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Abstract—High frame rates are acknowledged to increase the
perceived quality of certain video content. However, the lack of
high frame rate test content has previously restricted the scope of
research in this area—especially in the context of immersive video
formats. This problem has been addressed through the publication
of a high frame rate video database BVI-HFR, which was captured
natively at 120 fps. BVI-HFR spans a variety of scenes, motions, and
colors, and is shown to be representative of BBC broadcast content.
In this paper, temporal down-sampling is utilized to enable both
subjective and objective comparisons across a range frame rates.
A large-scale subjective experiment has demonstrated that high
frame rates lead to increases in perceived quality, and that a degree
of content dependence exists—notably related to camera motion.
Various image and video quality metrics have been benchmarked
on these subjective evaluations, and analysis shows that those which
explicitly account for temporal distortions (e.g., FRQM) provide
improved correlation with subjective opinions compared to generic
quality metrics such as PSNR.

Index Terms—High frame rates, video database, immersive
video, UHDTV, HFR.

I. INTRODUCTION

A S THE demand for higher quality and more engaging
video experiences increases, the pressure to extend the

video parameter space beyond current spatial and temporal
resolutions, dynamic ranges and screen sizes becomes ever
greater [1]. Most of the significant activity in recent years has
been focused towards the implementation of high spatial reso-
lution (4K/8K) [2], [3], high dynamic range (HDR) [4], [5] and
immersive multi-view formats [6], [7]. However the progress
related to high frame rate formats has been comparatively slow,
shown by the frame rates used in television and cinema having
remained constant for many years - rarely exceeding 60 fps.

There are many reasons why increased frame rates have been
overlooked previously, and they include:

� Video parameters such as spatial resolution (4K, 8K), bit-
depth and colour gamut (HDR) being prioritised.

� The perceptual benefits associated with higher frame rates
are relatively unknown to wider audiences, partly due to the
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lack of commercial and/or publicly available high frame
rate material.

� Inadequate camera/display technology.
� Audiences being accustomed to lower frame rate material,

with moves towards ‘higher’ frame rates being met with
criticism. The Hobbit: An Unexpected Journey which was
captured natively at 48 fps (3D) is a prime example of this
assertion, as audiences complained that the ‘magic was
lost’ [8]. However in this context it is difficult to uncouple
the benefits of high frame rates from 3D.

� Integral elements of the filming process, such as: camera
motion, capture parameters, computer graphics and light-
ing, need to be readdressed.

� Based on the contrast sensitivity function [9], there is a
commonly held belief that the maximum perceptible tem-
poral resolution of the human visual system is 50–60 fps.
While this may be true for the case of flicker (which is
fairly uncommon in video), when it comes to objects in
motion, the frame rate determines the spatial displacement
between samples. As such we may need to sample above
900 fps to recreate optical reality [10], [11].

High frame rates have recently stimulated interest in the
broadcast [12], [13], online streaming (Youtube supports frame
rates up to 60 fps), film (Billy Lynn’s Long Halftime Walk,
Avatar 2), gaming [14] and virtual reality (VR) [15] commu-
nities. Frame rates up to 120 fps are specified in the UHDTV
(ultra-high-definition) video standard (Rec. 2020) [16].

Before future video formats begin to exploit higher frame
rates, further investigation is required into the role that frame
rates play in the complete video pipeline, from acquisition
through compression and transmission to visual perception.

As is common across the range of emerging immersive for-
mats (4K/8K, HDR, HFR, multi-view etc.), there are a range
of artefacts and distortions that may arise due to compression,
packet-loss and/or under-sampling [17]. These may have signifi-
cant effects not just on visual quality, but also on user immersion
(thus undermining the goal of immersive video formats).

In the context of this paper we explore the suitability of
HFR formats across a range of different content types, with
a view of enabling informed decisions about the suitability of
higher frame rates, allowing for perceptually optimised frame
rate recommendations to be made, and hopefully convincing au-
diences, broadcasters, content creators and manufacturers alike
that higher frame rates can enhance visual quality, and provide
far more immersive video experiences than is currently realised.

The lack of available high frame rate content has often been
a limiting factor when conducting research, and has meant that
robust conclusions about increased frame rates have been diffi-

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0001-9931-3565
https://orcid.org/0000-0001-6623-9936
https://orcid.org/0000-0001-7634-190X
mailto:a.mackin@bristol.ac.uk
mailto:fan.zhang@bristol.ac.uk
mailto:dave.bull@bristol.ac.uk


1500 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 21, NO. 6, JUNE 2019

cult to make. In order to address this problem, we have created
a publicly available high frame rate video database BVI-HFR
that contains a diverse set of 10 second HD video sequences
captured at 120 fps.

In this paper we utilise BVI-HFR to study the impact of
frame rate variation in a number of key areas for future im-
mersive video formats. Building upon our previous work in this
area [18]–[20], we exploit temporal down-sampling to enable
comparisons across a range of frame rates.

The primary contributions of this work are as follows:
1) A publicly available high frame rate video database BVI-

HFR, which allows researchers to investigate video frame
rates in a content dependent manner, is presented.

2) The influence of temporal down-sampling methods on
video compression is explored, and some practical con-
siderations of increased frame rates are discussed.

3) The link between frame rates and perceived quality is
characterised using a subjective experiment, and content
dependence is assessed using statistical techniques.

4) Various generic and frame rate dependent quality metrics
are benchmarked on content with varying frame rates.

The remainder of this paper is organised as follows:
Section II summarises the state-of-the-art; Section III charac-
terises the BVI-HFR video database; Section IV provides an
analysis of temporal down-sampling; Section V presents a sub-
jective experiment that quantifies the relationship between frame
rate and visual quality; Section VI benchmarks existing quality
metrics. Conclusions and suggestions for future work are then
presented in Sections VII and VIII respectively.

II. BACKGROUND

A. Benefits of Increased Frame Rates

Previous research has demonstrated that there are a num-
ber of clear benefits associated with increased frame rates, in-
cluding: the visibility of temporal aliasing artefacts being di-
minished [10], [21]–[26]; a reduction in perceptible motion
blur [23]–[25], [27]–[29]; increased realism, smoother mo-
tion, improved depth perception for both expert [30] and non-
expert [31] viewers (especially when tracking using smooth
pursuit eye movements); more realistic motion image quality
(confirmed using EEG data) [32]; a reduction in viewer stress
levels [33] (signified by a lower blinking frequency [34]); an im-
provement in speed and spatial discrimination, and reading abil-
ity [35]; and an increase in perceptual quality [18], [36], at least
up to 240 fps [29]. The use of higher frame rates also enhances
the ability to capture and playback slow-motion videos [37].

Viewers have been shown to prioritise frame rates over spatial
resolution for computer generated (CG) content [38].

In previous work, we demonstrated using a novel experimen-
tal setup, that frame rates close to 900 fps can be required to
fully eliminate perceptible temporal aliasing artefacts in certain
scenarios, and that frame rates up to 30% higher may be required
for future high dynamic range (HDR) displays [11].

Regardless of these benefits, high frame rate material may
only be advisable when a ‘hyper-realistic’ representation of the
scene is required (e.g. sports programming), as there may be a

conflict with the ‘cinematic look’ at lower frame rates. Direc-
tors and content providers currently have little flexibility in this
regard (as the frame rates within legacy formats have remained
static for many years), and therefore the choice of frame rate -
enabled through the use of temporal down-sampling methods -
could be considered an artistic choice.

B. High Frame Rate Video Databases

Few (if any) high frame rate (60 fps+) video databases have
ever been released [39]. Related work has either considered rel-
atively low frame rates (up to 30 fps [40]–[42]), or the research
data has not been published in its entirety (missing subjective
evaluations and/or source sequences) [25], [27]–[31].

C. Characterisation of Video Content

The coverage of a video database over low-level descriptors
is typically used to characterise its content [39]. While this does
allow for an objective comparison with other video databases,
there is little information pertaining to how representative the
database is of typical video content. As unless designed with a
specific purpose in mind, a video database should not simply
contain superficial or novel sequences (which could be devised
to exploit descriptors), and instead should be archetypal of con-
sumer content. This should ensure that research is relevant to a
wider, non-expert, audience.

An extensive analysis of recent broadcast content has shown
that the distribution of five uncorrelated factors (generated using
PCA) can be used to quantify the representativeness of a small-
scale video database compared to the vast population of modern
broadcast content (in this case BBC Redux data) [43].

D. Video Compression/Transmission

In previous work [19], we investigated the impact of frame
rates on the rate-quality performance of an HEVC encoder util-
ising frame-averaging. Results showed that high frame rates
offer clear perceptual benefits at current data rates, and that for
the same quality, sequences containing camera motion require
higher frame rates compared to those without.

Nasiri et al. [36] used a subjective experiment to assess to
the impact of frame rate and H.264 compression on perceived
video quality. Their results show a positive, yet diminishing,
relationship between quality and frame rate, and that any gains
are dependent on quantisation level (QP), spatial resolution and
the statistics of the video content (characterised by measures of
both spatial and motion complexity).

Alongside video compression, there has also been a number
of recent advancements with respect to high frame rate video
transmission/streaming. Kurdoglu et al. [44] demonstrated the
effect of video frame rates in streaming environments which
exhibit bursty packet losses. They show that it can sometimes
be beneficial to use lower encoding frame rates when trans-
mitting video data over very noisy channels, and that visual
quality can be increased by using temporal layering techniques
at the encoder. Wu et al. [45], [46] have also proposed solutions
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Fig. 1. A sample frame from each of the 22 video sequences in the BVI-HFR video database, along with the names and associated indices.

(ROCHET, FRIED and JASCO) to enhance video quality when
transmitting high frame rates over wireless networks.

E. Frame Rate Dependent Video Quality Metrics

Video quality metrics, which estimate the relative quality of a
low frame rate video compared to its higher frame rate counter-
part, should account for both spatial and temporal distortions.
Examples of such video quality metrics include: TCFQ [47],
MNQT [42], PQD-FRS [48] and FRQM [20]. TCFQ and MNQT
model degradation in perceptual quality as frame rates decrease
with a parametrised exponential function, PQD-FRS uses a ma-
chine learning approach to predict the satisfied user ratio (SUR)
between two distinct frame rates, while FRQM estimates the rel-
ative quality between frame rates using wavelet decomposition
and spatio-temporal pooling.

III. BVI-HFR VIDEO DATABASE

The high frame rate (120 fps) video database BVI-HFR is
presented in this section. The content of the database is char-
acterised using two distinct methods: one involves computing
the coverage of BVI-HFR over three low-level descriptors, while
the other compares BVI-HFR to typical broadcast material from
BBC Redux archives.

A. Source Sequences

The Bristol Vision Institute High Frame Rate (BVI-HFR)
video database [18] contains 22 unique video sequences that
were captured natively using a RED Epic-X video camera
with a 3840 × 2160p (UHD-1) spatial resolution, a frame
rate of 120 fps and a 360◦ shutter angle. All 22 sequences
were spatially down-sampled to 1920 × 1080p (HD) reso-
lution using REDCINE-X software (which was also used for
post-processing) into YUV 4:2:0 format (8 bit). The sequences
are 10 seconds in duration, and contain no shot transitions or

Fig. 2. Coverage of BVI-HFR where: (left) SI vs CF, (right) SI vs TIMV.

audio components. The name and associated index of each of
sequence, alongside a sample frame, is shown in Fig. 1. The
BVI-HFR video database, alongside the test sequences and sub-
jective results from Section V, are available to download from
the following link: https://vilab.blogs.ilrt.org/?p=1563.

B. Content Description

Using the method proposed by Winkler [39], we characterise
the content of BVI-HFR using three low-level descriptors: Spa-
tial Information (SI), Temporal Information (TIMV) and Colour-
fulness (CF). SI is an estimator of the amount of edge energy
in the video sequence, and can be used to quantify the spatial
complexity of a scene, TIMV predicts the magnitude of motion,
whereas CF quantifies the variety and the intensity of colours
within a scene. The coverage and distributions of the descriptors
for BVI-HFR are shown in Fig. 2 and 3.

The coverage of a video database over these descriptors can
be used to evaluate whether it successfully spans a variety
of scenes, motions and colours, and therefore ensure fair and
sufficient scrutiny when benchmarking new and existing algo-
rithms. Winkler [39] proposes three evaluation metrics (relative
range, uniformity of coverage and relative total coverage) to

https://vilab.blogs.ilrt.org/?p=1563
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Fig. 3. The distribution of the three low-level descriptors in BVI-HFR.

TABLE I
THE RELATIVE RANGE, UNIFORMITY OF COVERAGE AND RELATIVE TOTAL

COVERAGE FOR THE SOURCE SEQUENCES (120 FPS) IN BVI-HFR

quantify coverage. The performance in this regard for BVI-
HFR is reported in Table I. When comparing to existing video
databases [39], BVI-HFR has excellent uniformity of coverage,
indicating that the database provides unbiased scrutiny across
the range of content types. While the relative range and rela-
tive total coverage of BVI-HFR compares favourably to existing
video databases, these values have been diminished by the fact
that BVI-HFR was explicitly designed to highlight temporal
variations. As a consequence it contains large amounts of mo-
tion blur, and a range of dynamic textures. This culminates
in reduced spatial complexity and motion prediction accuracy
(which affects TIMV) - thus modulating the range and the relative
total coverage of the descriptors.

While this analysis is important, it does not account for how
representative a video database is of typical broadcast content.
While a video database may exhibit excellent coverage over the
descriptors, it may consist entirely of superficial or novel source
sequences. Therefore to ensure that methods benchmarked on a
video database are applicable to real-world applications, and that
lasting conclusions are relevant to a wider audience, it is crucial
that a video database contains content which is archetypical of
broadcast content.

Using the method outlined by Moss et al. [43], we can as-
certain whether there are any similarities between BVI-HFR

and BBC broadcast content (14075 sequences from BBC Re-
dux [49]). In order to achieve this we need to calculate two
further descriptors: DTP (Dynamic Texture Parameter) and TP
(Texture Parameter) [50], [51] to estimate complex and irregular
motion, and static textures respectively. The five descriptors (in-
cluding SI, TIMV and CF) after normalisation are then projected
using principal component analysis (PCA) into five-dimensional
factor space, with the corresponding labels: Naturalness, Move-
ment, Brightness, Contrast and Saturation. Fig. 4 presents the
cumulative distribution of these factors, comparing BVI-HFR
to BBC broadcast content.

A two-sample Kolmogorov-Smirnov (K-S) test can be used
to assess whether two databases come from the same underlying
cumulative distribution. The K-S statistic values when compar-
ing BVI-HFR and BBC Redux for the five factors are 0.109,
0.113, 0.117, 0.205 and 0.154, corresponding to the p-values
0.946, 0.929, 0.906, 0.283 and 0.638 respectively. No signifi-
cant difference between the two distributions (p < 0.05) is re-
ported for all five factors. While we cannot say that BVI-HFR
is a perfect representation of BBC broadcast content using this
statistical test, we can conclude that the underlying distribution
of BVI-HFR is similar to broadcast content.

IV. TEMPORAL DOWN-SAMPLING

Capturing exactly the same scene at different frame rates is
prohibitively difficult for natural content. Therefore in order
to enable comparisons over a range of frame rates, a method
of generating lower frame rate content is required. This will
be a key asset for high frame rate formats, as it will allow for
conversion to legacy formats, and can be employed within future
adaptive formats. Appendix A outlines a common framework for
temporal down-sampling, while in this section we investigate the
effect of temporal down-sampling across a range of modalities.

A. Spectral Analysis

The video capture and display process can be expressed using
a series of spatio-temporal filters and sampling operations [10].
While predominately used to model the visibility of motion
artefacts using the ‘window of visibility’ [52], here this fre-
quency representation is used to illustrate the effect that video
acquisition and temporal down-sampling have on the video sig-
nal when abstracted to its simplest forms (although the same
analysis could be applied to more complex scenes).

A video camera captures a scene using a shutter, which re-
mains open for a proportion of the frame duration (called the
shutter angle). The camera shutter integrates the incoming lu-
minance signal during each exposure, and therefore acts as a
temporal filter. The frequency response of this filter is [10]:

S(f) = sinc
(

dπf

F

)
(1)

where d is the normalised shutter angle (divided by 360), f is
temporal frequency in Hz and F is frame rate in Hz (fps).

Temporal down-sampling also filters the video signal tempo-
rally, where the resulting frequency response is dependent on
the weights in Eq. (8). For the case of averaging frames, the
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Fig. 4. The cumulative distribution function (CDF) of the five factors identified in [43]. The blue curves show the results from a high density sampling of BBC
broadcast content, while the red curves are calculated from the source sequence (120 fps) in the BVI-HFR video database.

Fig. 5. (a) The spectra of a moving line sampled at 60 fps, (b) the same line but
captured using a video camera (360°), and the effect of temporal down-sampling
from 120 to 60 fps by (c) averaging and (d) dropping frames.

frequency response of the filter can be modelled as [10]:

A(f) = sinc
(

kπf

F

)
(2)

Dropping frames is equivalent to capturing at the lower frame
rate - albeit with the reduced shutter angle d/k.

Using the method outlined by Watson [10], we can analyse
the effect of these two down-sampling methods on the spectra
of a simple line (used for simplicity and to aid visualisation).

Fig. 5(a) shows the spatio-temporal frequency spectra of a
line moving at constant speed when sampled at 60 fps. The
original spectrum passes through (0, 0), while the other lines
in the figure are aliases (spectral replicas). Fig. 5(b) shows the
same moving line, but captured natively at 60 fps with a fully
open shutter. Fig. 5 also show the case when the moving line is
captured at 120 fps, and then temporally down-sampled by (c)
averaging frames and (d) dropping frames to 60 fps.

For the case of averaging frames, there is a greater attenuation
of high spatio-temporal frequencies compared to capturing na-
tively, and the higher the down-sample factor (k), the greater this
attenuation (Eq. (2)). Attenuation of the original spectrum will

Fig. 6. The cyclist sequence at: (a) 120, (b) 60, (c) 30 and (d) 15 fps; and the
catch sequence at (e) 120 and (f) 15 fps (all generated by averaging frames).

result in the visual sensation of motion blur, while attenuation of
the aliases will diminish perceptible temporal aliasing artefacts.
Therefore, ideally a rectangular pre-filter would be applied to
the video signal before capture, as to only preserve perceptible
frequencies below the Nyquist frequency (F/2). However as
such a filter would be non-causal and have an infinite delay, it
would not be feasible.

Fig. 6 shows a sample frame from the cyclist and catch
sequence at a range of frame rates after averaging frames. There
is a clear increase in motion blur at lower frame rates when
averaging frames, and it can also be observed that the faster
the speed of an object, the larger the extent of any motion blur.
As the faster the speed, the higher the corresponding temporal
frequency [53].

There is less attenuation across the whole frequency spectrum
when dropping frames. This will as a consequence reduce the
visibility of motion blur, but at the expense of increased levels of
temporal aliasing. In terms of the visibility of these two motion
artefacts, averaging frames and dropping frames represent the
extreme cases given the constraints in Eq. (8).

A filter could be designed such that no perceptual differ-
ence existed between capturing natively at the lower frame rate,
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Fig. 7. The relationship between descriptors and frame rate for all the sequences in BVI-HFR. Error bars represent standard error of the mean.

and down-sampling from the high frame rate. However such a
filter would be content dependent, and would require a three-
dimensional Discrete Fourier Transform (DFT) to be computed
for each sequence to generate the weights in Eq. (8).

B. Source Statistics

While a simple moving line is a useful tool when exploring
the fundamental effects of temporal down-sampling in signal
processing terms, it does not account for the fact that video
signals typically exhibit more complex spectral signatures [54].
Therefore in this context we can study the impact of temporal
down-sampling (and to a greater extent frame rate) on the source
statistics of video content, by using some the content descriptors
outlined that were in Section III.

The results from Fig. 7 show that SI and CF are invariant with
frame rate when dropping frames (the sequence is unchanged
spatially), whereas the increased motion blur when averaging
frames (Fig. 6) results in higher spatial correlation between
adjacent pixels. This reduces the ‘sharpness’ of edges (lower
SI) and the dispersion of pixel values (lower CF).

At higher frame rates, motion vectors are smaller and less
varied, shown by the average (MVLμ ) and standard deviation
(MVLσ ) of motion vector length decreasing with frame rate.
Interestingly the choice of down-sampling has a negligible ef-
fect on motion prediction - even though there is a clear spatial
difference between averaging and dropping frames.

TIMV should be invariant with frame rate as it has been nor-
malised by it [39]. Instead TIMV increases with frame rate (due
to the non-linear relationship between MVLμ and frame rate).
Therefore when comparing video sequences across a range of
frame rates, a different normalisation factor for average motion
vector length should be used.

C. Video Compression

An unavoidable consequence of higher frame rates is in-
creased data rates, due to the fact that more frames need to
be coded within the same time interval [19]. However in our
previous work we only considered averaging frames. Therefore
it is important that we also explore dropping frames, as the
choice of temporal down-sampling method affects the source
statistics of the video content (see Fig. 7).

The 22 source sequences (120 fps) in BVI-HFR were tempo-
rally down-sampled by both averaging and dropping frames to
60, 30 and 15 fps. The resulting 154 video sequences were then
encoded using the HEVC [55] reference codec (HM 16.4) using
five Quantisation Parameters (QP): 22, 27, 32, 37, 42; and three

TABLE II
THE CODING STRUCTURE OF THE THREE HEVC COMPRESSION

CONFIGURATIONS: ALL INTRA (AI), LOW DELAY (LD) AND

RANDOM ACCESS (RA)

Fig. 8. The relationship between frame rate and average bitrate (mbps) for
(left) All Intra and (right) Low Delay/Random Access.

compression configurations: All Intra (AI), Low Delay (LD) and
Random Access (RA) [56] (2310 in total). The coding structure
of these three configurations can be viewed in Table II. The
temporal overheard of compression was reduced by encoding
only the middle three-seconds of each sequence [19].

In order for a fair comparison across the tested frame rates,
we need to ensure that the intra period for Random Access
mode spans a certain length of time, rather than a fixed number
of frames. In order to achieve this, we normalise the reported
bitrates to an equivalent intra period of 32 at 30 fps (≈ 1 s).

The relationship between frame rate and average bitrate for
All Intra, Low Delay and Random Access configurations is
shown in Fig. 8, while Table III summarises the distribution of
bits by the HM encoder per frame. The reported values are the
average of all tested QPs and video sequences with the same
frame rate.

1) Averaging Frames: For All Intra mode, the average num-
ber of bits increases in all areas with frame rate, suggesting
that the increased spatial complexity (SI) associated with higher
frame rates (see Fig. 7) is harder to encode. The use of motion
prediction for Low Delay and Random Access modes dramati-
cally decreases the number of bits, and results in the number of
bits per frame decreasing with frame rate.
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TABLE III
AVERAGE KB CONSUMED BY THE HM ENCODER PER FRAME. FR = FRAME

RATE, R = RESIDUAL CODING, MP = MOTION PREDICTION, I = INTRA

DIRECTION, MI = MERGE INDEX, MS = MODE SIGNALLING,
P = PARTITIONING AND O = OTHER

2) Dropping Frames: Compared to averaging frames, more
bits are consumed when dropping frames. The increased spa-
tial complexity for the same frame rate (see Fig. 7) results in
finer partitioning, more intra-prediction modes and higher val-
ued high frequency DCT coefficients. The number of bits con-
sumed by HM is integer invariant with frame rate for All Intra
mode, as the same frames are effectively encoded.

A Wilcoxon signed-rank test1 shows that averaging frames
has a significantly (p < 0.05) smaller bitrate compared to drop-
ping frames (ignoring 120 fps) for all compression modes:

� All Intra: Z = −4.1, p = 0
� Low Delay: Z = −4, p = 0
� Random Access: Z = −4.1, p = 0
This indicates that the choice of down-sampling method, and

as a consequence the shutter angle (as dropping frames decreases
the shutter angle), has a significant impact on bitrate.

V. SUBJECTIVE EVALUATIONS

An experiment which quantifies the relationship between
frame rate and perceptual quality is described in this section.

A. Test Sequences

As discussed in Section IV the choice of temporal down-
sampling method will effect the visibility of both temporal
aliasing and motion blur, and subsequently may impact per-
ceived quality. Given the fact that we are investigating 22 se-
quences across 4 frame rates (15, 30, 60 and 120 fps), in order
to manage experimental complexity, we exclusively employed
frame averaging to generate the lower frame rate sequences in
BVI-HFR. This is due to a number of considerations: i) The
source sequences were captured with a fully open shutter an-
gle - thus mitigating any ghosting artefacts. ii) While averaging
frames may introduce more motion blur into the scene, the use
of dropping frames may result in judder/strobing artefacts. Dur-
ing informal experimentation we discovered that participants

1A paired t-test was not used as the data violated the normality assumption.

broadly preferred averaging frames to dropping frames - espe-
cially at the lowest tested frame rate of 15 fps (postulated to
be due to a very short shutter angle being simulated). (iii) Av-
eraging frames has been adopted by a number of broadcasting
companies including BBC [12] for their high frame rate video
processing.

All the sequences used in the experiment were uncompressed
in order to reduce the number of independent variables tested.

B. Experimental Setup and Methodology

A calibrated BenQ XL2720Z LCD monitor (hold-type) with
a peak luminance of 200 cd/m2, a spatial resolution of 1920
× 1080 (measuring 59.8 × 33.6 cm), a static contrast ratio of
1000:1, and a refresh rate of 120 Hz was used in this experi-
ment. This display was connected to a PC with Matlab R2013a
and PsychToolbox 3.0 [57]. The viewing distance was chosen
as 168 cm (5 H), as to ensure that the spacing between adjacent
pixels is less than the spatial acuity of the human visual sys-
tem [1]. The viewing environment conformed to the laboratory
conditions outlined in BT.500-13 [58].

Prior to the experiment, each participant took part in a train-
ing session to acclimatise them with the testing process. This
consisted of explaining the testing methodology, while answer-
ing any queries or concerns. When ready, participants viewed
four sequences not contained within BVI-HFR (but captured us-
ing the same parameters) across the range of tested frame rates,
and recorded their subjective opinion using the methodology
described below. These were subsequently discarded.

A complete session lasted no longer than 30 minutes, and
involved viewing all 88 test sequences (see Section V-A) using
a single stimulus methodology. Each trial consisted of the par-
ticipant viewing a 3 s mid-level grey screen before viewing a
randomly selected sequence. Participants’ then recorded their
opinion on a continuous quality scale from 0 (bad) to 5 (ex-
cellent) [58]. A single-stimulus, rather than a double-stimulus
methodology, was chosen as it considerably reduces the length
of the experiment (88 versus 132 presentations). A continu-
ous scale was used to allow for sufficient granularity between
responses to investigate content dependence.

Fifty-one2 undergraduate and postgraduate students (33 male
and 18 female) from the University of Bristol were paid to
participate in the experiment. The average age (±σ) of the par-
ticipants was 25.6± 3.8 years. They all had normal or corrected-
to-normal colour vision (verified with a Snellen chart). No par-
ticipants were removed during screening [58].

C. Analysis of Opinion Scores

The opinion scores collected in the experiment were scaled
to the range 0–100 (from worst to best). Fig. 9 presents the
distribution of these scaled opinion scores. Higher frame rates
tend to lead to increases in perceived quality (albeit with a few
outliers). Clear content dependence can also be observed.

2The subjective evaluations that were originally provided with the BVI-HFR
video database was based on 29 participants [18]. We have conducted further
experimentation here to increase the number of participants to 51.
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Fig. 9. Boxplots showing the distribution of opinion scores for all the se-
quences in BVI-HFR over the range of tested frame rates. The boxes represent-
ing the interquartile range (IQR) of the data, the whiskers are ±2.7σ, the target
is the median and outliers are denoted as ‘+’.

The cumulative distribution of opinion scores is shown in
Fig. 10 (left). Across the range of opinion scores, there is
no overlap between these distributions - although the differ-
ences between them diminish as frame rates increase. The mean
(MOS) and standard deviation of opinion scores for each of the
88 test video sequences is shown in Fig. 10 (right). There is a
greater consensus in opinion at the higher frame rates, shown
by the smaller and more compact standard deviations.

D. The Influence of Frame Rate on Opinion Scores

Fig. 11 (left) presents the measured relationship between
MOS and frame rate. The increase in perceived quality with
frame rate is postulated to be due to a reduction in the visi-
bility of both motion blur and temporal aliasing artefacts [11].

Fig. 10. (left) Cumulative distribution of opinion scores across the tested
frame rates, and (right) the relationship between the mean and standard deviation
of the opinion scores. The black lines represent the respective medians.

Fig. 11. (left) The measured relationship between MOS and frame rate, and
(right) the influence of camera motion. A two-term exponential fitting curve is
used to model the data. Error bars represent standard error of the mean.

Improvement in quality beyond 120 fps is predicted for some
content [29], as the faster the speed of a stimulus relative to
the viewer, the higher the frame rate required to eliminate per-
ceptible motion artefacts [10]. The effect of diminishing returns
with increased frame rates can be observed. A one-way repeated
measures ANOVA with Greenhouse-Geisser correction (as the
assumption of sphericity was violated) shows that the effect of
frame rate is statistically significant (p < 0.05) with respect to
MOS: F (1.2, 58.5) = 222, p ≈ 0.

E. Content Dependence

Fig. 11 (right) shows the influence of camera motion on MOS.
At 120 fps, video sequences with camera motion have higher
a MOS compared to if no camera motion is present, whereas
at lower frame rates, this ordering is reversed. The disparity
between the two cases is predicted to be due to camera motion
creating global rather than just local temporal distortions i.e.
there will typically be more motion artefacts apparent in the
visual field. Because of this, increasing frame rates will have
a greater impact on visual quality when camera motion and/or
large global motions are present.

By using the content descriptors from Section III, we can at-
tempt to estimate the factors which most influence visual quality.
However given that TIMV has been normalised by the dependent
variable (frame rate), it would be unfair to include this descriptor
in this analysis (due to the dependence of MOS on frame rate).
Therefore instead we will use the average (MVLμ ) and stan-
dard deviation (MVLσ ) of motion vector length to characterise
motion in the sequence.
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TABLE IV
THE COEFFICIENTS (β) AND STANDARDISED COEFFICIENTS (β̂) FROM THE

MULTIPLE LINEAR REGRESSION, ALONGSIDE THE RESULTS FROM A T-TEST

SHOWING WHETHER THE DESCRIPTOR HAS A SIGNIFICANT EFFECT ON THE

OUTPUT OF THE PREDICTION MODEL

A multiple linear regression was performed to predict MOS
using SI, CF, MVLμ , MVLσ , TP and DTP, and the results show
that these descriptors statistically significantly predicted MOS:
F (6, 81) = 5.69, p ≈ 0, R = 0.544. The constant value (inter-
cept) for the prediction model is 96.43.

The magnitudes of the standardised coefficients |β̂| can be
used to predict the influence that the descriptors have on MOS.
From Table IV we can see that DTP has the greatest impact on
the subjective evaluations, and was the only descriptor to signif-
icantly affect the prediction of MOS (p < 0.05). The negative
coefficient for DTP indicates that MOS is reduced as the amount
of complex and irregular motion in the scene in increased. While
this indicates that the presence of dynamic textures has an ef-
fect on visual quality, this relationship may also be attributed to
the greater temporal correlation between frames at high frame
rates. This is because the DTP descriptor is based on the second
derivative of the motion vector field [50], [51], and when the in-
terval between frames reduces, motion vectors become smaller
(Fig. 7), and consequently reduces the magnitude of the second
derivative.

The prediction model after multiple linear regression exhibits
poor linear correlation (LCC) with visual quality (R = 0.544).
As a result we will now investigate whether more advanced
models can accurately and robustly predict MOS.

VI. QUALITY METRICS

An accurate video quality metric, which can successfully
characterise the relationship between perceived quality and
frame rate, will be an asset for future adaptive and immersive
video formats, as it will allow optimal frame rates to be selected
in a content dependent manner. In this section a selection of
generic and frame rate dependent image and video quality met-
rics will be benchmarked on the subjective evaluations that were
collected in Section V.

A. Methodology

In order to facilitate a fair comparison between the met-
rics and to reduce non-linearities [59], predictions are fitted
with a four-parameter logistic function. Four evaluation metrics:
Spearman Rank Correlation Coefficient (SROCC), Pearson Lin-
ear Correlation Coefficient (LCC), Outlier ratio (OR) and Root
Mean Squared Error (RMSE) [59], are used to appraise accu-
racy (LCC, RMSE), monotonicity (SROCC) and consistency
(OR). A platform independent complexity score is calculated

by dividing the average execution time of the quality metric by
the average execution time of PSNR. Differential mean opin-
ion scores (DMOS) are typically used for analysis, and can be
calculated from MOS as follows:

DMOS = MOSH − MOSL (3)

where MOSH and MOSL represent the high (reference) and low
frame rate version of the sequence respectively.

As a consequence of using a single stimulus methodology,
we can compute the difference in MOS (DMOS) for a range of
reference frame rates. Alongside the 120 fps source sequences,
we also use 60 and 30 fps as references (MOSH ) e.g. 60 fps
can be used as a reference for 30 and 15 fps. By doing this we
increase the number of DMOS from 66 to 132.

B. Generic Quality Metrics

Initially, image and video quality metrics which do not ex-
plicitly take frame rate variation into account will be evaluated.

The quality metrics considered here are: MS-SSIM [60],
PSNR [61], SSIM [62], VIF [63], VSNR [64], ST-MAD [65]
and VQM [66]. We artificially increase the frame rate of the
down-sampled sequences through repeating frames to obtain
the same frame rate as the reference (e.g. we repeat every frame
twice in a 60 fps sequence to increase it to 120 fps). This en-
ables a frame-by-frame comparison as required by most quality
metrics.3

While some of these quality metrics are designed to evaluate
compressed content and/or spatial distortions, their performance
will provide a useful benchmark for advanced methods.

Fig. 12 shows DMOS versus the objective valuations of these
quality metrics, where the blue line is the non-linear fitting
curve. The statistical performance and relative complexity of all
the generic quality metrics is reported in Table V.

All the image quality metrics show similar performance
across the four evaluation metrics - which may be expected
as they explicitly ignore the temporal dimension (motion blur
is the only spatial difference between frame rates after aver-
aging frames). The video quality metric ST-MAD reports the
best statistical performance, but at the expense of the highest
complexity of all the generic quality metrics (1256 times over
PSNR). All these metrics compare unfavourably to their frame
rate dependent counterparts, and therefore we can conclude that
they are unsuitable for this specific application.

C. TCFQ and MNQT (Modified)

TCFQ [41], [47] and MNQT [42] are related video quality
metrics4 that explicitly relate reductions in frame rate to percep-

3In situation where the frame rates cannot be increased in this way, e.g., when
the two frame rates are not divisible, either both frame rates could be increased
to the least common multiple by repeating frames, or a coarse approximation
based on a smaller subset of temporally matching frames could be computed.

4The method proposed by Huang et al. [48] is intentionally ignored here, as a
satisfied user ratio rather than a continuous quality scale methodology was used
to collect subjective opinions - making comparisons difficult.
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TABLE V
THE STATISTICAL PERFORMANCE AND COMPLEXITY OF ALL THE TESTED QUALITY METRICS FOR BVI-HFR. THE BEST PERFORMING

METRIC FOR EACH ROW IS BOLD

Fig. 12. Scatter plots of DMOS versus the objective valuations of various
quality metrics, along with the non-linear fitting curves (blue line).

TABLE VI
THE STATISTICAL PERFORMANCE WHEN COMPARING THE PROPOSED (P) AND

THE UPDATED (U) WEIGHTS FOR THE VIDEO QUALITY METRICS TCFQ (2011
AND 2012) AND MNQT (2014). THE BEST PERFORMING METRIC FOR EACH

ROW IS BOLD

tual quality. Both TCFQ and MNQT are defined as:

q̂ = MOSH
(1 − e−cFL /FH )β

1 − e−c
(4)

where FH is the frame rate (fps) of the reference, FL is the
frame rate we wish to down-sample to. β is a fixed parameter,
and is typically chosen to be 1 for TCFQ and 0.63 for MNQT.
The model parameter c is a weighted sum of video features,
calculated at the reference frame rate (FH ):

c = γ(0) +
N∑

i=1

γ(i)V [i] (5)

where γ is a weight and V is a video feature (e.g. SI).
TCFQ and MNQT predict normalised MOS (NMOS). There-

fore in order for a comparison to be made with the other metrics,
NMOS needs to be first converted to DMOS:

NMOS = MOSL/MOSH = q̂

MOSL = q̂ · MOSH

DMOS = MOSH − q̂ · MOSH (6)

Three distinct methods, which all use different video features
(V ) and weights (γ), have been proposed in literature for calcu-
lating the model parameter c. These will be referred to as TCFQ
(2011) [47], TCFQ (2012) [41] and MNQT (2014) [42]. The
statistical performance when using the proposed weights (P) is
reported in Table VI. All three methods exhibit poor prediction
accuracy, which is likely due to the weights being calculated on
video content with relatively low spatial (up to 704 × 480) and
temporal (up to 30 fps) resolutions.

The subjective evaluations provided with BVI-HFR can be
used to update the weights (γ) for TCFQ and MNQT in an
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TABLE VII
F-TEST RESULTS FOR ALL THE QUALITY METRICS AT A 95% CONFIDENCE INTERVAL. A ‘1’ INDICATES THAT THE METRIC IN THAT ROW IS STATISTICALLY

SUPERIOR TO THE METRIC IN THE COLUMN (THE OPPOSITE HOLDS FOR ‘−1’), WHILE A ‘0’ INDICATES THAT THERE IS NO STATISTICALLY SIGNIFICANT

DIFFERENCE BETWEEN THE TWO METRICS

attempt to increase prediction accuracy. For the same video fea-
tures, we calculate using a genetic algorithm the weights which
minimise the squared error with DMOS during 10-fold cross-
validation. In order for a fair comparison to be made, the lower
frame rate version was upsampled to the same frame rates as the
reference by repeating frames. As reported in Table VI, the sta-
tistical performance for all the methods is better when using the
updated weights (U) - notably for TCFQ (2012). This is achieved
without any additional complexity. Fig. 12 shows a comparison
in the relationship between the quality metric predictions and
DMOS when using the proposed weights for TCFQ (2012) and
the updated weights (denoted as TCFQ-BVI). The predictions
of TCFQ-BVI exhibit a greater degree of monotonicity than
when using the proposed weights.

TCFQ and MNQT are clearly more suitable than the generic
quality metrics in the context of frame rate variations. However
they are susceptible to over-fitting, are overly dependent on the
resolution of the sequence, and are too sensitive to the value of
the weights in Eg. (5). This is demonstrated by the variability in
statistical performance in Table VI.

D. FRQM

Instead of modelling the degradation in perceived quality
with frame rate (Eq. (4)), FRQM [20] was designed by the
authors as a low complexity, bespoke quality metric that pre-
dicts the difference in perceptual video quality between content
at different frame rates through multi-level temporal wavelet
decomposition, subband comparison/combination and spatio-
temporal pooling. In the temporal DWT decomposition stage,
all luma pixels at the same spatial coordinates over a number of
consecutive frames are processed simultaneously using a 1-D
Discrete Wavelet Transform (Haar wavelet). The resulting high
frequency (HF) subband coefficient values of both the reference
and test sequences are compared to obtain HF subband differ-
ences. These are then combined over various levels. In order to
characterise the non-uniformly distributed video artefacts that
arise due to frame rate reduction, FRQM employs an effective
pooling strategy to calculate the sequence level quality index by
taking the maximum of the local mean values of combined HF
subband differences (in both spatial and temporal domains).

Fig. 12 and Table V show that FRQM offers improved perfor-
mance over all other tested metrics, demonstrated by higher cor-

relation coefficients, fewer outliers and lower prediction errors.5

This is achieved with relatively low complexity (30 times greater
than PSNR). These results indicate that the temporal HF sub-
band energy difference calculated in FRQM correlates visually
with frame rate reduction artefacts. The pooling method em-
ployed in FRQM also performs better than the simple averaging
approach used by most of the other tested quality metrics.

E. Significance Testing

Table VII reports F-test results [67] for all the tested quality
metrics. This test statistic can be used to ascertain whether one
quality metric is statistically superior to another when tested on
the BVI-HFR video database. There is generally no significant
difference between the generic quality metrics. As expected,
the frame rate dependent metrics are superior to their generic
counterparts. FRQM is superior to every other quality metric.

VII. CONCLUSIONS

In this paper, the influence of frame rate variation on visual
quality in a number of key areas has been explored. This is
achieved using the BVI-HFR video database, which contains a
variety of representative scenes, motion and colours at a range of
frame rates. We have concluded that it compares favourably to
existing video databases, and that is representative of broadcast
content.

Comparisons across frame rates has been achieved through
exploiting temporal down-sampling. An in-depth analysis has
shown that the choice of down-sampling methods affects the
source statistics of a video sequence, the visibility of motion
artefacts and has a significant impact on encoded bitrates.

A large scale subjective experiment has confirmed that frame
rates have a significant impact on perceptual quality, at least up
to 120 fps. Results also establish that content dependence exists
- notably related to camera motion.

The subjective evaluations collected in the experiment are
used to benchmark a number of generic and frame rate depen-
dent quality metrics. The generic quality metrics (e.g. PSNR)
do a poor job of predicting opinion scores, whereas the frame
rate dependent video quality metrics offer mixed correlation

5The values in Table V are slightly different to those previously reported
in [20], and is due to a larger number of participants being used.
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performance. While TCFQ and MNQT are too dependent on
the resolution of the video sequence, FRQM offers accurate
predictions with relatively low complexity, and is shown to be
statistically superior to all other tested metrics.

VIII. FUTURE WORK

This paper has established that content dependence exists.
Therefore frame rates - and other video parameters for that mat-
ter - should ideally be selected in a systematic manner, such
that the source statistics of video content is exploited in order
to provide perceptually optimised experiences. However be-
fore adaptive formats can be considered, interactions between
video parameters and their influence throughout the entire video
pipeline needs to be investigated, as the realisation of adaptive
formats will represent a paradigm shift for content producers,
display manufacturers and consumers alike.

The bedrock of any future adaptive format will be robust and
accurate quality metrics that allow video parameters to be se-
lected in some optimal way. However, current research method-
ologies in this area are somewhat flawed, in that they predom-
inantly examine video parameters in isolation. A rate-quality
analysis of current video compression schemes, over a range of
video parameter values is also required, to appraise the potential
advantages and feasibility of adaptive formats. Various tempo-
ral down-sampling approaches should also been investigated on
their relationship to visual quality.

APPENDIX

A. Temporal Down-Sampling Framework

While there are a number of prescribed methods for temporal
up-sampling in literature [68]–[70], there are very few for tem-
poral down-sampling [71]. Therefore we outline a commonly
used method, which involves partitioning the video sequence
into k-frame sub-sequences (Fig. 13). k is usually referred to as
the (temporal) down-sample factor, where:

k = FH /FL (7)

where FH is the frame rate (fps) of the reference and FL is the
frame rate we wish to down-sample to.

The lower frame rate version is then generated by taking a
weighted sum of all the frames in the sub-sequence:

YL =
k∑

n=1

α[n]YH [n]

s.t.
k∑

n=1

α[n] = 1 ∧ ∀n ∈ [1, k] : α[n] ≥ 0 (8)

where α[n] is the normalised weight of frame t and YH [n] is the
corresponding reference frame. This weighted sum must take
place in linear light space i.e. before gamma correction.

While any valid weighting scheme can be used, the most
commonly used are averaging [12] and dropping frames.

Fig. 13. A video sequence partitioned into k-frame sub-sequences (k = 3).

Fig. 14. The ghosting artefact that becomes apparent when a sequence with
an 180° shutter angle is converted from 60 fps to 15 fps by averaging frames.
The right frame shows a section of the original frame after 4× magnification.

B. Averaging Frames

The averaging frames method involves computing the mean
of all frames in the k-frame sub-sequence i.e. a uniform weight
is applied to each frame i.e. α(t) = 1/k. The effective shutter
angle of the lower frame rate version is unchanged, and this is
because its temporal extent is the same as the high frame rate
reference. The pre-requisite when using the averaging frames
method, is that a fully open shutter (360°) must have been used
to capture the content, as otherwise unwanted ghosting artefacts
may be present in the video (seeFig. 14).

C. Dropping Frames

Dropping frames simulates impulsive sampling (no pre-
filter), and involves only a single frame from the k-frame sub-
sequence being selected (usually α(1) = 1). In this situation the
shutter angle is effectively reduced by a factor k.

D. Implementation

Temporal down-sampling methods can be utilised in tan-
dem to achieve a desired look. For example: average frames
from 300 fps to 50 fps, and then drop frames from 50 fps to
25 fps. Combining down-sampling methods may prove partic-
ularly useful when converting to legacy video formats.
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