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Inclusion of Rational Models in an Electromagnetic
Transients Program: Y-Parameters, Z-Parameters,
S-Parameters, Transfer Functions

Bjorn Gustavsen, Senior Member, IEEE, and H. M. Jeewantha De Silva

Abstract—Frequency-dependent effects in power system compo-
nents and subnetworks can be efficiently represented via rational
function-based models that characterize the component port be-
havior as a function of frequency. The port behavior can be defined
by alternative parameter sets (e.g., admittance (Y-), impedance
(Z-), or scattering (S-) parameters). The model extraction proce-
dure approximates the port characteristics over a desired band of
frequencies via a compact rational model. This paper shows a de-
tailed procedure for interfacing such models with electromagnetic
transients simulators via a Norton equivalent and convolution, for
multiport Y-, Z- and S-parameter-based models. The interface of a
multiport transfer function element is also shown. The procedure
is applicable for models on pole-residue and state-space form. The
correctness of these model implementations is demonstrated for a
small electrical circuit. Application examples are shown for subnet-
work modeling from computed Y-parameters and for cable mod-
eling from measured S-parameters.

Index Terms—Admittance parameters, companion model,
convolution, Electromagnetic Transients Program (EMTP),
impedance parameters, rational model, scattering parameters,
simulation, transfer function.

I. INTRODUCTION

ATIONAL models are useful for representing linear
components with frequency-dependent behavior. In
this paper, we focus on terminal modeling where we model
the component’s behavior with respect to a set of external
ports (terminals). Typical applications include high-frequency
representation of power transformers from frequency sweep
measurements [1], [2] and wideband representation of subnet-
works from frequency sweep computations[3]-[7], so-called
frequency-dependent network equivalents (FDNESs).
The port behavior can be conveniently characterized by the
admittance matrix Y or impedance matrix Z, which defines
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the relation between voltages and currents at the ports. Tech-
niques are available for calculating rational function approxi-
mants which accurately reproduce the port characteristics over a
desired band of frequency while satisfying the physical require-
ments of symmetry, causality, stability, and passivity [8]-[15].
Another way of characterizing the port behavior is by incident
and reflected waves which are related via the scattering pa-
rameter matrix S [20], [21]. The latter characterization is often
preferred in high-speed electronics modeling over the admit-
tance formulation due to more accurate measurements at very
high frequencies. In addition to Y-, Z- and S-parameter models,
which interact with the adjacent circuit over their ports, it is
often useful to apply pure transfer functions models in a sim-
ulation. Such transfer function capability provides an easy way
of observing internal voltages and currents in a subnetwork rep-
resented by a Y-, Z- or S-parameter-based port equivalent, and
it reduces the computational burden of the model identification
process as the number of ports is reduced.

Y-parameter-based rational models can be interfaced with
Electromagnetic Transients Program (EMTP)-type tools via
an equivalent circuit [3], [17]. The circuit equivalent option
is, however, prone to accuracy problems and should therefore
be avoided [29]. A better alternative would be to represent the
model using convolutions [5], [18], [19], which is the standard
way of representing frequency-dependent transmission lines
[24]. However, most EMTP-tools do not offer such capability
for interfacing user-provided models. As for S-parameter
models, no EMTP-type tool has an interfacing capability in
place. Here, one would have to convert the data into Y-param-
eters prior to model extraction. Such conversion may, however,
seriously impair the quality of the final model.

In this paper, we show a unified procedure for including
rational models in EMTP-type simulation programs using a con-
volution-based Norton equivalent for admittance, impedance,
and scattering parameter-based models, and for transfer
functions. We start by defining the alternative parameter
definitions and physicality constraints and outline the appro-
priate procedures for creating rational-function-based models
on pole-residue and state-space form. We describe, in detail,
procedures for interfacing these models in an EMTP-type simu-
lation environment based on trapezoidal integration and a fixed
time step length with consideration to computational efficiency.
After validating these implementations on a common example,
we demonstrate the application of the interfacing capability on
some relevant examples from subnetwork modeling and cable
modeling.

0885-8977/$31.00 © 2013 IEEE
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Fig. 2. n-port device with incident and reflected port waves.

In denoting variables and parameters, we have adopted the
following notation: Bold uppercase: matrix; bold lowercase:
vector; nonbold: scalar.

II. SYSTEM REPRESENTATIONS

A. Admittance (Y —) and Impedance (Z—) Parameters

We consider the modeling of an n-port device. The relation
between voltage v and current i at the ports is in the s-domain
given via the admittance matrix Y by (1) (See Fig. 1.) v andi are
complex-valued vectors of length n while Y is a symmetrical,
complex-valued matrix of dimension n X n. Alternatively, the
port behavior can be characterized by the impedance matrix Z
(2), which is the inverse of Y

i=Yv

v ="7i.

@)
2

B. Scattering (S—) Parameters

S-parameters characterize the relation between incident and
reflected waves at the device ports when terminated by reference
impedances. (See Fig. 2.) Typically, 50-Q or 75-€} reference
impedances are used, matching the characteristic impedance of
common measurement cables.

At the ports, we have relations (3)—(5) where subscripts ¢ and
r denote the incident and reflected wave, respectively. Zg is a
diagonal matrix whose jth entry holds the reference impedance
at the jth port

vV=v;+V, (3)
i=i —i, (4)
i=Z5"(vi— vy )

Inserting (3) and (5) into (1) gives the relation (6) between the
reflected (v,.) and incident (v;) voltage waves via the scattering
matrix S, where I is the identity matrix

v, = (I4+ZoY) Y1 - ZyY)v; =S, (6)
Equation (6) shows that the scattering parameters are dependent

on the chosen reference resistors. It is common practice to nor-
malize the voltage waves by dividing with the square root of
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the reference impedance. As a result, the square of the waves v;
and v, gets dimension power and the associated waves a and b
are accordingly termed power waves. Re-derivation of (6) with
inclusion of the scaling gives the final result

b=Sa (7

with
a=Zy v (8a)
b=vZy V. (8b)
S =T+ VZYVZ) "X~ VZYZy). (9

It is noted that the scattering matrix S in (9) becomes identical
to S in (6) when all ports are terminated by the same reference
impedance. A diagonal element S;; defines the reflected wave
at port 7 due to an impinging (incident) wave on the same port
while an offdiagonal element S;; defines the reflected wave on
port @ due to an impinging wave on port j(i.e., the transmitted
wave from port 7 to port ¢).

From (9), one can deduce a transformation from S-parameters
to Y-parameters

Y=VZ, (I-S)I+8)'VZ . (10)

C. Transfer Function

A general transfer function H has n; inputs and ny outputs
collected in vectors u and y(11) where, in general, n; # ns.
Transfer functions are used for representing phenomena that do
not directly interact with the main circuit over the ports

y = Hu. (11)

III. SYSTEM MODELING

A. Model Formulation

A rational model of Y, Z, S and H can be formulated in al-
ternative ways. We assume that the extracted model is either on
the pole-residue form (12) or the state-space form (13) where
F denotes any of the four matrices Y, Z, S, or H and s is fre-
quency, s = ¢ + jw. The improper term sE in (12) and (13) is
zero for the scattering case. The pole-residue model implies a
common pole set for all elements of F

N
Rm
F(s)=Ro+ Y _ " +sE (12)

m=1
F(s5) =D+ C(sI-A)"'B+sE, D=Rg (13)
In our examples, we will start from a model on pole-residue
form (12). which we convert into the state-space form (13) as
follows. Each term in the sum of (12) is subjected to the factor-
ization

(14)
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TABLE I
MATRIX DIMENSIONS OF THE STATE-SPACE MODEL

Matrix A B C D E
Dimension | nNxnN | mNxn; | mpxniN | npxn, X1y
TABLE 11

PHYSICALITY CONSTRAINTS AND MATRIX DIMENSION.

Parameter | Y (or Z) S H

Symmetry Y=Y’ s=sT -
Realness Y(s)=Y'(=s) | S(s)=S"(=s) | H(s)=H'(-s)
Stability and | Re{a,}<0, Re{a,}<0, Re{a,,}<0,
causality m=1...N m=1...N m=1...N
Passivity M Y+YH)<0 Omax<1 -
Dimension (nxn) (nxn) (ny%ny)

which defines a state-space model with parameters

1
C?n = Rm'/ Am = —I,

Am

B, =L (15)
By combining the state-space model from all terms in (13),
we obtain the total state-space model which has a diagonal state
matrix A and a sparse B of ones and zeros. The poles a.,,, m =
1... N arerepeated in A as many times as there are columns in
F. For a model with n; inputs, ns outputs, and [V pole-residue
terms, the matrix dimensions become as shown in Table 1. Fur-
ther details about the conversion process are found in [22, App.].
The interfacing procedures developed in this paper are appli-
cable also to general state-space models of the form (13) (i.e.,
models that do not originate from the pole-residue form (12)).

B. Physicality Constraints

The models (12) and (13) must be subjected to constraints
during their extraction process in order to conform with phys-
icality constraints pertaining to the respective models [15].
Table II lists the required constraints for the respective model
parameter types as well as the resulting matrix dimensions. In
the table, superscripts * and H denote complex conjugate and
Hermitian (complex conjugate and transpose), respectively.
O max denotes maximum singular value of S over all frequen-
cies. The physicality constraints for Y and Z are identical.

Since there are usually no symmetry constraints for a general
transfer function, one may alternatively fit each column of H
with a private pole set

H=[h; hy h,1],
N
T,y
hj(s) =rg; + Z # + se;. (16)
m,j

m=1

This model (16) can again be cast in the form of a state-space

model (13) with diagonal A and sparse B, but without pole
repetitions.

IV. DISCRETE CONVOLUTION

In the time domain, the state equation associated with F(s)
in (13) is
x =Ax+ Bu
y =Cx + Du + Eu.

(17a)
(17b)
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We now wish to evaluate the output y of (17) from a general
input u in a time-domain simulation based on a fixed time step
length At (i.e., the discrete convolution between the input and
the system impulse response y(¢) = F(t)*u(t)).

A. Regular Part

First, consider the case with E = (. Equation (17) is approx-
imated with the central difference equation

Xp — Xp—1 X+ Xp—1 uz +ug_q
=A B 18
Al 7 2 (18a)
Vi = Cxy + Du,, (18b)

where & denotes the kth time step. Solving (18) for x;,, we ob-

tain
A\
i = (1 _ A—>
2

At At
X |:<I + A7> Xp-1+ TB(uk + llk_l) (19a)

4

vi = Cxi + Dug. (19b)
Simplifying the notation gives
X =X, _1 + ABuy + pBuy 1 (20a)
Yi = Cxy, + Duy, (2Ob)
with

A\ At
a:<I—A ) <I—|—A ) (21a)

2 2

A\ N At

where @, A, and p are diagonal matrices of the same dimension
as A since A was assumed diagonal, and A = . The same
result (20) would be obtained if one subjected the (17) to inte-
gration by the trapezoidal rule. We will accordingly refer to the
recursive formula (20) as trapezoidal integration.

In (20a), x; depends on the input uy in the same time step.
This simultaneous dependency is removed by introducing a
change of variable

Xp = X}, + ABuy (22)

which leads to a modification of (20) as follows:
X, =ax)_; + (@A + p)Bug_; (23a)
vi = Cxj, + (D + CAB)uy. (23b)

By scaling the input and renaming the state variable to x, we
arrive at the final result

X, =Xy 1+ Bug 4 (24a)
vt = Cx; + Guy, (24b)

where
C=C(ar+pn), G=(D+CAB). (25)
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B. Irregular Part

Next, consider the contribution from a nonzero E. In the time
domain, we have

y = Eu. (26)
Application of trapezoidal integration gives
Yie +¥e-1 up — Uy
=E 27
2 At @7
and so we can write
Xp = — Xp—1 + E(uk —ug_1) (28a)
Y& = Xg- (28b)

The output y;. depends on the input uy, in the same time step.
This simultaneous dependency is removed by introducing the
transformed variable

x; =xp + Euk' 29)
Inserting (29) into (28) gives
X, = — X 4Eu (30a)
k k—1 At k—1
2E
Yi =X} + N (30b)

The recursive formula (30) is included in the ditto formula
for the regular part (24) by augmenting matrices C, e, B, and
G as follows:

¢— ¢ 1], ae["‘ 0]

0 -I
2E

B_>{ ]fE] GG+ . 31)
—4E Al

V. MODEL INTERFACE WITH CIRCUIT SOLVER

A. Y-Parameters

In the Y-parameter case, the input u in (17) is voltage v and
the response y is current i. From (24), we obtain the recursive
formula

X =axg 1+ Bvg
i, =Cxy; + Gvy,

(32a)
(32b)

which is cast in the form of a Norton equivalent with current
source

ihisk = —Cxp (33)
with C and Gxopron = G given in (25).
B. Z-Parameters

In the Z-parameter case, the input u in (17) is current i and
the response y is voltage v. In (24), this gives

Xp = oxXp_1 + Biy_
v =Cxi + Giy,

(34a)
(34b)
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Fig. 3. Norton equivalent for (32).

which is written as a Thevenin equivalent with voltage source

Viis,k = Cxp (35)
with C and Zhevenin = G given in (25).

It is, however, convenient to transform the Thevenin equiv-
alent into a Norton equivalent in order to eliminate the internal
nodes

: _rp—1
Gl\orton - ZThevenin (363.)
ihis,k = GNortonvhis,k~ (36b)

C. S-Parameters

Fror? the relations v = v; + v, (3),a = \/Zoflvi, b =
VZg v, (8),and b = Sa (7), we obtain the voltage by (37a).
Similarly, via the relation between voltage waves and current by
(5)i = Zg"'(v: — v,.), we obtain the current as

v =v/Zy(a+b) (37a)
i=/Zy (a—Db). (37b)

For the convolution between a and S in the time domain, the
input u in (17) is replaced with a and the response y is replaced
by b. This gives for the recursive formula (24)

Xy =ax;_1 + Bag_; (38a)
b, =Cxy + Gag. (38b)
Combining (38) with (37) gives
vi =VZo [dxk I+ G)ak} (392)
i =vZo [~Cxe+@-Glas].  (39b)

Solving for ay, in (39a) and inserting in (39b) gives

. 1
ir = V4o

(- G)I+G) "V v

“2yZy (I+G) 'Cxp. (40)

This defines the Norton equivalent in Fig. 3 with

-1 —1
GNorton ==V ZO [(I - G)(I + G)—l] V ZO (418.)
ihis, & :2\/Z—0—1(I+G)’lc~xk =TI'x;. (41b)

The state variable x;, is obtained from (38a) which has a4
as the stimulus. The incident wave a;_; is calculated via the
voltage v;_1 and (37a) as follows:

Vi-1 = VZo(ag-1 +br_1)
= VZolar 1+ Cxp 1 +Gag 1). (42)
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TABLE III
PROCEDURE FOR UPDATING THE HISTORY CURRENT SOURCE.

Step 1 | Calculate a;_; by (43)
Step 2 | Calculate x; by (38a)
Step 3 | Calculate s by (41b)

Solving (42) gives a;_1 as

1 .
ap1=I+G) Y%y vi-1—Cxp_1). (43)

The procedure for updating the current source is summarized
in Table III.

D. Transfer Function

The transfer function case is handled directly by (24) without
a Norton interface with the electrical circuit since the transfer
function does, per assumption, not interfere with the electrical
circuit over its ports. The input u can represent any quantity
(e.g., voltage or current). The output y can be further processed
(e.g., in a control system) or it could be used for controlling ideal
sources in the simulation. The latter case gives a one-time step
delay in the response.

VI. COMPUTATIONAL CONSIDERATIONS

A. Pole-Residue Modeling

We usually prefer to develop rational models on the pole-
residue form (12) since this is the model type that is naturally
produced by vector fitting (VF) [8]. When converting a pole-
residue model into state-space form (13), one obtains a model
where A is diagonal and B is sparse matrix of ones and zeros
(15). These properties are utilized for increasing the computa-
tional speed of the time-domain simulation as follows.

1) The diagonal form of A is utilized when updating the
state variable in (24a), (34a), and (38a). Each element j of
the matrix-vector product ax, is obtained as (ax;)(j) =
a(j. )xi(j).

2) The sparse B matrix has a single one in each row. B is
therefore a selector matrix which associates each element
u; of the input n with row partitions A, and x;. Accord-
ingly, there is no need for formally multiplying B with x;..

3) Complex elements in x; occur in conjugate pairs. In each
pair, the two terms give a contribution to the history source
inis,x whose real parts are equal [5]. To see this, consider a
complex conjugate pair

o+ j?“” o ]'7,//
his) = - ! . 44
() s—(a"+ ja”)  s—(a' — ja') “4)

The time-domain impulse response is
h(t) — (7,/ _I_jT//)e(a’J,-ja”)t + (7"/ _ j,ru)e(a’—ja”)t. (45)

h(t) can be rewritten as h(t) = hi(¢) + ha2(t) where

h,]_(t) _ Tlea't(eja”t 4 e—ja”t)

= 21" cos(a”'t)

(462)
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hQ(t) :jT//ea’t(eja”t _ efja”t)

= — 2"e"tsin(a"t).

(46b)

If one deletes the second term in (44), we now obtain for
(46)

i?:]_(t) _ Tleu’teju”t

=" ! (cos(a”t) + j sin(a”t)) (47a)
Ez(t) = jT”(ﬁa/tC‘ja//t
= jr"e" ! (cos(a"t) + jsin(a”'t)). (47b)
Retaining only the real part of (47) gives
~ 14 1
Re{hi(t)} =r'e* ' cos(at) = éhl(t) (48a)

. / 1
Re{ha(t)} = —r"e” Tsin(a”'t) = §h2(t). (48b)

Therefore, deleting the second term in (44) has the effect
of reducing the real part of A{%) by a factor of two. This
allows us to utilize only one of the two terms in (44) and
scale the output of the convolution (i.e., inis 1) With a factor
of two and discard its imaginary part. This gives nearly a
50% reduction in computation time for models with mainly
complex poles.

4) An alternative way of increasing computational efficiency
when handling complex poles is to convert the model into
areal-only model. This gives a model with 2 x 2 blocks on
the diagonal of A [23]

A= ]
¢ = [Re{c} Im{c}] (49a)
o[ Helb) T

B. State-Space Modeling

If the starting point is a general state-space model, one may
diagonalize the model. This gives a diagonal A and so ax;, can
be computed as in the pole-residue case. However, the B-matrix
will now, in general, be full. In the case of a sparse state-space
model, one may alternatively use sparse computations.

VII. INTERFACE WITH EMTP-TYPE SOLVERS

All major EMTP-type simulation tools are based on
Dommel’s method [16], where each dynamic element is
represented by its Norton equivalent of a fixed conductance
matrix in parallel with a history current source. This applies
to all (linear) dynamic elements, such as RLC branches and
transmission lines. Typically, one will have a separate sub-
routine for each model type. At the first time step ({ = 0),
each subroutine initializes its model by calculating the model’s
coefficients (which are dependent on At) and its conductance
matrix which is added to the global system conductance matrix.
In all subsequent time steps, the history current sources are
updated based on the model’s terminal voltages. The process is
outlined in Fig. 5. The current i, is the global current vector; it
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Fig. 4. Thevenin equivalent for (26).

Start I
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e Calculate Gy, pps @ B,.C
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Update all models ,,Fﬁ_At L
—>

e Calculate global node voltages, v,=G™i, |
/ e o o

e Calculate i 441 (v)

® Add iy to global

Current vector i,
=ttAt , k=k+1

Fig. 5. Time-domain simulation.

is the sum of the independent current sources and the history
current sources.

In the following sections, we show a number of example sim-
ulations using a small EMTP-type simulation program imple-
mented in Matlab. The Matlab implementation has later been
converted into standard components for the PSCAD-EMTDC
simulation environment with final testing almost complete at the
time of writing.

VIII. EXAMPLE: ELECTRICAL CIRCUIT

In the following text, we demonstrate the alternative model
interfacing approaches for a small two-port electrical circuit.
First, we calculate the port characteristics defined by Y-, Z-, and
S-parameters. Next, we fit a rational model to each of these pa-
rameter sets with the correct model order such that the fitting
error is negligible. Finally, the three models are interfaced with
an EMTP-type simulation program and employed in a transient
simulation. The simulation results by the three alternative ap-
proaches are compared with that obtained using a detailed rep-
resentation of the original RLC circuit. We also demonstrate the
use of the transfer function for computing an internal voltage in
the system.

A. Circuit Layout and Port Characteristics

Fig. 6 shows a small electrical circuit with two external ports,
numbered 1 and 2. The objective is to represent the circuit with
a rational model with respect to these two ports.

Using the nodal admittance approach, the 5 X 5 admittance
matrix is calculated for the system as a discrete function of fre-
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Fig. 7. Fitted Y-parameters (magnitude).

quency and is reduced to a 2 x 2 matrix Y with respect to the
two external ports 1 and 2. The impedance matrix Z is com-
puted as the matrix inverse Z = Y ~!. The scattering matrix S
is computed from Y by (9), assuming different reference resis-
tors for ports 1 and 2

Zo = [1()0 0 ] (50)

0 200
In order to demonstrate the application of the transfer func-

tion H, we also compute the voltage transfer from port 1 to port
2wy = Hu, H = =Y5,/Yas.

B. Pole-Residue Modeling

The port characteristics were computed using 501 logarith-
mically spaced frequency samples between 10 Hz and 100 kHz.
A 10th-order pole-residue model (12) was fitted to each of the
given parameter sets Y(2 x 2), Z(2 x 2), and an 11th-order
model to S(2 x 2) and H(1 x 1). All models include a nonzero
term Ry while sE is included only in the modeling of Y- and
Z-parameters. We used VF [8] with relaxation [9] (for faster
convergence) and sparse implementation [10] (for faster com-
putations). Figs. 7-10 show the result from rational modeling. It
is observed that all matrix elements have been accurately fitted
since the magnitude of the (complex) deviation is very small.

C. Time-Domain Simulation

We next apply the four extracted models in an EMTP-type
time-domain simulation using the interfacing approaches de-
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scribed in Section V with trapezoidal integration. A unit step
voltage behind a 5-2 resistor is applied to port #1 with port #2
open. (See Fig. 11.) We simulate the current response at port #1
and the voltage response at port #2 with a At = 10-us time step
length. As a reference, we also perform a conventional lumped
circuit simulation with trapezoidal integration using PSCAD.

0.05 T r : :
Y-parameters
godE @@ e Z-parameters| |
S-parameters
. 0.03} .
<
g 002} 1
_ I
=1 L A
© oot fl /) ]
I
¥ ‘bl‘/
-0.01 . . . .
0 1 2 3 4 5
Time [ms]
Fig. 12. Current response at port #1.
x 1071
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-] LHEE R % ]
= N S
R e
3 L Pl ey W
N T -
I ‘
-8 . . . .
0 1 2 3 4 5
Time [ms]
Fig. 13. Deviation from the current obtained from simulation by the lumped
circuit.

Fig. 12 shows the simulated current response at terminal 1
when simulated via Y-, Z-, or S-parameters. As expected, the
responses are virtually identical since the frequency-domain fit-
ting errors are close to zero. Fig. 13 shows the deviation of the
responses in Fig. 12 with that of the conventional lumped cir-
cuit simulation. The deviation is smaller than 1% — 13 and so
the results are deemed identical.

Fig. 14 shows the simulated voltage at port #2 when simu-
lated via Y-, Z-, or S-parameters. In addition, we have simu-
lated this voltage via the voltage transfer from port #1 to port
#2, when taking the voltage at port 1 (obtained from the Y-pa-
rameter model) as a known quantity. Again, all responses are
virtually identical. This result is highlighted in Fig. 15 which
shows the deviation from the conventional lumped circuit sim-
ulation. The deviation is smaller than 2F — 12,

IX. EXAMPLE: SUBNETWORK MODELING FROM COMPUTED
ADMITTANCE PARAMETERS

One application of the Y-parameter interfacing capability is
the interfacing of a frequency-dependent network equivalent of
a subnetwork. Fig. 16 shows a 345-kV, 27-bus system network
which includes 22 transmission lines with a maximum length
up to 200 km. A detailed model of this system is available in an
EMTP-type simulation tool with transmission lines represented
by traveling-wave models and loads represented by shunt ele-
ments at load buses (resistors, capacitors, and inductors). The
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Fig. 16. Power system network.

admittance response for the network as seen from bus #100 is
obtained by performing a frequency scan at frequencies linearly
distributed between 1 Hz and to 2 kHz in 20-Hz steps. Next,
the network as seen from bus 100 is replaced by a reduced
order network equivalent by fitting the admittance matrix by
a pole-residue model (12) via VF [8]-[10]. Fig. 17 shows the
elements of the actual and approximated admittance matrix as
a function of frequency. The model is interfaced to the circuit
solver using the procedure described in Section V-A. Current
sources are added to the terminals of the network equivalent in
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order to maintain the correct steady-state power flow and volt-
ages at each bus.

A line-to-ground fault is applied at bus #104 at ¢ = 0.10 s,
and the fault is cleared after £ = 0.21 s. The fault current and
voltage waveforms are shown in Figs. 18 and 19 with At =
50 ps . It is observed that the network model reproduces the
waveforms of the original, detailed model, although the model’s
upper frequency limit of 2 kHz prevents accurate reproduction
of high-frequency components.
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X. EXAMPLE: CABLE MODELING FROM MEASURED
SCATTERING PARAMETERS

A 150-m four-conductor industrial cable has been character-
ized by S-parameter measurements between 9 kHz and 50 MHz
in [25], with Zy = 50-§2 reference impedance. We calculate a
pole-residue model (12) of the 8 x 8 S with N = 200 terms
using VF [8]-[10] and subject it to passivity enforcement via
residue matrix spectral perturbation [13]. Figs. 20 and 21 com-
pare the measured and fitted S-parameters.

The pole-residue model is interfaced with an EMTP-type
simulation program using the procedure in Section V-C. Con-
ductor #1 is subjected to a unit step voltage excitation with
the other conductors grounded at this end. (See Fig. 22.) All
conductors are open at the receiving end.

Figs. 23 and 24 show, respectively, the simulated receiving
end voltages and sending end currents with At = 0.01 us.
The simulation result is verified as follows. Using the rational
model, samples S(o + jw) are computed (in the complex plane)
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and converted into admittance samples Y (¢ + jw) by (10).
From Y and the nodal analysis method, the step response fre-
quency-domain solution is computed for the voltages and cur-
rents which are transformed into the time domain using the Nu-
merical Laplace transform (NLT) [26], [27], with the implemen-
tation described in [28]. The result is shown in Figs. 23 and 24.
The solution by NLT is seen to agree closely with that of the
simulation, thereby validating the model interfacing method.

XI. DISCUSSION

The reader may wonder whether it is really necessary to have
separate interfacing possibilities for alternative parameter sets
(Y-, Z-, S-, transfer functions) since it possible to convert one
parameter set into another set via formulae. By this reasoning,
the Y-parameter interface should suffice for representing also
the Z- and S-parameter sets. However, since the modeling of
a given parameter set will, in practice, involve some level of
inaccuracy, the model fidelity will depend on which parameter
set it was extracted from. For instance, a rational model ex-
tracted from Y-parameters tends to be more accurate with low-
impedance terminations than with high-impedance terminations
while the situation is the opposite for a model extracted from
Z-parameters. Also, one may in situations with measured pa-
rameters experience large error magnifications when converting
from one parameter set to a different one. It is therefore advanta-
geous to freely choose which parameter set the modeling should
be based on.
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The Matlab code used for model extraction and time-do-
main simulation in Section VIII (electrical circuit) can be
freely downloaded from http://www.energy.sintef.no/Pro-
dukt/VECTFIT/index.asp.

XII. CONCLUSION

This paper addresses the task of interfacing a multiport
rational model with EMTP-type circuit solvers via a Norton
equivalent and convolution. We have shown how to do this for
models that represent admittance (Y-) parameters, impedance
(Z-) parameters, scattering (S-) parameters, and pure transfer
functions which do not directly interact with the power system.

1) The details of implementation were shown for both pole-
residue models and general state-space models, assuming
a fixed time step and trapezoidal integration.

2) Comparison with a lumped circuit simulation showed that
all model interfaces give exactly the same result indepen-
dent on which parameter set they are based on, provided
that the model extraction step was accurate.

3) The Y-parameter interface was demonstrated for use with
subnetwork modeling of a 12-bus system. It was shown
that the model could represent the transient behavior with
adequate accuracy.

4) The S-parameter interface was demonstrated for the mod-
eling of an industrial cable from S-parameter measure-
ments. The interface was shown to accurately represent the
information given in the S-parameter rational model.

5) Use of the alternative model’s interfaces avoids the need
for conversion between parameter sets, thereby avoiding
potential deterioration of the model’s accuracy.
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