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Abstract—Statistical lifetime modeling is of importance for re-
placementmanagement of aged power transformers. Survival data
are recognized as important as failure data in improving the accu-
racy level of the lifetime models since transformer failures are rare
events and most of the units are still in operating condition. This
paper argues that differentiating random failures and aging-re-
lated failures is also important. Different data requisites for mod-
eling random failures and aging-related failures are analyzed and
compared throughMonte Carlo simulations. The transformer life-
cycle failure model can be built by combining the random and
aging-related failure models. A case study is presented to show that
through postmortem analysis, the two failure modes can be distin-
guished and, hence, it helps to improve the accuracy of the com-
bined model.

Index Terms—Censoring rate, lifetime data, Monte Carlo
methods, sample size, statistical lifetime model, transformers.

I. INTRODUCTION

A SONE of the capital-intensive assets, power transformers
are key components in transmission and distribution net-

works which are to deliver electrical energy from generators to
end users. Since the reliable operation of power transformers
greatly influences the reliability of the power system networks,
unexpected transformer failure would not only incur a large
capital re-investment of the asset itself but also might cause a
loss of electricity supply especially when spare transformers are
not provided in place. Consequently, efforts have to be made
in order to maximally prevent the occurrence of unexpected
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failures of power transformers. In terms of asset management,
transformer units are specifically managed at both individual
and population levels [1]–[3].
For each individual unit, the condition of the unit has to be

regularly checked and often quantified/categorized based on the
understanding of physics of aging and the degradation process;
the concept of condition indicators, or referred to as an asset
health index, is becoming widely adopted; together with the
unit’s criticality, the asset health index can act as the main base
for the decision-making in terms of whether to run, repair, refur-
bish, or replace (RRRR) that specific unit [2]–[4]. On the other
hand, a large proportion of the transformers was installed in the
1960s and early 1970s and are approaching or have already ex-
ceeded their designed lifetime of 40 years [5]–[8]. Their perfor-
mance is expected to deteriorate and the consequential increase
of aging-related failures is therefore of great concern for util-
ities. A long-term plan for the replacement of the aging trans-
former population before it reaches an unacceptable state has to
be made.
An accurate projection of expenditure into the future—to re-

place a large quantity of power transformers—is required due to
the fact that transformers are high capital cost assets with a long
acquisition lead time [9]–[11]. In this respect, historical average
failure rates would no longer be applicable for the prediction
of failures in the wear-out/aging state [12]. Efficient lifetime
models have to be developed so that transformers’ failure char-
acteristics throughout their life cycle can be modeled accurately.
In this paper, definitions of early-life random failures and

aging-related failures are given specifically for transformer
failure statistics, and the requisites toward data quality are
systematically studied through sensitivity analysis of censoring
rates and failure numbers. A case study, which simulates the
transformer fleet data of National Grid, is then given to demon-
strate the data quality issue. Finally, the effectiveness of the
proposed postmortem approach, of which the sole purpose is to
help distinguish random and aging-related failures, is demon-
strated in terms of improving the accuracy of transformer
statistical life modeling.

II. TRANSFORMER FAILURE STATISTICS

A. Conceptual Failure Model

Transformer failure occurs, when the withstand strength of
a transformer, with respect to one of its key properties, is ex-
ceeded by the relevant operational stress [13].
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Fig. 1. Conceptual transformer failure model.

The key properties refer to electromagnetic ability, integrity
to carry current, dielectric withstand strength (to earth/be-
tween phases/between windings), and mechanical withstand
strength (to short-circuit current and resulting mechanical
force) [13], [14]. The operational stresses include normal and
transient loading conditions as well as some disturbances,
such as lighting overvoltages, switching operations, or system
short-circuit faults [13].
Although the actual origins or causes of failure may be

different from transformer to transformer, a conceptual failure
model (Fig. 1) can still be adopted to illustrate the general
modes of transformer failures, representing their statistical
characteristics [15]. In the figure, “strength” and “stress”
are generic terms used to cover any of the aforementioned
properties and stresses. Failures occurred at time , and
represent two types of failure modes (i.e., aging-related failure
and random failure, respectively) and they will be separately
discussed in 1) and 2).
1) Definition of Aging-Related Failures: During the course

of its life, a transformer will experience irreversible deleterious
changes to its serviceability and this is defined as the aging pro-
cesses in [16]. Due to the existence of these aging processes,
the withstand strengths of the transformer gradually decrease
and may deteriorate faster than normal if some abnormal or de-
structive deterioration process occurs [13].
As shown in Fig. 1, at time , the strength of a transformer

deteriorates to such a level that it is no longer enough to cope
with the normal operational stress, resulting in a failure at
this specific moment. This type of failure is mainly caused
by the deterioration of strength with regard to the normal
operational stress and is hereafter categorized as aging-related
failure. Aging-related failures, as revealed in Fig. 1, are mostly
concentrated in older ages of transformers’ life cycles.
2) Definition of Random Failures: The other types of failures

occurring at time , as shown in Fig. 1, are the ones caused
by the random stresses that accidentally exceed the strengths
of a transformer. This type of failure is hereafter referred to as
random failure.
Although it may happen throughout the lifetime of a trans-

former, for a transformer fleet, random failures, however, are
the most prominent ones observed at younger ages.
As pointed out in [17], the report published by CIGRE

SC 12 [18] is still considered as the most up-to-date interna-
tional survey of transformer reliability. The study analyzes

Fig. 2. Proportions of transformer failures related to components [18].

Fig. 3. Proportions of assumed causes of random failures [18].

transformer failure data collected from 13 countries on three
different continents, covering transformers up to the age of
20 years but unfortunately not beyond. It is revealed in the
report that the origins of random failures are mostly related
to transformer accessories rather than the main tank itself,
where tap-changer failures take up 41% of the total failures.
The proportions of transformer failures related to components
are presented in Fig. 2. Various causes can contribute to the
random failures of transformers as shown in Fig. 3.
The survey also pointed out that failures related to aging tend

not to be obvious at younger ages. This corresponds to Doble
Engineering Company’s experiences, which is that, so far, most
transformer failures are not due to old age, but due to some limi-
tations in the design and manufacturing process, or due to some
localized damages caused during operations and maintenance
[14].
However, aging transformers are inevitable and it is expected

that aging-related failure will become the dominating mode of
transformer failures in the future, when considering the oper-
ating transformers’ age profile.

B. Mathematical Models for Transformer Failures

Mathematically, random failures are characterized by the
instantaneous failure rate remaining relatively constant over
time, corresponding to the flat region of the bathtub curve,
whereas the aging-related failures are characterized by an
increasing instantaneous failure rate with age, corresponding
to the back-end phase of the bathtub curve. Both failure modes
can be represented by the two-parameter Weibull distribution
functions since this type of distribution, with different pa-
rameters, is flexible in representing different relationships of
instantaneous failure rate versus age [19], [20].
The cumulative distribution function (CDF) of the two-pa-

rameter Weibull distribution is given as

(1)
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where

failure time, expressed as a variable;

scale parameter;

shape parameter.

The instantaneous failure rate versus age relationship of the
Weibull distribution is shown

(2)

is determined by the value of the shape parameter so
that:
• represents the “random failures” where the instan-
taneous failure rate remains constant over time;

• represents the “aging-related failures” where the
instantaneous failure rate increases with age.

As for the scale parameter, , it represents the age by which
63.2% of the transformer units are expected to have failed. For
the extreme case of 1, where random failures are concerned,
the mean lifetime of the distribution is equal to the value of .
In this paper, random and aging-related failure models

are mathematically represented by Weibull distribution func-
tions, and the parameters are chosen as and

, representing a utility’s current understanding
on the level of random failure rate and aging-related failure
rate, respectively. Detailed explanations will be provided in
Section IV. Moreover, all of the exemplar discussions on
data-quality issues will be based on these parameters, that
is, and , and so is the combined
transformer failure model.

III. DATA REQUISITES FOR WEIBULL LIFETIME MODELS

In this section, data requisites for accurately modelling
the random failure are analyzed when comparing the case of
aging-related failure modelling. The same modeling procedures
for the aging-related failures as discussed in [21] are adopted.
In order to make consistent comparisons between these two
failure modes, multiple trials of Monte-Carlo simulations are
conducted to simulate 10 000 sets of random and aging-related
failures, respectively, in various sampling scenarios. Each
sampling scenario represents a combination of sample size
(i.e., total number of lifetime data) and the censoring rate (i.e.,
proportion of surviving units). The sample size is chosen to be
in the range from 40 to 1000, and the censoring rate is chosen
to be in the range from 0% to 95%. The maximum-likelihood
method [22] is then adopted to estimate the parameters of the
two-parameter Weibull distribution for each set of lifetime data.
Adopted as the evaluation criteria for the estimated results,

the relative root mean square error (RRMSE), as defined in (3),
and the relative difference between the estimated median value
and the true value (RD), as defined in (4), are both calculated
for estimated Weibull parameters

Bias (3)

where

Fig. 4. RDs of the estimated shape parameter in various censoring rates (upper
figure) and various sample sizes (lower figure).

Bias

value of the parameter;

estimated value of the parameter

Median (4)

where Median is the median value of the estimated parame-
ters.
As specified in [23], in order to evaluate the modelling ac-

curacy effectively, two aspects of the test results as trueness
and precision are considered, respectively, and they can be com-
puted as bias and standard deviation (SD). RRMSE hence serves
the purpose for an overall evaluation criterion as bias and stan-
dard deviation are computed into this combined value, as shown
in (3). RRMSE, however, bears a disadvantage, which could be
affected by any single extreme value that can either too high or
too low compared with the rest of the results. In such a case,
RRMSE, on its own, cannot reflect the true accuracy level of
the estimated results; therefore, RD, as it is immune to extreme
values, is then adopted to provide additional information on the
central tendency of the results.
The two values, that is, RRMSE and RD, complement each

other for an effective evaluation. It is expected that the closer the
RRMSE and the RD are to zero, the higher the accuracy level of
the estimated parameters will be. Consequently, the influence of
different combinations of sample size and censoring rate on the
accuracy of the estimated Weibull parameters can be revealed
through the comparison of changes of RRMSE and RD with
changes in sampling size and censoring rate. As a result, these
are the differences between the modelling random and aging-
related failures under the same sampling scenario.
The RDs and RRMSEs of the estimated values in various

censoring rates and sample sizes are presented in Figs. 4 and
5, respectively. The black lines indicate the estimated results
in the case of random failure, and the blue lines indicate the
estimated results in the case of aging-related failure; the same
graphic format is maintained for all of the following figures in
this section.
As seen in Fig. 4, RDs of the estimated values are the

same in the case of random failure and the case of aging-related
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Fig. 5. RRMSEs of estimated shape parameter in various censoring rates
(upper figure) and various sample sizes (lower figure).

Fig. 6. RDs of the estimated scale parameter in various censoring rates (upper
figure) and various sample sizes (lower figure).

failure as black lines overlap blue lines. The same observation
for RRMSEs of the estimated values can be also made as in
Fig. 5. This implies that the same level of accuracy for the esti-
mated values can be achieved for the same sampling scenario
irrespective of the true underlying distribution, that is, whether
it is in the random failure mode or aging-related failure mode.
The RDs and RRMSEs of the estimated values in various

sampling scenarios are presented in Figs. 6 and 7, respectively.
RRMSEs are presented in log scale in order to differentiate
the values in the two cases of random failure and aging-related
failure.
As shown in Fig. 6, RDs of the estimated values in the case

of aging-related failure are closer to zero when compared to the
results in the case of random failure. The RRMSEs of the esti-
mated values in the case of aging-related failure are generally
lower than the results in the case of random failure, as revealed
in Fig. 7. These imply that the accuracy of the estimated values
is dependent on the true underlying distribution of the lifetime
data; to be precise, in the same sampling scenario, a higher level
of accuracy for the estimated values is expected for modelling
aging-related failures than random failures. This means that in
order to reach the same level of accuracy as the aging-related
failure model, a larger sample size with a lower censoring rate
is of necessity for the random failure model.

Fig. 7. RRMSEs of the estimated scale parameter in various censoring rates
(upper figure) and various sample sizes (lower figure).

TABLE I
REQUIREMENT OF THE MINIMUM SAMPLE SIZE AND NUMBER OF FAILURES
SELECTED AT THE CENSORING RATE UNDER AN EXPECTED ACCURACY LEVEL

As discussed in [21], the value of RRMSE can be directly
taken as a measure of accuracy level for an estimated parameter,
that is, shape parameter or scale parameter, and an expected
accuracy level of RRMSE is found to be appropriate
to determine the requirement of minimum sample size for each
specified censoring rate.
By choosing as the expected accuracy of

estimated and for the cases of random failure and aging-
related failure, their corresponding minimum sample sizes are
obtained as listed in Table I.
As shown in Table I, the accuracy of the lifetime model in the

case of random failure is controlled by the accuracy level of the
estimated value, as a larger sample size is required to reach
the expected accuracy level of . The accuracy of the lifetime
model in the case of aging-related failure, however, is controlled
by the accuracy level of the estimated value.
Taking the censoring rate of 90% as an example, to reach

an accuracy level of RRMSE 0.25 for estimated or , the
random failure model would require a sample size of 900 or
200, respectively, whereas the aging-related failure requires 40
or 200 samples. Therefore, to obtain RRMSE 0.25 for and
parameters, a sample size of 900 with 90 failures is of necessity
for the random failure mode, whereas only a sample size of 200
with 20 failures is required for the aging-related failure.
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Fig. 8. Age profile of a group of operating transformers in a utility company.

Through the comparison of these two cases, it is clear that a
larger sample size or a lower censoring rate is expected for ac-
curately modelling random failures than aging-related failures.

IV. CASE STUDY TO SIMULATE A UTILITY’S TRANSFORMER
FLEET DATA AND THE IMPORTANCE OF POSTMORTEM ANALYSIS

Lifetime models for the cases of random and aging-related
failures can be used through the competing risk model [24],
to form a database which represents the failure characteristics
of a transformer fleet. In this case study, a lifetime database,
whose composition is similar to a utility’s transformer survival
and failure data collected since the 1960s, is simulated.
First, the random failure is represented by the Weibull distri-

bution with the two parameters 500 (the scale parameter)
and 1 (the shape parameter). This reflects the utility’s cur-
rent understanding on the level of random failure rate, which
is around 0.2% per transformer per year. This is equal to a
mean time to failure (MTTF) of % 500 years. Then,
the aging-related failure is assumed to follow the Weibull dis-
tribution of 100 and 5, which also reflects the utility’s
current understanding on the transformer aging-related failures.
Finally a set of 800 lifetime data, whose age profile is provided
in Fig. 8, is generated to mimic the real-life situation for the
utility’s transformer fleet.
Among the 800 lifetime data, 44 transformers failed at var-

ious ages and the failure data are generated. The number of
failed transformers at each age is presented in Fig. 9. It is known
through postmortem analysis that 43 are random failures and
only 1 belongs to the type of aging-related failure.
Postmortem analysis plays an important role in helping dis-

tinguish different failure modes so that the lifetime model for
each failure mode can be estimated separately. By separating
the failure modes, the scale parameter and shape parameter of
the two-parameter Weibull distributions for both random failure
and aging-related failure are estimated separately using survival
and failure data through the maximum-likelihood method. The
estimated Weibull parameters are listed in Table II.
As presented in Table II, both random failure and aging-re-

lated failure models can be successfully derived. The shape pa-
rameter of the random failure model and aging-related model
are estimated as 1.28 and 7.91 1, respectively.
For the random failure model, the relative bias of the esti-

mated scale parameter, 37.2%, is larger than the relative bias

Fig. 9. Age profile of historically failed units in the group of transformers.

TABLE II
COMPARISON OF ESTIMATED WEIBULL PARAMETERS OF BOTH RANDOM AND

AGING-RELATED FAILURE MODES

of the estimated shape parameter, 28%. For the aging-related
failure model, the relative bias of the estimated shape parameter,
58.6%, is much higher than the relative bias of the estimated
scale parameter of 4%. These correspond well to the simulation
results presented in Table I, that is, that the accuracy level of
the estimated is generally higher than the estimated for the
random failure model; whereas the accuracy level of estimated
is generally lower than the estimated for the aging-related

failure model.
The very large bias of estimated in the aging-related failure

model can be attributed to the limited number of failures. The
extremely high censoring rate of 99.875% results with only 1
aging-related failure in 800 samples. By looking up Table I, it
is known that 20 or more aging-related failures are expected for
the estimated value to reach the desired accuracy level.
When postmortem analysis results are not available, which

is common for most utilities, failure modes cannot be distin-
guished and all of the data are used to estimate the parame-
ters of oneWeibull distribution. The estimated parameters, here-
after referred to as conventionally estimated results, are also pre-
sented in Table II and this means that the mode of aging-related
failure is concealed under the random failures.

V. PROPOSED APPROACH THAT COMBINES THE RANDOM AND

AGING-RELATED FAILURE MODELS

A combined lifetime model, representing the failure charac-
teristics of a transformer fleet in the entire lifetime cycle, can be
built up with the competing risk model once the distributions of
random and aging-related failure models are derived.
The competing risk model holds due to the fact that power

transformers are replaceable units having two main failure
modes, that is, random failure and aging-related failure. As
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Fig. 10. Comparison of estimated distributions and the assumed ones.

defined in Section II, the two failure modes are independent
of each other. A transformer will fail whenever one of the two
failure modes first occurs to the transformer. The same concept
is applied by Schijndel in formulating an integral transformer
reliability model [25], in which a transformer is considered as
a series system consisting of separate subcomponents, and the
system fails when either of the subcomponents fails.
Therefore, the reliability, the CDF, and the instantaneous

failure rate of transformers (i.e., the combined lifetime model)
are denoted as , and , respectively, and
hold the following relationships as:

(5)

(6)

(7)

where

failure time, expressed as a
variable;

and reliability, the CDF, and the
instantaneous failure rate for
random failure, respectively;

and reliability, the CDF, and the
instantaneous failure rate
for aging-related failure,
respectively.

With (5)–(7), the combined lifetime model can therefore be
derived based on the random and aging-related failure models.
The CDF for each failure mode and its corresponding originally
assumed distributions are presented in Fig. 10, along with the
derived combined lifetime model.
It is observed from Fig. 10 that the actual transformer lifetime

model, that is, the combined lifetime model, can be easily de-
rived by combining the separate lifetime models of each failure
mode. The accuracy of the lifetime model is greatly improved
with the correct identification of the failure modes through post-
mortem analysis.
The mean lifetime and the median lifetime of the combined

lifetime model and the conventionally estimated lifetime model
are listed together with the two values of the originally assumed
lifetime model in Table III.

TABLE III
COMPARISON OF THE COMBINED LIFETIME MODELS

In the present case, the median lifetime is found to be around
88 years instead of the unreliable conventionally estimated re-
sult of 258 as listed in Table III. The derived mean lifetime of
the combined lifetime model is found to be around 82 years
instead of the value of 321 years when the failure modes are
unidentified. The mean lifetime of 82 years then provides asset
managers some confidence to say that it might be reasonable to
allow transformers to be operated beyond the original assumed
design lifetime of 40 years, although more failure data are still
needed for further verification.

VI. CONCLUSION

Accurate lifetime modelling for power transformers is crucial
for planning the future replacement of aging transformer popu-
lations. Since most of the transformer fleets have not yet com-
pleted their first life cycle, there is a lack of transformer failure
data, and survival data are therefore as important as failure data
in developing lifetime models.
Through a series of Monte Carlo simulations, the data requi-

sites for lifetime modelling have been analyzed for both random
failure and aging-related failure models. It is shown that cen-
soring rate and the sample size of the collected lifetime data will
unavoidably affect the modelling accuracy; the random failure
model tends to require a larger sample size with a lower cen-
soring rate than the aging-related failure model.
The transformer life-cycle failure model can be represented

by the combination of the random and aging-related failure
models. Postmortem analysis, as the proposed approach to
distinguish the two failure modes, helps improve the accuracy
of transformer statistical life modelling; the case study which
mimics a utility’s transformer lifetime data indicates that
through distinguishing the failure modes, the lifetime model-
ling gives the mean lifetime of 82 years which provides asset
managers some confidence to allow transformers to be operated
beyond the original assumed design lifetime of 40 years.
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