 95, with an annual maximum power
of 135 kW on the commercial class. This maximum power
is used for obtaining the daily load profiles for each con-
sumer. A switched capacitor bank was installed at bus 44
with 100 kvar and 6. Two voltage
regulators—AVR1 and AVR2—have been installed, as shown
in Fig. 2, both of which have the ability to regulate 10%
of input voltage, with 0.00625 p.u.,

,
being that these values are typical for AVRs [26]. The OLTC

TABLE II
LOADS OF THE UKGDS 95 BUSES AT HOUR 19:00

TABLE III
BASE CASE FOR COMPARATIVE PURPOSES

Fig. 3. Daily demand curves for the BASE case.

may regulate 5% in steps of 0.0125 p.u., with
4 and 4. The distributed generators

were not considered in this phase of the research.
Originally, the UKGDS-95 buses system presents unre-

stricted residential (R/U), economic residential (R/E), com-
mercial (CO), and industrial (IN) consumers, and the main
differences between R/U and R/E consumers are the amount of
monthly energy usage and the daily demand curve. In addition,
in this paper, the loads will be represented by the exponential
model with the values and shown in Table I, and the
power factor and the participation of each consumer class, at
hour 19:00 of a typical day, are shown in Table II.
1) Base Case: The base case shown in Table III will be con-

sidered, in order to verify the quality of different solutions ob-
tained with the NSGA-II algorithm for the operation of the dis-
tribution system.
After the power-flow solutions for this base case, in Fig. 3, the

curves of the active and reactive power for this system and the
voltage profiles for a typical weekday (Fig. 4) can be observed.
The jumps in voltage curves are due to buses being in lateral
branches or in the outputs of AVRs.
2) Set of Nondominated Solutions: As previously mentioned,

the proposal presented here is for the operation phase of the
network, with a strategy based on hourly load forecast for the
next day/week; then a set of nondominated solutions will be
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Fig. 4. Voltage profiles for the BASE case at hours 5:00 and 19:00.

obtained for each hour of the day. To investigate the effect of the
technical and economic benefits and their relation to the voltage
quality, the set of nondominated solutions, obtained with the
proposed NSGA-II algorithm, will be evaluated. Fig. 5 shows
this set of solutions for the peak-load level at hour 19:00. Two
solutions are highlighted in the figure for future analysis.
This same set of solutions is also shown in Fig. 6, empha-

sizing the minimum voltage which arises on at least one bus of
the network, and the active power intake on the system.
The voltage profiles of the two solutions pointed out in

Fig. 5 are shown in Fig. 7. For the “Maximum energy savings,”
it is observed that the minimum voltage on the network, at hour
19:00, is 0.9507 p.u. on bus #95; meanwhile, the minimum
voltage for the “Moderate energy savings” occurs on bus #74
and reaches 0.9671 p.u.
To facilitate the presentation, the following three types of so-

lutions will be given for the 24-h period:
• MAX—this type of case includes the achievement of a set
of nondominated solutions for each hour of the day; then,
for each hour, the one with the maximum energy savings is
chosen, such as the “Maximum energy savings” solution in
Fig. 5. Here, voltages may arise far below the rated ones,
as can be seen in Fig. 7, but all voltages are still inside the
statutory range (0.95 to 1.05 p.u.) defined for this distribu-
tion system.

• MOD—in this case, as in MAX, nondominated solutions
are necessary, but now moderate energy savings solutions
are looked for. Therefore, for each hour, the solutions uti-
lizedwill be those placed near the center of the Pareto front,
as shown in Fig. 5. These solutions generally show good
values of voltage, as can be seen in Fig. 7.

• MIX—here, the solutions of the MAX case are used for the
peak-load period (17 to 20 h) and the MOD solutions for
the remainder of the day.

3) Energy Savings: The energy savings that can be achieved
during one day are shown in Fig. 8, where the curves for
the BASE, MOD, and MAX cases are drawn. It is worth noting
that the optimal solutions for the MAX case produce 4.55% of
energy savings during the 24-h period. It should also be added
that voltage reduction does not compromise the supply quality
for any consumers.
The solutions of the MAX case in Fig. 8 have a relevant eco-

nomic benefit on energy savings for a specific period of time or
for the entire day.

Fig. 5. Nondominated solutions of the Pareto front obtained at hour 19:00.

Fig. 6. Active power intake and minimum voltage on the network for the so-
lutions of Fig. 5.

Fig. 7. Voltage profile for the “Maximum energy savings” and “Moderate en-
ergy savings” solutions at hour 19:00.

Fig. 8. Active power intake profiles for BASE, MOD, and MAX cases.

However, in other instances, one may wish for less aggressive
solutions in terms of energy savings, or in voltage reduction,
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TABLE IV
SUMMARY FOR THE 24-h PERIOD

Fig. 9. Reactive power intake profiles for the BASE, MOD, and MAX cases.

TABLE V
TAP POSITIONS OF THE DEVICES AT HOUR 19:00

such as the “Moderate energy savings” in Fig. 5 and, thus, such
solutions can be found, as shown in the profiles for theMOD
case in Fig. 8. Now, an energy savings of 2.28% during the 24
h can be observed, but with less voltage reduction than in the
MAX case.
The performance of the MAX, MOD, and MIX solutions,

for energy savings, is summarized in Table IV, showing that,
besides the energy savings, the loss reduction and the control of
the power factor can be seen as important advantages as well.
4) MVA Peak-Load Relief: The load profiles described in

Fig. 8 shows the active power peak reduction, that is, 5.62%
and 3.11%, respectively, for the MAX and MOD cases at hour
19:00.
Even though these gains are significant, it is also important

to observe the behavior of reactive power intake, and then to
compute the MVA peak-load relief. Therefore, Fig. 9 shows the
reactive load profiles for the MAX,MOD, and BASE cases, and
Table V describes the number of capacitors in operation at hour
19:00.
The solutions of the MAX case in Fig. 9 have positive

technical benefits to decrease the reactive peak-load level; for
example, a remarkable reduction of 19.23% is obtained at hour
19:00. It should be noted that at hour 19:00, in the BASE case,
the capacitor bank is injecting 500 kvar; meanwhile, in the
MAX, only 400 kvar is being injected. This means that the
reduction of the reactive peak-load level is due solely to the
load reduction provoked by the voltage variations; and this
high reduction, in relation to active power, can be explained

TABLE VI
SUMMARY OF THE SOLUTIONS AT HOUR 19:00

TABLE VII
LOADS OF THE IEEE 34-BUS FEEDER AT HOUR 19:00

by the load model adopted. In Table I, it can be seen that the
maximum value of is 1.5, whereas can reach up to 6.0.
Similar performance can be observed for theMOD case, as il-

lustrated in Fig. 9, showing a reduction of 25.96% at hour 19:00.
The performance of the MAX, MOD, and MIX solutions, for

peak-load relief, are summarized in Table VI, highlighting up to
6.73% on MVA peak-load alleviation.

B. IEEE 34-Bus Feeder
The topology of this distribution system and the data can

be seen in [23]. Here, it was considered it to be an equivalent
single-phase network, and the operational limits used for this
system were 0.95 p.u.; 1.05 p.u..;
0.96; and 0.99 lag.
The OLTC and the two AVRs of the system present the same

characteristics of the devices of the UKGDS-95. A switched
capacitor bank was considered at bus 844 with 100
kvar and 7. The IEEE 34-bus feeder presents con-
sumers with constant power ( ), constant current ( ), and con-
stant impedance ( ) loads. Then, the loads will be represented
by the exponential model with the values and being zero,
one, and two for the , , and load types, respectively. The
power factor and the participation of each consumer class, at
hour 19:00 of a typical day, are shown in Table VII. The daily
load curves were obtained in the same way as for the UGKDS95
system.
Since the IEEE 34-bus feeder presents a nearly 67% and

load model, then the energy savings and the peak-load relief are
substantial, as can be seen in Figs. 10 and Table VIII. The same
values of Table III were applied in this base case for this system
as well.

C. Final Remarks
Considering the previous results, the decision maker can

choose a solution in order to meet a specific objective of a
particular period. For example, if the proposal is a reduction
around 6% in the peak demand (MVA) for the UKGDS-95,
then he/she can choose the MAX solution of Table VI, but if
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Fig. 10. Active power intake profiles for BASE, MOD, and MAX cases with
the IEEE 34-bus feeder.

TABLE VIII
SUMMARY OF THE SOLUTIONS FOR THE IEEE 34-BUS FEEDER

AT HOUR 19:00

TABLE IX
RANGE OF TAP CHANGE DURING A 24-h PERIOD FOR UKGDS-95

the goal is to save about 3% of the daily energy (MWh), then
the best choice is the MIX solution of Table IV.
Also, it is interesting to observe the behavior of the tap varia-

tions in Table IX: in the MAX case, the OLTC tap has taken on
three different positions over the day: the AVR1 tap 8, the AVR2
tap 5, and the capacitor 4 positions, showing smooth changes.
Similar behavior occurs with the MOD and MIX cases.
However, it should be highlighted that solutions with few tap

changes are important to avoid damage to devices and oscilla-
tions in the network, and that this may be explored by splitting
the daily load duration curve into four or five levels, instead of
the 24 levels used here. This kind of solution is likely to be a
bit less effective in terms of the 24-h period energy savings, but
still can preserve the same performance for peak-load relief and
savings; so it may obtain smoother curves for reactive power
than the solutions in Fig. 10 for example.
In the tests taken in the previous subsections, the stopping cri-

terion of the algorithm used was a maximum of 50 generations.
The population size is set at 50 individuals, and a single point of
recombination was adopted with an initial recombination rate of

0.7 and an initial mutation rate of 0.05. The average CPU pro-
cessing time was 30.5 s, for the solution of each hour with the
UKGDS-95 system, using a MATLAB code on a computer with
processor Intel Core i5, running at 2.5 GHz, and with 4 GB of
RAM.

V. CONCLUSION
This paper has presented integrated volt-var control via mul-

tiobjective optimization solutions for distribution network oper-
ation, giving a different approach to the problem and a view of
advantages and possible applications. The objective functions to
be minimized were the active power intake on the system and
the voltage deviation, and the results were a set of nondominated
solutions suitable to be applied to prioritize a targeted objective
or to meet a balanced application. The mathematical formula-
tion was made in such way that other optimization techniques
may be used to solve this multiobjective problem, and other load
models may be added without significant changes to the central
point of the proposal.
The obtained solutions described positive economic and tech-

nical benefits showing significant values of energy savings for
a typical day of operation, and peak-load relief that is important
for the distribution and transmission system. In addition, these
advantages are obtained while maintaining the supply voltage
quality for all consumers. Other important gains can be noted in
the reduction of power losses and the maintenance of the power
factor within a specified range.
The authors are currently pursuing additional distributed

generators, batteries, and others for this problem setting. Now
the range of control variables could be complex and nondeter-
ministic, including DGs with or without the capacity of inject
and absorb reactive power, and conventional or intermittent DG
units. Then a strategy based on an hourly generation forecast
for the next day/week. ill be required, along with DG control.
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