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Abstract—Undetected partial discharges (PDs) are a safety crit-
ical issue in high voltage (HV) gas-insulated systems (GIS). While
the diagnosis of PDs under AC voltage is well-established, the
analysis of PDs under DC voltage remains an active research field.
A key focus of these investigations is the classification of different
PD sources to enable subsequent sophisticated analysis. In this
paper, we present an analysis of a 1D-CNN-based approach for
classifying laboratory PD signals caused by metallic protrusions
and conductive particles on the insulator of HVDC GIS, under both
negative and positive potentials. Most notably, our study demon-
strates that this type of neural network, regardless of the training
order, can generalize learnings to operating voltage multiples that
it has not previously encountered. We evaluate this generalization
performance under the presence of additional white Gaussian noise
and investigate the influence of excluding the amplitude-related
information in the signal. Further, we compare the network’s per-
formance when using input signals in both the time and frequency
domain.

Index Terms—Fault diagnosis, HVDC, partial discharge, neural
networks, machine learning.

I. INTRODUCTION

THE increasing integration of renewable energy sources
into the existing high-voltage grid requires the use of

high-voltage direct current (HVDC) systems. This technology
is superior to conventional AC technology for transmitting large
amounts of power over long distances because of lower losses,
and the elimination of reactive power. Apart from high effi-
ciency, the compact installation of high-voltage equipment is
also a critical consideration. Both requirements, high-efficiency
power transmission and space-saving installation, are met by
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Fig. 1. Schematic representation of a HVDC gas-insulated system and related
typical partial discharges generating defects. The presented work aims to clas-
sificate UHF PD signals caused by particle- 1© and protrusion-based 2© defects.

gas-insulated systems (GIS), which have been developed for
use in transmission systems under AC voltage stress since the
1960 s.

A crucial aspect of ensuring fault-free operation in HVDC
GIS is the automatic classification of PD-generating defects
based on measurement recordings [1]. Fig. 1 illustrates a typical
HVDC GIS and its common sources of PDs. This includes solid
metallic particles on the insulation, on free potential or freely
moving in the insulating gas, and conducting protrusions on the
encapsulation or conductor [2]. In contrast to conventional AC
GIS, the number of these devices in operation under DC stress
is rather low. Thus, the measurement [3], classification [4], and
physical interpretation [5] of DC PDs continue to be active areas
of research.

Recently, studies investigating PD development in HVDC
GIS indicate that the physical processes responsible for PD
formation are the same as compared to those observed under
AC voltage stress [6]. However, due to the constant electric
field, continuous directed movement of charge carriers and the
generation of space and surface charges, the behavior of DC PD
events, such as amplitude and repetition rate, differs significantly
from AC PDs [2]. As a result, the methods and findings related to
AC PD classification cannot be directly applied to HVDC GIS.
For example, the well-established AC GIS PD detection method,
which relies on measurements in the ultra-high frequency (UHF)
range and human expert evaluation of phase-resolved partial
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discharge (PRPD) plots [7], [8], is not suitable for distinguish-
ing DC PD source signals due to the lack of necessary phase
information. Consequently, the development and testing of novel
DC-specific PD classification methods are essential for ensuring
the safety of HVDC GIS.

The most advanced technique for evaluating and identify-
ing PDs under DC voltage stress is pulse sequence analysis
(PSA) based on the evaluation of time-resolved partial discharge
(TRPD) plots. This method involves the assessment of patterns
by human experts [9]. Hence, the amplitude and time informa-
tion of individual PD events in the UHF signal are leveraged to
identify the defect corresponding to the signal [10]. However,
this approach relies on time-consuming human judgment and
it is limited to scenarios with a single PD source. In situations
where multiple sources are active, the PD signals overlap, hin-
dering clear identification and necessitating the use of complex
techniques for source separation [11], [12].

To achieve an automatic PD signal classification, Schober and
Schichler [13] proposed a machine learning-based approach for
PD measurements from GIS under DC. Their novel approach
employed Support Vector Machines and neural networks to as-
sess PSA features derived from UHF measurements. Despite its
promising results, this method inherits the limitations associated
with hand-crafted PSA features such as challenges in classifying
signals of multiple active PD sources.

Neural networks, such as multi-layer perceptrons (MLP)
or convolutional neural networks (CNN), have been used to
classify PDs under AC utilizing TRPD [14], [15], [16] and
PRPD [17], [18], [19] features with remarkable results. Most
notably when directly applied to time-domain measurements,
they have demonstrated potential in effectively distinguishing
multiple active signal sources in GIS under AC [20] and similar
domains [21]. Hence, if applicable to DC GIS PD classification,
they could potentially obviate the necessity for PSA and source
separation techniques. Therefore, Beura et al. [22] introduced the
first study of CNN for feature extraction from UHF time-domain
measurements under DC. Their study demonstrated comparable
results to the pre-existing PSA methods [13]. However, there are
still several critical questions vital for the practical application
of this method that remain unanswered.

First, as already illustrated in Fig. 1, DC PDs in GIS originate
from multiple defect types. PDs generated by particles and
protrusions on the insulator surface a are particularly signif-
icant [10]. However, the existing literature does not provide
sufficient evidence regarding the capability to classify these
specific fault types. Moreover, there is a lack of information
regarding the classification accuracy of neural network models
at both, negative and positive polarities of the inception voltage.
However, this information is crucial for a risk assessment of
the asset and a successful transfer of the laboratory experiment
results to on-site installations [2].

In addition, previous studies under AC stress have demon-
strated that utilizing fast Fourier transform (FFT) coefficients
extracted from UHF signals as training data yields improved
PD classification results under AC [23]. Therefore, it would be
advantageous to explore the transferability of these AC findings
to the DC PD classification domain.

Furthermore, all typical defects of HVDC GIS can experi-
ence stress from various multiples of the inception voltage Ui.
These individual voltages lead to slightly different discharge
patterns [2]. However, the specific Ui at the on-site GIS is
not known in practice and creating a suitable amount of data
for every combination of the defect type and Ui multiple is
impractical for experts. In addition, during site-acceptance tests,
it is common practice to intentionally vary the DC voltage across
a broad range, ranging from 0 kV to multiples of the nominal
voltage. Depending on the respective project this voltage is at
least 1.2 times the nominal voltage. Thus, it is essential to in-
vestigate the ability of a PD classification model to generalize to
measurements based on unseen Ui multiples. This investigation
ensures that the results obtained can be directly applicable to
on-site GIS and site-acceptance tests.

Another challenge in HVDC GIS arises from the amplitude
of UHF PD signals, which is influenced by free-space path
loss, particularly when the signal has to cross barrier insulators.
Thus, the amplitude is proportional to the distance between
the defect location and the sensor. As this distance varies in
applications outside laboratory tests, it might be advantageous
to study the influence of amplitude-related information on the
model performance by applying different normalization meth-
ods. In summary, this study contributes to the HVDC GIS PD
classification in three significant aspects:
� First, we provide the missing evidence that a 1D-CNN-

based architecture can effectively classify DC PD time-
domain UHF signals originating from particles on an in-
sulator and fixed metallic protrusions at both, negative and
positive DC voltage stress.

� Second, we present the first investigation of an HVDC PD
classification model in terms of its ability to classify mea-
surements obtained at multiples of the inception voltage Ui

that have never been included in the model training. Hence,
we aim to estimate the model’s ability to generalize from
laboratory data to measurements of on-site installations
under unknown DC voltage stress levels.

� Third, we analyze the impact of removing the amplitude-
related signal content on the PD classification model by
investigating different normalization methodologies.

II. EXPERIMENTAL SETUP & METHODS

This study is conducted using UHF DC-PD signals measured
under DC voltage stress, as documented in Götz [2] and Götz
et al. [6]. The measurements were performed in a gas-insulated
test setup shown in Fig. 2 (top). The model electrode arrays are
installed inside a test vessel to simulate the typical behaviour of
the defects. The tests were performed using sulfur-hexafluoride
(SF6) as the insulation gas at an absolute pressure of 0.5 MPa. In
the protrusion arrangement (Fig. 2; bottom, right), the metallic
protruding needle has a length of 5 mm and the needle tip is
installed at a distance of 55 mm from the opposing high-voltage
electrode.

To simulate PD at the gas-solid interface (Fig. 2; bottom,
left), a 13 mm needle is placed on the surface of an epoxy
insulator, typically used in gas-insulated systems. The distance
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Fig. 2. Picture of the experimental setup (top) and three-dimensional schemat-
ics of the electrode arrangements used for the emulation of DC-PD at the
gas-solid interface (bottom, left) and at a fixed metallic protrusion (bottom,
right) [2].

between the needle tip and the opposing high-voltage electrode
is 26.7 mm. The high DC voltage with positive and negative
polarity up to voltages of 250 kV and a ripple content δU of
below 0.1% is applied from zero at a rate of 0.5 kV/s via the
air-SF6 bushing installed in the centre of the test vessel. The
specified voltage levels were applied over several minutes before
recording the UHF signal. The PD signal is then detected using a
UHF sensor [24] installed in the test vessel. A 30 dB amplifier is
used to increase the signal-to-noise ratio (SNR). The PD signals
are sampled at 10 GS/s using a Teledyne LeCroy WavePro 735
ZiA digital oscilloscope. Some example recordings are depicted
in Fig. 3.

Due to the physical nature of the discharge process, each
partial discharge impulse has a total length of several ten pi-
coseconds, regardless of the type of applied voltage (AC or
DC) [6]. The time difference between subsequent impulses,
and therefore the repetition rate, is strongly depending on the
applied voltage. It is in the range between a few microseconds
up to several minutes [6]. Due to the low ripple content in the
applied DC voltage, the discharges do not show a frequency
dependent repetition rate, while under AC this depends on the
power frequency. It should be noted that in Fig. 3 we chose to plot
only ’similar’ single impulses for brevity. The measurements
in our dataset include more than just single impulses and are
affected by various noise levels.

Each i-th measurement Mj = {sj,1, . . ., sj,u, . . ., sj,ls}, j ∈
{1, . . . , N} has a length of ls = 20002 individual samples
sj,u|s ∈ R, sampled at time step u. The resulting data set con-
tains a total of N = 33000 individual PD measurements taken
at different multiples of the inception voltage Ui. A so-called
source class label is assigned to each Mj based on the defect
type, the polarity of the needle and the Ui multiple. The number
of source class measurements is shown in Table I.

This Ui-information is only utilized to investigate the gener-
alization capability of the model (Section III-B). In the classi-
fication task the model discards this information and learns to

Fig. 3. Time-domain signal examples of the considered defects. Each PD
measurement is based on either particles at the gas-solid interface (Pa−, Pa+) or
protrusions (Pr−, Pr+) at negative and positive potential of the needle electrode.

TABLE I
NUMBER OF AVAILABLE MEASUREMENTS Mj OF EACH SOURCE CLASS IN THE

DATASET OF [2]

predict the so-called output class labels (Fig. 3) based on the
given source class measurement. Thus, the output class labels
are based on the defect type and needle polarity.

In each of our experiments, the data is randomly drawn from
these recorded measurements and divided into a training and a
test set by allocating 80% of the measurements of each class to
the training set Dtrain and the remaining 20% to the test set Dtest

which are normalized using three different methods.

A. Normalization Methods

The objective of data normalization or min-max scaling is to
standardize features to a consistent scale. This typically leads to
improved performance and training stability of the model. How-
ever, dependent on the choice of the method, its application may
affect the information contained in the signal. Normalization can
be applied in three different ways:

1) Trainset Normalization (Tr): In trainset normalization,
every sample in each measurement Mj within Dtrain and Dtest is
normalized between −1 and +1 according to:

s̄j,u =
sj,u − Min(Dtrain)

Max(Dtrain)− Min(Dtrain)
. (1)
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Fig. 4. Proposed model consists of five consecutive 1D-CNN layers with ReLU activation, followed by an average pooling- and a flatten layer. The features are
fed into a fully connected multi-layer perceptron. This network has 512 ReLU neurons in the input layer and four output neurons with a softmax activation to
assign one of the output classes (Pa−, Pa+, Pr−, Pr+).

Min/Max(·) are operations that return the min-/maximum value
of any individual measurement within the dataset. As shown in
(1), trainset normalization scales each sample in each measure-
ment with respect to the maximum and minimum sample value
of all individual measurements across all classes in the dataset.
Thus, this method preserves the amplitude information for each
measurement in the dataset. However, due to the previously
stated free-space path loss problem, it might be advantageous to
generally exclude amplitude-related information during model
training.

2) Class Normalization (Cl): Class normalization scales
each sample within a measurement relative to the maximum
and minimum sample values of all measurements belonging to
the corresponding source class from Table I. In this method, the
amplitude-related information is preserved within samples of
one class, while it is hidden between measurements of different
classes.

3) Measurement Normalization (Me): In measurement nor-
malization, each sample in a measurementMj is scaled based on
the maximum and minimum sample values within that specific
measurement period in the dataset. In this case, the model can
no longer rely on amplitude-related features to classify different
samples of class in the dataset.

B. Classification Model

In our experiments, the normalized UHF amplitude signal
measurements and their respective FFT coefficients are sepa-
rately used to train the neural networks-based model as depicted
in Fig. 4. These networks use sample measurements and their
assigned output class labels in Dtrain to learn their weighting and
bias parameters and ultimately predict the correct output class
label.

The architecture in our work is based on 1D-convolutional
[25] and perceptron layers [26]. We tested different numbers and
arrangements of these layer types in conjunction with different
activation functions such as ReLU, Sigmoid, and Tanh to achieve
an improved classification result. For brevity, only the final
model structure is given. This structure and the corresponding

activation functions were empirically determined with respect
to maximizing classification performance.

In the final architecture, the 1D-convolutional layers perform
sequential, discrete convolutions between a filter kernel and the
data. The extracted features are processed by a ReLU activa-
tion function after each layer followed by an average pooling
layer and a flattening layer. The data is further processed by
the perceptron layer with 512 neurons and a ReLU activation
function, which maps the extracted information to the output
classes depicted in Fig. 3.

The model parameter adjustment is performed using a
NVIDIA A100 and the PyTorch library. The optimal parame-
ter set is determined by optimizing a cross-entropy loss using
ADAM optimization [27]. The initial learning rate of 0.0001 and
a batch size of 64 were determined through a random search.
In each of our experiments, the network is initialized with 15
different weight initialization seeds to account for the effects of
a non-optimal start to the optimization process. The number of
individual seeds was chosen to represent a reasonable trade-off
between the statistical robustness of the result and the computa-
tional time of the model. The performance of each trained model
is evaluated using unseen data from Dtest. In addition, similar to
k-fold cross-validation, a different set of measurements from
the limited experimental data is randomly assigned to Dtrain

and Dtest in each of the 15 training and testing procedures. The
obtained classification results are averaged to determine a more
reliable true positive rateA of the proposed architecture for each
defect class. Similarly, the true negative, false negative, and false
positive rates of the model are determined for all other output
classes.

III. EXPERIMENTS & RESULTS

A. Time- and Frequency-Domain Classification Results

In this section, we analyze the capability of the proposed
architecture to classify unseen measurements of PD generated
by a fixed protrusion or a particle adhering to the gas-solid inte-
rface. To accomplish this, we utilize UHF signals measured in
either the time-domain or frequency-domain at a specific Ui



SEITZ et al.: TOWARDS GENERALIZABLE CLASSIFICATION OF PDS IN GAS-INSULATED HVDC SYSTEMS USING NEURAL NETWORKS 1495

Fig. 5. Model confusion matrix (Ātrainset = 0.9653) obtained by utilizing
Pa−1·Ui

, Pa+1·Ui
, Pr−2·Ui

and Pr+2·Ui
time-domain measurements, preprocessed

by trainset normalization.

multiple for each output class. In this initial experiment, the
baseline dataset D comprises measurements of Pa−1·Ui

, Pa+1·Ui
,

Pr−2·Ui
, and Pr+2·Ui

, which are then divided into Dtrain and Dtest.
However, while it would be beneficial to classify the output
class based on data measured at the same constant multiple of
Ui, for technical reasons the available dataset only contained an
unbalanced measurement distribution [2]. As a result, there is
an unequal distribution of measurements recorded at the same
Ui multiples for each output class, as shown in Table I.

Fig. 5 illustrates the confusion matrix of the experiment
involving the proposed output classes Pa−1·Ui

, Pa+1·Ui
, Pr−2·Ui

and
Pr+2·Ui

. The model achieves a near-perfect true positive rateA for
UHF signals resulting from positive particle (Pa+) or positive
protrusion (Pr+) defects. For the remaining two output classes,
the model obtains only a slightly worse result. In particular,
it exhibits a nearly symmetrical confusion between measure-
ments associated with negative particles (Pa−) and negative
protrusions (Pr−). As mentioned in Section II-B, the model in
this experiment was trained separately with 15 different weight
initialization seeds. Thus, the presented classification rates of
each class in the confusion matrix are the average across all
individual runs. The overall performance of the architecture is
represented by the average true positive rate Ā. It is determined
by averaging the individual true positives of all output classes
in the confusion matrix. In Fig. 5, these values are indicated
by the diagonal elements of the matrix, representing the true
positive rate of correctly classified PD samples for each class,
while the non-diagonal elements represent the false positive
and true negative rates when comparing the predicted class
against the ground truth. It is important to note that all the
accuracy results presented in this study are likely applicable
to different sensor positions and distances within our linear GIS
test segment [28]. However, it’s crucial to recognize that this
may not hold true for complex GIS structures, such as L-shapes,

TABLE II
AVERAGE TRUE POSITIVE CLASSIFICATION RATES Ā FOR DIFFERENT

NORMALIZATION STRATEGIES AND INPUT DATATYPE

where the frequency selective transfer function between the
PD source and the sensor significantly influences the signal
characteristics [29].

As summarized in Table II, the trained model achieves an
ĀTr = 0.9653 on the trainset normalized measurements in Dtest.
The performance on time-domain test data is generally better
if the amplitude information is at least partially- (ĀCl, TD =
0.9932), or completely- (ĀMe, TD = 0.9977) hidden after nor-
malization. If the time-domain input data is converted to the
frequency-domain instead, the classification rate based on the
trainset normalized FFT coefficients only achieves an average of
ĀTr, FFT = 0.8048. Thus, if trainset normalization is selected and
the model generalization to unseen Ui multiples is not required,
time-domain data should be used to train the classifier. Analog
to the time-domain signal, the FFT-based true positive rate is
higher for class- and measurement normalization. Classifying
PDs from the FFT coefficiants of the UHF signal resulted in
the highest classification performance in our experiments, with
ĀMe, FFT = 0.9983. Therefore, the minor difference in perfor-
mance compared to using the time-domain data hardly justifies
the computational cost of converting every measurement to the
frequency-domain. Thus, the following experiment relies solely
on the time-domain data.

B. Generalization to an Unseen Multiple of Ui)

As previously mentioned in Section I, it is important to exam-
ine PD classification models in terms of their generalization to
measurements of defects recorded at unknown multiples of the
GIS inception voltage (Ui). Therefore, each PD measurement
is assigned a source class based on the defect type and the
inception voltage determined at the time of recording. Note that
the exact value of Ui does not need to be further specified, since
the approach of this work is centered around the idea of using
laboratory data at specific Ui multiples to train a model that
generalizes to data from unknown Ui multiples at the on-site
GIS.

In the first part of our experiment, we evaluate the gener-
alization performance. Hence, we pre-train our model based
on the data of the same source classes used in Section III-A
(Pa−1·Ui

, Pa+1·Ui
, Pr−2·Ui

and Pr+2·Ui
), to create a baseline for our

further studies. Note, that analog to the previous experiment,
any measurement is normalized by either trainset-, class-, or
measurement normalization. After the training process, the gen-
eralization performance of the baseline model is assessed by
monitoring the model generalization rateG, which is equal to the
true positive rate of the model on the untrained Pa+1.5·Ui

measure-
ments in the test set, i.e. G := A(Pa+1.5·Ui

). Note, that the data of
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Fig. 6. Model generalization rate G on the untrained Ui multiplier Pa+1.5·Ui

when additional data from a specific previously withheld source classes is
included in the Dtrain. The issue is investigated for trainset (Tr), class (Cl), and
measurement (Me) normalization and two different sequential training orders.

Pa+1.5·Ui
is explicitly excluded from the training set in any of the

further experiments. Therefore, the described measurements are
used only at inference time to test the model’s generalization to
an unseen source class. In this setting, the model can only rely
on the knowledge learned from the source class data available
in Dtrain to classify any of the Pa+1.5·Ui

measurements in Dtest.
When trainset normalization (Tr) is used to normalize the

baseline dataset (Base), the model achieved a generalization rate
of GTr,Base = 0.6801. With class normalization (Cl), the model
achieved a significantly lower result of GCl,Base = 0.4010,
while with measurement normalization, the generalization rate
of GMe,Base = 0.2085 did not outperform a random classifier
in classifying our four output classes (Gr = 0.25). A possible
explanation could be the lack of amplitude-related information
after data preprocessing with these normalization methods. To
investigate this issue further, we refine our basic model by gradu-
ally adding measurement data from a previously withheld source
class to the trainset Dtrain. The extended training set is used to
train the model from scratch. In parallel, the generalization rate
of the model is determined after each addition, analogous to
the baseline experiment. The sequential training was performed
for two different consecutive sequence orders (”Order 1” and
“Order 2”) to rule out any effects of adding a single record to
Dtrain.

The results of this experiment shown in Fig. 6 indicate that the
model achieves a generalization rate that is reliably above the
baseline results, regardless of the normalization type and sequen-
tial ordering, after data from the first additional Ui multiple is
added to the baseline dataset. After training the model with data
from all available source classes in Table I (except for the Pa+1.5·Ui

data), a generalization performance is achieved that far exceeds
random guessing. Analog to training with a single additional
source class, this result is independent of the type of normal-
ization and the sequential order. In contrast to the previous
experiment from Table II, trainset normalization performs best
in the generalization setting. The highest generalization rate with
trainset normalization was achieved after training with order 1

Fig. 7. Confusion matrix and generalization rate GTr (red) of the proposed
model. The network was trained using the full trainset-normalized measurements
of all available classes from Table I (except Pa+1.5·Ui

), using the train sequence
of order 1.

(O1), resulting in GTr, O1 = 0.9982. In comparison, the highest
generalization rate of class normalization at the end of order
2 (O2) achieved GCl, O2 = 0.9578. The highest measurement
normalization based approach only achieves GMe, O1 = 0.8672
at the end of order 1. As for the baseline dataset, a possible
explanation could be the lack of amplitude-related information
after data preprocessing with these normalization methods. In
practice, the model is expected to generalize from laboratory
measurements to data of a monitored GIS with an unknown Ui

multiple. Therefore, assuming negligible effects of the frequency
selective free-space path loss on the classifier result for linear
GIS segments under DC, similiar to the findings under AC
from Li et al. [28], it is recommended to select normalization
methods that preserve the amplitude information in the data.

Similar to Section III-A, it is crucial to evaluate model per-
formance concerning the remaining source class measurements
from Table I while assessing generalization on the withheld
Pa+1.5·Ui

data. When measurements of all source classes from
Table I (exept Pa+1.5·Ui

) are included inDtrain, the model classifies
almost all test set measurements correctly. This is illustrated by
the confusion matrix in Fig. 7.

For the sake of brevity, all combinations of normalization
methods and training routines are not shown, as they achieved
comparable results. In the depicted configuration, the average
true positive rate over the available classes in the training set
is ĀTr, O1 = 0.9979. When this score is averaged with the asso-
ciated generalization rate (GTr, O1 = 0.9982), the model attains
an average final true positive rate of ÃTr, O1 = 0.9977 for all
measurements across all classes in our experiment. This clear
separability of the measurements indicates, that the respective
defect signals change significantly when recorded at different
voltages.

To evaluate the influence of noise on the generalization rate, in
Fig. 8, we superimposed the trainset normalised PD test signals
with white Gausian noise. To generate the depicted boxplot,
we conducted 15 separate trials with different random noise
initializations for each specific SNR level.

The results suggest that even when significant additional noise
is introduced, such as at an SNR of 6, the network maintains
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Fig. 8. Boxplot of the generalization rate GTr for PD signals superimposed
with Gaussian noise as a function of the SNR.

classification accuracies above 80%, which would probably be
sufficient for practical implementation.

C. Comparison to Other Methods

Comparing our results to the existing DC PD classification
literature presents certain challenges. The study of Schober
and Schichler [13] previously studied Pr and Pa classification,
however their PSA-based method did not report individual clas-
sification rates for these PD types and did not evaluate different
polarities as well as the generalization to unknown voltage
levels. In addition, the number of measurements available for
each class is very limited, making any comparative analysis on
their average model accuracy even more difficult. The study
of Beura et al. [22] reported individual performances for the
Pr detection task. Our chosen CNN-based architecture achieves
an 1.29% higher average performance than their model but,
in constrast, for both possible needle polarities. They also did
not evaluate any Pa-PDs as well as the generalizability of their
model to other voltage and noise levels as their primary focus
was to investigate the distinguishability of UHF PD signals in
GIS without relying on PSA. While it is challenging to directly
compare the results of our studied model to the existing literature
on DC PD classification, our average results align with findings
for CNNs under AC conditions [17], [19], [25].

It should be noted, that neither our study nor the study of Beura
et al. [22] had a access to data of all possible PD types in DC
GIS (see Fig. 1) since creating such a comprehensive GIS setup
in a laboratory environment is both financially and temporally
demanding. Therefore, the possibility of aliasing in CNN models
may still exist when trained using comprehensive data. However,
our results warrant such further testing of CNN methods with
comprehensive on-site data. To conclude, our contributions to
the field are summarized in Table III.

IV. CONCLUSION & OUTLOOK

In this paper, we evaluate the performance of a neural
network-based method to classify UHF measurements of DC

TABLE III
COMPARISON OF THE PRESENTED WORK TO RELATED NON-PSA-BASED PD

CLASSIFICATION APPROACHES IN HVDC GIS

partial discharges (PDs) generated by conductive protrusions
and particles on an insulator at both negative and positive polar-
ity, as well as generalization to different inception voltages. Our
study extends the literature on HVDC GIS PD classification in
multiple aspects:
� First, we report the first 1D-CNN-based model capable of

classifying UHF signals originating from particles adher-
ing to the gas-solid interface (insulators) and protrusions
at different polarities. During our experiments, the use
of frequency-domain signals achieved only a negligible
average performance advantage compared to the UHF
time-domain signal classification model result.

� Second, we are the first to investigate the ability of a
neural network PD classification model to generalize to
measurements recorded under unknown DC voltage stress
levels. Regardless of the training order, the model correctly
classifies 99.87% of the Ui multiple signals not included
in the train set as well as 99.77% of all available PD
test set measurements. Even in the presence of noise, the
network achieved a result sufficient enough to warrant
further testing of our methods with on-site data.

� Third, we analyzed the effect of excluding the amplitude-
related signal content on the performance of a PD classifi-
cation model in HVDC GIS through using sample-, class-
and training set normalization. Our results indicate that
even when using data with at least partially eliminated
amplitude information, it is still possible to train effec-
tive models. These models suprisingly exhibited slightly
superior performance classifying PD signals, although it is
worth noting that models trained with amplitude-preserved
data outperform on the generalization task.

In future work, a comprehensive model should be trained to
classify measurements of all possible PD types in HVDC GIS
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simultaneously, such as insulator cavities, free-moving particles,
and material on free potential. We also suggest considering dif-
ferent electrode geometries and spacing to enhance the method-
ology. Furthermore, it would be important to study the influence
of the frequency selective transfer function between the sensor
and the defect location, as previously conducted in research
under AC conditions. This investigation would contribute to the
practical applicability of the method in real-world HVDC GIS
scenarios.
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