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Features From Binocular Combined Images
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Abstract—Quality assessment of stereo images confronts more
challenges than its 2D counterparts. Direct use of 2D assessment
methods is not sufficient to deal with the challenges of 3D
perception. In this paper, an efficient general-purpose no-reference
stereo image quality assessment, based on unsupervised feature
learning, is presented. The proposed method extracts features
without any prior knowledge about the types and levels of
distortions. This property enables our method to be adaptable
for different applications. The perceived contrast and phase of
the binocular combination of original stereo images are utilized
to learn individual dictionaries. For each distorted stereo image,
two feature vectors are pooled, in a hierarchical manner, over
all sparse representation vectors of phase and contrast blocks by
their corresponding dictionaries. Performance results of learning
a regression model by the features acknowledge the superiority of
the proposed method to state-of-the-art algorithms.

Index Terms—3D perception, binocular combination,
no-reference (NR) image quality assessment (IQA), sparse
representation, stereo image quality assessment (SIQA),
unsupervised feature learning.

I. INTRODUCTION

QUALITY of images degrades due to image processing
applications such as compression, retargeting and super-

resolution or by going through communication channels. This
has created a significant need for image quality assessment
(IQA) at the end user side. It is inconvenient, costly and time
consuming to have all video and images subjectively assessed.
Moreover, subjective results are vulnerable to circumstances and
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individual characteristics of viewers. Hence, lots of research
has been done to design objective image quality assessment
approaches [1]–[5].

Due to the increasing popularity of three-dimensional images
and videos it is more likely that in near future a large portion of
all transferred data would likely be 3D media. The solution of 3D
IQA is beyond a simple combination of left and right 2D qual-
ity scores. It should involve measuring the impact of changes
on the binocular rivalry, visual fatigue, visual discomfort, and
depth perception of image pairs. Hence, efficient and fast 3D
IQA methods which are highly correlated with subjective mean
opinion scores (MOS) are desired for quality protection and
improvement of 3D imaging applications.

Similar to 2D IQA methods, based on the availability of ref-
erence image pair, 3D methods are divided into three major
categories: full reference (FR), reduced reference (RR) and no
reference (NR). An original image pair is needed to assess the
quality of distorted pair in FR methods while some partial in-
formation about the original pair is available for RR schemes.
NR algorithms estimate quality of the distorted stereo images
without any information of the reference pair.

In this paper, an efficient NR Stereo IQA (NR-SIQA) method
is proposed. This method aims to generate a single view close
to what is formed in human brain (cyclopean). Most of the syn-
thesized cyclopean images are formed by weighted summation
of the two stereo views that are matched using the disparity
map. In our method, images are combined using a mechanism
similar to what the brain uses to combine the two perceived
stereo images. In this method depth estimation of the scene is
not needed. Hence, two synthesized “phase” and “contrast” im-
ages are formed from each stereo pair. We evaluate each stereo
pair by analyzing these synthesized images. We use sparse rep-
resentation as an appropriate environment for feature extraction
and evaluation of quality of images. An unsupervised method
for learning sparse features is used without prior knowledge
about distortions. In the proposed method, dictionary learning
is performed on undistorted phase and contrast images. Hence,
there is no need to learn large dictionaries to cover different
distortions. The sparse coefficients, in each feature vector, have
the contribution of all the dictionary atoms in approximating
a local phase/contrast feature. The contribution of the dictio-
nary atoms in representation of a distorted image is thus collec-
tively presented by sparse coefficients associated with all local
phase/contrast features of that image. More efficient and more
general features, as compared to handcrafted ones, are gener-
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ated. This is done using a spatial pyramid average pooling on
sparse coefficients of all patches of each image. This encoding
not only encodes the spatial structure of the patches but it also
considers their neighborhood to have a more global represen-
tation of distortions. Then, a regression model is learned using
distorted images. This model is to distinguish between sparse
representations of different distortions and estimate the quality
of distorted images. The effective performance of our regression
model demonstrates the discrimination power of this method for
various image distortions with different severities.

In summary, our main contributions are: 1) Formation of two
synthesized phase and contrast images from a pair of stereo-
scopic images. These synthesized images have maximum cov-
erage of the visual discomfort characteristics. 2) Unsupervised
feature learning based on dictionaries trained for sparse rep-
resentation of undistorted phase and contrast images which is
not restricted to any particular type of distortion. 3) Use of the
sparse representation of distorted phase and contrast patches as
local feature representations and aggregation of features over
large neighborhoods for richer representation of distortions.

The rest of this paper is organized as follows. Section II
presents a review of existing objective stereo image quality
assessment methods. In Section III, details of the proposed
method are provided. The experimental results are described in
Section IV and conclusions are drawn in Section V.

II. RELATED WORK

Based on the type of modeling, 3D IQA methods can be
divided into two categories. The first category belongs to meth-
ods that use depth information in addition to 2D information of
stereo-pairs. The second category of methods belongs to those
that do not estimate the depth and only use 2D spatial informa-
tion of stereo images.

A. SIQA Methods Using Depth Estimation

Since FR SIQA methods have access to the reference stereo
image pair, the original depth map can be used as additional
information. Also, in RR methods the original depth map may
be available for the assessing unit.

An improved version of Structural Similarity Index Measure
(SSIM [1]) with depth for compressed and blurred stereo images
was proposed by Benoit et al. [6]. Another work in [7] utilized
the quality of disparity in addition to 2D qualities of left and
right images and it was shown that visual quality of 3D video is
impressed by low disparity regions and the type of video content.
An algorithm called cyclopean Multi Scale SSIM (MS-SSIM)
[8] applies 2D MS-SSIM between the original and distorted
Gabor cyclopean images. The Gabor cyclopean is a weighted
summation of left image and the shifted right image by the
disparity. Edge information of reference depth map has been
used in an RR approach in [9]. In [10], sensitivity coefficients
of cyclopean images and the coherence between disparity maps
were combined to produce subjective qualities. Moreover, color
plus depth was employed as the depth sensation in 3D video.

Although there is no access to the reference images in NR sce-
narios, some NR SIQA approaches study the depth perception
by imprecise disparity estimation of distorted stereo images.

In [11], Gaussian distributions were fitted to the statistics of
disparity map and the images in contourlet domain and the re-
lated parameters were used to produce the quality metric. The
estimated depth was used in [12] to measure temporal outliers,
temporal inconsistencies, and spatial outliers. The combination
of these three parameters constitutes the final measure. Local
information of encoded stereo images and their disparity map
were used in [13] to predict 3D quality scores. In another work
proposed by Akhter et al. [14] some features extracted from
disparity map in combination with blockiness and blurriness
degrees, form the final quality score of JPEG compressed stereo
images. Another method proposed by Chen et al. [15], extracts
2D and 3D features by fitting Gaussian distributions to the his-
tograms of a generated cyclopean image. The cyclopean image
is a weighted summation of the left and shifted right image using
the imprecise disparity map. The Gabor filter responses are ex-
tracted from both views and the cyclopean image is calculated as
a weighted summation of the two images, where the weights are
computed from the Gabor filter responses. The Stereoscopic/3D
BLind Image Naturalness Quality (S3D-BLINQ) index in [16]
after forming a convergent cyclopean image using disparity
maps, extracts both spatial-domain and wavelet-domain uni-
variate and bivariate natural scene statistics features to estimate
the quality of stereoscopically viewed image pairs. In [17], a
Bivariate Generalized Gaussian Density (BGGD) model was
proposed for the joint statistics of luminance and disparity of
natural stereo scenes. This model is used to design an NR SIQA
algorithm called Stereo Quality Evaluator (StereoQUE).

Disparity estimation algorithms are not only time consum-
ing, but also the quality of computed disparity map is not
satisfying in distorted stereo pairs. Therefore, it is necessary
to design accurate 3D IQA models with no need to depth
information.

B. SIQA Methods Not Using Depth Estimation

Primal 3D FR SIQA metrics tried to evaluate the quality
of left and right images using 2D image quality assessment
metrics. In [18], SSIM, Universal Quality Index (UQI [19]) and
the RR metric [20] are combined to estimate the quality of stereo
images. Another method in [21] applied numerous 2D metrics
in order to estimation of quality for color plus depth encoded
video.

A number of methods have been proposed to improve the
performance of SIQA metrics by studying the human binocu-
lar perception. In [22], the depth quality was estimated based
on amplitude changes of binocular energy in the stereo pair.
A binocular quality perception model in [23] measures the lu-
minance masking and contrast sensitivity of similar blocks in
3D-DCT domain. A binocular perception based on SSIM was
introduced in [24] that combines luminance similarity, structural
similarity and contrast similarity measures. For each left/right
reference and distorted image a BJND model in [25] was formed
by assessing pixels independently, in different classes and their
average makes the final score. Another FR approach in [26]
uses the local amplitude of a bank of log-Gabor filters to weight
the summation and difference between each reference and dis-
torted image. Finally, a 2D quality metric between these two
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synthesized images provides the 3D quality score. A consis-
tency checking in [27] divides each image into three regions
and each region is assessed independently on the basis of the
amplitude and phase maps of the reference and distorted images.
The final quality score is a combination of all region scores. An
FR metric for compressed stereo images decomposes each ref-
erence and distorted image into some narrow spatial frequency
bands. Finally, 2D quality scores in all bands are weighted in
a binocular combination way and summed together [28]. A re-
cent method in [29] learns a code book on the training reference
images. In the test phase, the similarity index between sparse
coefficient vectors of each reference image and its distorted ver-
sion are computed and binocularly combined to get the final
stereoscopic score. In [30] a measure called Information con-
tent and Distortion Weighted SSIM (IDW-SSIM) is developed
to estimate the quality of single view images. Then, a multi-
scale model inspired by binocular rivalry was proposed that
predicts the quality of stereoscopic images from that of single
view images. The predicted quality scores by this method on
asymmetric distorted stereo images are superior to others.

Among NR SIQA methods, a few of them do not use depth
estimation. Ryu and Sohn proposed a top-down NR method
that measures the blurriness and blockiness of left and right
images in wavelet domain and combines them using a binocular
perception model [31]. In [32], two individual monocular scores
were obtained for each left and right images and the weighted
summation of them by the sparsity of related feature vectors,
prepares the final quality score. The local statistical distributions
from local magnitude pattern and local directional pattern of
binocular responses are used for extracting features in [33].

A high correlation between MOS and the objective scores
based on binocular combination has been reported and compared
with other 2D information only SIQA schemes [28]. As these
methods are faster than depth information based methods, they
are suitable for real-time applications.

Recently, unsupervised learning techniques from raw data
have attracted increasing attention of researchers as they pro-
vide more accurate results than hand-crafted features [34]–[36].
Sparse representation is naturally discriminative as it selects
only those basis vectors (dictionary atoms) among many that
most compactly represent a signal and therefore is useful for
description of image structure.

Inspired by a binocular combination method, we propose
a method to combine perceived phase and contrast in differ-
ent spatial frequency layers, appropriate for quality assessment
without using depth estimation. Moreover, utilizing a pyramidal
sparse feature representation for both phase and contrast leads
to superior results to existing methods.

III. PROPOSED METHOD

Fig. 1 shows major stages of the proposed method which con-
sists of dictionary learning and train/test stages. In the dictionary
learning stage, as shown in Fig. 1(a), a set of pristine images,
apart from the main database, is used. Binocular combination
is performed on the image pair to form phase and contrast im-
ages. Here, we use the luminance component of the images as in
this component all structural distortions are visible while color

components have little contribution in evaluation of image qual-
ity [1]. The color components also increase the computational
overhead. Therefore, we first convert the left and right images
to grayscale before employing them in the “binocular combina-
tion” unit. Two individual sparse dictionaries are learned on the
phase and contrast of the undistorted images. Then, at the train-
ing stage, as shown in Fig. 1(b), the phase and contrast blocks of
the distorted training set are sparse coded, using the dictionaries
learned in the previous stage. The sparse representations of dis-
torted phase and contrast images are used as local features for
the distortions. To achieve a single feature vector representing
the whole stereo image pair, a pooling scheme is applied on
all of the local sparse representations of each phase and con-
trast image pair. The regression model is then trained on the
concatenation of the two feature vectors. Similarly, binocular
combination, sparse representation, and feature pooling oper-
ations, are performed on the test set. The trained regression
model, obtained from the training set, is used to evaluate the
quality of images of the test set.

A. Binocular Combination

The information received by the two eyes is combined in
the visual nervous system. Behavior of human visual cortex, in
performing binocular combination, is modeled by optometrists
using simple sine-wave images [37]. The main goal of binocular
combination is to generate a single view (i.e. cyclopean) from
two stereo images. This single view should be close to what
is formed in human brain. As the brain eventually combines
stereoscopic images, it seems logical to employ the combina-
tion of left and right views to evaluate the quality of stereo
images. The Ding, Sperling, Klein and Levi (DSKL) model
[37] provides a phase dependent contrast combination method.
This model considers the left and right views as two sine
waves, which have different contrasts (amplitude) and posi-
tions (phase). After contrast modifications in a gain-control and
gain-enhancement process, an initial cyclopean sine wave is es-
timated by arithmetic vector summation of the two views. Then,
the monocular misaligned sine waves are driven towards the
cyclopean phase to compensate the disparity between percep-
tions of the two eyes. The final cyclopean phase and contrast are
formed after the second summation. The phases and contrasts
of cyclopean images contain 3D information about the stereo
images [37].

To form binocular combination of stereoscopic images, we
decompose each image into phase and contrast parts in different
spatial frequencies with different orientations and then employ
DSKL method. In the DSKL method, each eye is assumed to
apply gain-control on the total contrast energy received by the
other eye, proportional to its received total contrast energy. The
controlled energies are used for exerting gain-enhancement and
gain-control on the contrast of the opposite view in each spatial
frequency-orientation. Afterwards, an initial vector summation
and a fusion stage that remaps the retinal coordinates, to com-
pensate the disparity between two misaligned waves, provide
final contrast and phase images. We combine all contrast im-
ages together as well as phase images to make them useful for
feature extraction.
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Fig. 1. Diagram of the proposed framework including (a) the dictionary learning stage and (b) the training/testing stage.

1) Extraction of Phase and Contrast for Each View: Regard-
ing the binocular perception model in [38], we consider a spatial
array of monocular linear neurons for each of the left and right
views, ν ∈ {l, r}, where their responses Cν can be computed
by convolving each image with a receptive field function such
as a Gabor filter g with spatial frequency fs and orientation θ

Cν (x, y; fs, θ) =
∫∫

g (x− ξ, y − η ; fs, θ) . Iν (ξ, η) dξ dη

= |Cν (x, y; fs, θ)| .eiφν (x,y ;fs ,θ) (1)

where Iν (ξ, η) is the intensity value of image received by view ν
at each spatial position and (x, y) is the position of the receptive
field center.

|Cν (x, y; fs, θ)| =
√
Im[Cν (x, y; fs, θ)]

2 +Re[Cν (x, y; fs, θ)]
2 (2)

φν (x, y; fs, θ) =

tan−1
(
Im [Cν (x, y; fs, θ)]
Re [Cν (x, y; fs, θ)]

)
, ν ∈ {l, r} (3)

The absolute value |Cν (x, y; fs, θ)| of each response is de-
fined as the contrast and φν is the phase of response. Re[.]
and Im[.] are the real and imaginary parts of the response
respectively.

2) Total Contrast Energy (TCE): In this stage the total con-
trast energyEν for gain-control and total contrast energyE∗

υ for
gain-enhancement across different orientations and frequency
channels are computed for the view ν

Eν (x, y) =
∑
fs

∑
θ

|Cν (x, y; fs, θ)|
gc

, ν ∈ {l, r} (4)

E∗
ν (x, y) =

∑
fs

∑
θ

|Cν (x, y; fs, θ)|
ge

, ν ∈ {l, r} (5)

where gc is a gain-control threshold at which the contrast
gain control becomes apparent and ge is the gain-enhancement
threshold.

3) Mutual Energy Gain-Control: The Gain-Control theory
model explains the neural mechanism of binocular vision [28].
On the basis of this theory each eye, proportional to its total
contrast energy, exerts divisive inhibition to the other eye’s total
energies with different gain-control efficiencies α and β. For the
left view we have [37]

E ′
l (x, y) =

El (x, y)
1 + αEr (x, y)

(6)

E∗′
l (x, y) =

E∗
l (x, y)

1 + βEr (x, y)
. (7)

Similar equations are derived for the right eye.
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4) Gain-Control and Gain-Enhancement on Signals: In this
stage, each eye applies two gains corresponding to each of the
controlled amount of total contrast energy to the other eye’s
signal [37]

|Cl (x, y; fs, θ)|ce =
|Cl (x, y; fs, θ)| .

(
1 + E∗′

r (x, y)
)

1 + E ′
r (x, y)

(8)

|Cr (x, y; fs, θ)|ce =
|Cr (x, y; fs, θ)| .

(
1 + E∗′

l (x, y)
)

1 +E ′
l (x, y)

. (9)

5) Vector Summation: After the interocular interaction,
the monocular outputs can be combined using vector lin-
ear summation [37]. Let’s show the monocular outputs as
Iv〈|Cv (x, y; fs, θ)|ce , ∠φv (x, y; fs, θ) 〉 for v ∈ {l, r} where
A〈b,∠θ〉 denotes the vector A with amplitude b and phase
(angle) θ in polar coordinate system. Then, a vector arithmetic
summation in each spatial position (x, y) produces an initial cy-
clopean image Î〈Ĉ(fs, θ), ∠φ̂(fs, θ)〉 from which, phase and
contrast are perceived [37].

Î
〈
Ĉ,∠φ̂

〉
= IR 〈|Cr |ce , ∠φr 〉 + IL 〈|Cl |ce , ∠φl〉 (10)

Ĉ =
√
|Cr |2ce + |Cl |2ce + 2|Cr |ce . |Cl |ce .cos (φr− φl)

(11)

φ̂ = tan−1 |Cr |ce . sinφr + |Cl |ce . sinφl
|Cr |ce . cosφr + |Cl |ce . cosφl

(12)

Given that the spatial frequency fs , the orientation θ and
position (x, y) are common, we removed (x, y; fs, θ) from the
above equations for simplicity and brevity.

6) Fusion of Corresponding Points: Afterwards, the mis-
aligned sine waves of the two eyes shift their phases in each
spatial position (x, y) towards the cyclopean phase to be aligned
with each other. Based on the fact that the phase difference
in retinal coordinates becomes smaller than the physical co-
ordinates, the motor/sensory fusion mechanism drives the two
monocular misaligned vectors towards the cyclopean by an an-
gle of the fraction "a" of the phase difference between that view
and the initial cyclopean view

φ′υ (x, y; fs, θ) = φυ (x, y; fs, θ) + a (x, y; fs, θ)(
φ̂ (x, y; fs, θ) − φυ (x, y; fs, θ)

)
, ν ∈ {l, r} . (13)

"a" is the output of gain-control on the disparity energy. The
two right and left vectors are cross multiplied to calculate dis-
parity energy Ed for fusion [37]

Ed (x, y; fs, θ) = |Cr (x, y; fs, θ)|ce .|Cl (x, y; fs, θ)|ce .
sin (φr (x, y; fs, θ) − φl (x, y; fs, θ)) (14)

a (x, y; fs, θ) =
Ed(x, y; fs, θ)

γf

(gf )
2γf + Ed(x, y; fs, θ)

γf
(15)

where γf is the exponent value for gain-control in fusion step
and gf is a contrast threshold at which the fusion becomes ap-
parent. At very low contrast Ed � g2

f the fusion does not occur
and when Ed � g2

f the fusion mechanism causes a complete
alignment. Finally, the arithmetic summation for each spatial

position (x, y) is done again with the shifted phases. (x, y; fs, θ)
is removed to shorten (16) and (17)

Ĉ ′ =
√

|Cr |2ce + |Cl |2ce + 2|Cr |ce . |Cl |ce . cos (φ′r − φ′l)

(16)

φ̂′ = tan−1 |Cr |ce . sinφ′r + |Cl |ce . sinφ′l
|Cr |ce . cosφ′r + |Cl |ce . cosφ′l

. (17)

Now, corresponding to each pair of fs and θwe have a contrast
image and a phase image. Both phase and contrast are affected
by the disparity energy between the left and right waves. There-
fore, having both the contrast and phase of the cyclopean image
in all spatial frequencies and orientations contain all the needed
3D information. We can either extract features from each set
resulted images or combine each set and then perform feature
extraction. Since the latter is less complex, we combine each
set and for doing that we use the root mean square (RMS) of
contrast results and the maximum of phase over all spatial fre-
quencies and orientations as the final contrast and phase images
for extracting effective features for stereo quality assessment

Ĉ ′ (x, y) =
√

1
nfs .nθ

∑
fs

∑
θ

Ĉ ′2 (x, y; fs, θ) (18)

φ̂′ (x, y) = max
fs , θ

φ̂′ (x, y; fs, θ) (19)

where nfs and nθ are the number of used spatial fre-
quencies and orientations respectively. Eight orientations θ ∈
{kπ/8|k = 0, . . . , 7} with six different spatial frequencies fs ∈
{1.5, 2.5, 3.5, 5, 7, 10 }(cycles/degree) are used in our ex-
periments. Fig. 2 shows phase and contrast images for a pristine
stereo image pair and its distorted versions.

B. Learning Sparsifying Dictionaries

This stage consists of constructing dictionaries used for local
feature encoding. Learning sparsifying dictionaries from data
is a recent approach to dictionary construction which has been
strongly influenced by the latest advances in sparse represen-
tation field [39]. Given a set of N training examples, Y =
[y1 ,y2 , . . . ,yN ] ∈ Rn×N , learning a dictionary D ∈ Rn×K

(K > n) with K atoms for sparse representation of Y is typi-
cally written as a joint optimization problem with respect to the
dictionary D and sparse coefficients X = [x1 ,x2 , . . . ,xN ] ∈
RK×N

min
D , X

N∑
i = 1

{
‖yi − Dxi‖2

2 + μψ (xi)
}

(20)

or equivalently in a matrix form

min
D , X

‖Y − DX‖2
F + μΨ (X) (21)

where ψ is sparsity-inducing regularization function, Ψ(X) =∑N
i = 1 ψ(xi), and μ the regularization parameter. Also, ‖ · ‖F

denotes the Frobenius norm. The common choices for ψ are
non-convex 0-pseudo-norm [40]–[42], that counts the number



2480 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 11, NOVEMBER 2017

Fig. 2. (a) Perceived contrast and (b) phase of original stereo pair and cor-
responding distorted versions by (c), (d) WN, (e), (f) JPEG, (g), (h) JP2K,
(i), (j) FF, and (k), (l) Blur.

of non-zero entries, and 1-norm [43], [44], as its convex coun-
terpart.

In our algorithm, dictionary learning is applied on local fea-
tures extracted from a set of undistorted stereoscopic image
pairs. Dictionary learning on undistorted images makes it need-
less to learn a very large dictionary that includes all of the
distortions. Also, it is possible to perform quality assessment
with no knowledge about the type of distortion or its severity.
The impact of different distortions on the sparse representation
of undistorted blocks has enough discriminative characteristics
that can lead to a well-trained regression.

Fig. 3. Small parts of learned dictionaries on (a) contrast and (b) phase images.

Using the binocular combination presented in the previous
section, we first produce pristine phase and contrast images for
the training stereoscopic image pairs. After that, we need to
create training samples for dictionary learning. To do this, small
patches of size

√
n×√

n pixels are randomly sampled as local
features from the phase and contrast images. All patches are then
rearranged into column vectors and the mean value of each patch
is subtracted from it. Let YP = {yP,j ∈ Rn}Nj = 1 and YC =
{yC,j ∈ Rn}Nj = 1 denote the set of training samples extracted
from the phase and contrast images respectively. Given these
two sets of local features, we train dictionaries DP ∈ Rn×KP

and DC ∈ Rn×KC for sparse representation of YP and YC

respectively. These dictionaries are then employed for encoding
of local features. Two small parts of the learned dictionaries on
contrast and phase images are displayed in Fig. 3.

C. Local Feature Sparse Coding

At the training and testing stages, the phase and contrast
of distorted stereoscopic images are represented in terms of
the corresponding learned dictionaries. Specifically, given a
phase/contrast image, its non-overlapping patches as local fea-
tures are sparsely represented over the learned phase/contrast
dictionary. Let YP = {yP,i ∈ Rn}Mi = 1 denotes the set of all√
n×√

n non-overlapping patches of a given phase image.
The sparse representation for the i-th patch, yP,i , is obtained by
solving the following 1 -regularized sparse coding problem:

x̂P,i = argmin
x

1
2
‖yP,i − DP x‖2

2 + λ ‖x‖1 (22)

where x̂P,i ∈ RKP is sparsely encoded representation of the
local feature associated with the patch yP,i using the phase
dictionary DP . Also, λ is the sparsity regularization parameter
empirically set to 0.05. To solve the above sparse coding prob-
lem, we utilize the popular method of Least Angle Regression
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with Lasso modification (LARS) [45]. The sparse coding of
non-overlapping patches YC = {yC,i ∈ Rn}Mi = 1 in a contrast
image can be calculated in the same way.

Once the above sparse coding is performed for all
non-overlapping patches of a phase-contrast pair computed
for a given stereo image pair, we obtain two sets of
sparse features XP = {x̂P,1 , x̂P,2 , . . . , x̂P,M } and XC =
{x̂C,1 , x̂C,2 , . . . , x̂C,M }. These feature sets are then aggregated
using pooling operators to achieve richer representations for
input stereo images.

D. Feature Pooling

Once the sparse vectors of local image features are obtained,
we should combine them into a global stereo quality score. We
have now sparse feature sets XP and XC for a given distorted
stereo-pair. To achieve a single feature vector for each image
pair, a pooling operator is employed. In our algorithm, we eval-
uate several pooling schemes including Max pooling (Max),
Average pooling (AVG), Number of Non-Zeros pooling (NNZ),
Hard Max Pooling (HMax) [32], the Spatial Pyramid Average
pooling (SPA) and Spatial Pyramid Max pooling (SPM) [46]
methods on the absolute value of sparse coefficients. The final

feature vector is v = [
v̂P
v̂C

] which is obtained by concatenating

feature vectors v̂P and v̂C .
1) Average Pooling (AVG): This feature pooling technique,

applies averaging or element-wise summing of sparse vectors.
We use this pooling on the absolute values of sparse coefficients

v̂P (j) = AVG
1≤i≤M

(|x̂P,i (j)|) , ∀j = 1, . . . ,Kp (23)

v̂C (j) = AVG
1≤i≤M

(|x̂C,i (j)|) , ∀j = 1, . . . ,KC (24)

where x̂P,i(j) and x̂C,i(j) are the j-th element of i-th sparse
representation in the feature sets XP and XC respectively. Also,
v̂P (j) and v̂C (j) denote the j-th element of the phase and
contrast pooled feature vector respectively.

2) Max Pooling (MAX): This method chose the maximum
value in each row of XP or XC

v̂P (j) = max
1≤i≤M

(|x̂P,i (j)|) , ∀j = 1, . . . ,Kp (25)

v̂C (j) = max
1≤i≤M

(|x̂C,i (j)|) , ∀j = 1, . . . ,KC (26)

where x̂P,i(j) and x̂C,i(j) are the j-th element of i-th sparse
representation in the feature sets XP and XC respectively. Also,
v̂P (j) and v̂C (j) denote the j-th element of the phase and
contrast pooled feature vectors respectively.

3) Hard Max Pooling (HMax): Based on the pooling method
in [32], we set all entries in each sparse feature vector x̂P,j
and x̂C,j to zero except the maximum sparse coefficient that is
converted to 1. Specifically, we first apply hard-max function

on the sparse feature vectors as

x̃P,i (j) =

{
1, if j = argmax

1≤j≤KP

(x̂P,i (j))

0, otherwise
(27)

x̃C,i (j) =

{
1, if j = argmax

1≤j≤KC

(x̂C,i (j))

0, otherwise.
(28)

Then, the pooled feature vectors v̂P and v̂C are obtained by
summing up all the modified sparse vectors in the corresponding
sparse feature set as follows:

v̂P (j) =
M∑
i = 1

x̃P,i (j) , ∀j = 1, . . . ,Kp (29)

v̂C (j) =
M∑
i = 1

x̃C,i (j) , ∀j = 1, . . . ,KC . (30)

4) Number of Non-zero Pooling (NNZ): This type of pooling
scheme simply counts the number of non-zero elements in each
row of sparse feature matricesXP andXC to produce the pooled
features as

v̂P (j) = ‖x̂P,1 (j) , x̂P,2 (j) , . . . , x̂P,M (j)‖0 ,

∀j = 1, . . . ,Kp (31)

v̂C (j) = ‖x̂C,1 (j) , x̂C,2 (j) , . . . , x̂C,M (j)‖0 ,

∀j = 1, . . . ,KC (32)

where ‖ · ‖0 is the 0 pseudo-norm that counts the number of
nonzero entries in a vector.

5) Spatial Pyramid Pooling: The Spatial Pyramid pooling
[46] produces a global representation of an image by sum-
marizing the distribution of the sparse codes in the bins of a
spatial pyramid by a pooling step. For each phase and contrast
image Spatial Pyramid Max/AVG pooling partitions each im-
age into multiple level spatial bins. We apply Spatial Pyramid
Max pooling (SPM) and Spatial Pyramid AVG pooling (SPA)
on a three-level spatial pyramid with 1, 4 and 16 bins respec-
tively. The features of each spatial binB are the component-wise
Max/AVG pooled over all sparse codes of the blocks within the
Bin

v̂BP (j) = OP
i∈B

(|x̂P,i (j)|) , ∀j = 1, . . . ,Kp (33)

v̂BC (j) = OP
i∈B

(|x̂C,i (j)|) , ∀j = 1, . . . ,KC (34)

whereOP is the operator of Max/AVG, x̂P,i(j) and x̂C,i(j) are
the j-th element of i-th sparse representation in the feature sets
XP and XC respectively. Also, v̂BP (j) and v̂BC (j) denote the
j-th element of the phase and contrast pooled feature related to
bin B.

The final feature vectors v̂P and v̂C are the concatenation of
aggregated sparse feature vectors in all spatial bins which are
normalized by dividing with their 2-norm. The dimensionality
of each pooled feature vector is (16 + 4 + 1)M , where M is
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the size of dictionary.

v̂P =
[

v̂1
P

‖v̂1
P ‖2 + ε

,
v̂2
P

‖v̂2
P ‖2 + ε

, . . . ,
v̂21
P

‖v̂21
P ‖2 + ε

]
(35)

v̂C =
[

v̂1
C

‖v̂1
C ‖2 + ε

,
v̂2
C

‖v̂2
C ‖2 + ε

, . . . ,
v̂21
C

‖v̂21
C ‖2 + ε

]
(36)

We compare the performance of our method using all the
above pooling methods in the section of experimental results.
Among these methods, the one that has the best performances
on both symmetric and asymmetric distorted stereo images, is
SPA pooling. Our results show that not only it is robust against
different parameters of our algorithm but also can result in very
good performance even if we use small sizes of dictionaries.

E. Learning Regression Model for Quality Estimation

In addition to finding effective features, the method of feature
fusion is important to produce an efficient quality estimator. We
use support vector regression (SVR) to map our features to 3D
subjective quality scores. If vi is the feature vector of i -th stereo
image and ti is the corresponding subjective score, ε -SVR [47]
tries to define a function f(v) with the maximum deviation of ε
from the subjective quality score for all the training image set

f (v) =
∑
i

αitiϕ(vi)
T ϕ (v) + δ (37)

where ϕ(v) is a nonlinear function of feature vector v and
δ is the bias. The goal is to find α and δ such that the error
is less than ε. In the training stage, the training set is pre-
sented to the SVR system to estimate best values for α and
δ. In the test phase the trained model is presented with test
vectors to estimate the corresponding objective scores. The ker-
nel Radial Basis Function (RBF) is used for the regression with
the form ofK(vi ,v) = ϕ(vi)T ϕ(v) = exp(−γ‖vi − v‖2) for
each two samples v and vi , where the parameter γ is a positive
parameter controlling the radius and it is estimated using cross-
validation on the training set. The feature vectors of the training
set and the corresponding 3D subjective scores are fed to SVR
to generate a 3D score estimator model.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Performance Measures

To benchmark our proposed method against state-of-the-art
methods, we use three common performance measures: Pear-
son linear correlation coefficient (PLCC), Spearmen rank order
correlation coefficient (SROCC), and root mean squared error
(RMSE) between the predicted quality scores and subjective
difference mean opinion scores (DMOS). Closer values to 1 for
PLCC and SROCC and smaller amounts of RMSE are indica-
tive of more accurate matching between objective and subjective
scores.

A separate support vector regression (SVR) with an RBF ker-
nel is trained for each dataset. The SVR estimates the quality of
stereoscopic images. We train the SVR to produce scores in the
range of DMOS values. Therefore, to evaluate the performance
of this method on each dataset, we perform 1000 repetitions

of the train-test process. This process is used by most of the
learning based IQA methods [13]–[16], [32]. In each iteration,
80 percent randomly selected stereo images of the database are
used for the training and the remaining 20 percent are used as
the test set. Median of all 1000 obtained results, for each per-
formance measure, is reported as the final result of the proposed
model. This is done separately for the LIVE phase I and phase II
databases. The obtained results for each dataset are compared
with state-of-the-art SIQA methods.

B. Databases

We are presenting an objective method. To evaluate the per-
formance of objective methods, they should be tested with
datasets that have subjective scores. We use two popular sub-
jective datasets of LIVE phase I [48] and LIVE phase II [25]
to verify the performance of our proposed method. Most of the
subjective IQA datasets provide subjective scores (DMOS) for
each distorted stereo image pair. To create such databases sub-
jective experiments are performed. Each image pair is shown in
3D displays to a number of human subjects who are wearing
3D glasses. Each person assigns a score to each image pair.
For every image pair the average of difference opinion scores
(DMOS) is reported. The stereo images of phase I dataset are
symmetrically distorted while phase II dataset contains both
symmetrically and asymmetrically distorted stereo-pairs.

1) LIVE 3D IQA Dataset Phase I: The database LIVE 3D
IQA phase I consists of 365 distorted stereo image pairs gener-
ated from 20 pristine image pairs. Five types of distortions in-
cluding JPEG, JPEG 2000 (JP2K), White Noise (WN), Gaussian
Blur (Blur), and Fast-Fading (FF) model based on the Rayleigh
fading channel are symmetrically applied to reference image
pairs at different distortion levels. DMOS values in this database
are in the range of −10 to 60.

2) LIVE 3D IQA Dataset Phase II: The LIVE 3D IQA phase
II includes 8 reference stereo images distorted by five distortion
types of JPEG, JP2K, WN, Blur and FF. Among 360 distorted
stereo pairs in this dataset, 120 pairs are symmetrically distorted
and the remaining 240 ones are distorted asymmetrically at
various severities. The subjective quality scores of DMOS are
in the range of 0 to 100.

C. Overall Performance Evaluation

In this section, the overall performance of the proposed no-
reference SIQA algorithm is evaluated. The phase and contrast
dictionaries are trained respectively on a set of 100,000 patches
of size 8 × 8 randomly chosen from the phase and contrast of
training stereoscopic image pairs. We take the original undis-
torted images from the LIVE II dataset as the training images
to evaluate the proposed method on the LIVE I dataset and vice
versa. The dictionary size is set to be K = 1000 atoms for all
dictionaries and the Recursive Least Squares Dictionary Learn-
ing (RLS-DL) [40] is used to train dictionaries. We utilize the
method of LARS [45] to sparsely code the patches with the
regularization parameter of λ = 0.05. The final feature vector
for each stereo image is the concatenation of two vectors result-
ing from individually SPA pooling on sparse representation of
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TABLE I
OVERALL PERFORMANCE OF THE PROPOSED METHOD AND OTHER

STATE-OF-THE-ART METHODS IN TERMS OF PLCC, SROCC, AND

RMSE ON LIVE PHASE I AND LIVE PHASE II DATABASES

Database LIVE Phase I LIVE Phase II

Type Method PLCC SROCC RMSE PLCC SROCC RMSE

FR Benoit [6] 0.902 0.899 7.061 0.748 0.880 7.490
FI-MS-SSIM [28] 0.695 0.902 – 0.729 0.712 –

FI-WSNR [28] 0.853 0.901 – 0.705 0.684 –
SDM-GSSIM [26] 0.933 0.925 7.857 – – –

Shao [29] 0.935 0.903 5.816 0.863 0.849 5.706
Bensalma [22] 0.887 0.875 5.558 0.770 0.751 7.204

Shao [27] 0.925 0.922 6.252 0.759 0.745 7.355
MS-SSIM [8] 0.917 0.916 6.533 0.900 0.889 4.987

IDW-SSIM [30] 0.929 0.924 6.048 0.915 0.918 4.549

RR Hewage [9] 0.830 0.814 9.139 0.891 0.501 9.365
Wang [11] 0.892 0.889 7.408 – – –

NR Akhter [14] 0.626 0.383 14.827 0.722 0.543 9.294
Ryu [31] 0.800 0.860 7.930 – – –
Chen [15] 0.895 0.891 7.247 0.895 0.880 5.102
Shao [32] 0.957 0.950 – – – –

S3D-BLINQ [16] – – – 0.913 0.905 4.657
StereoQUE [17] 0.917 0.911 6.598 0.845 0.888 7.279

Zhou [33] 0.928 0.887 6.025 0.861 0.823 5.779
proposed 0.963 0.958 4.566 0.959 0.951 3.289

the phase and contrast image patches. Finally, a separate SVR
model is learned for each dataset to estimate objective quality
scores.

Best eighteen current 3D IQA methods have been selected
to be compared with our method in terms of the above metrics.
Among these methods the one proposed by Benoit [6], FI-MS-
SSIM [28], FI-WSNR [28], SDM-GSSIM [26], [27], [29] by
Shao, cyclopean MS-SSIM [8], IDW-SSIM [30] and Bensalma
[22] are FR 3D IQA methods, Hewage [9] and Wang [11] are
two RR methods and the NR 3D IQA methods are the ones
proposed in [14], [31], [15], [32], [16], [17] and [33].

Among all these methods FI-MS-SSIM [28], FI-WSNR [28],
SDM-GSSIM [26], [27], [29], Bensalma [22], IDW-SSIM [30],
Ryu [31], [32] and [33] use only 2D information of stereo images
while Benoit [6], cyclopean MS-SSIM [8], Hewage [9], Wang
[11], Akhter [14], Chen [15], S3D-BLINQ [16] and StereoQUE
[17] are 2D plus depth information based methods.

We compare the performance of our proposed approach with
other 3D IQA methods on two selective databases LIVE Phase I
and Phase II in terms of PLCC, SROCC and RMSE in Table I.
The best two overall results are highlighted in bold.

Since FR methods have access to the reference stereopairs,
they are expected to perform better than RR and NR 3D IQA
approaches.

In LIVE Phase I dataset, our results not only surpass the best
FR results but also are higher than those of RR and NR methods
in terms of PLCC and SROCC as well as RMSE. The superiority
of our method to other FR and RR methods on LIVE Phase II,
is also acknowledged by the right part of Table I. The best NR
reported results of PLCC and SROCC are improved about 5% by
our proposed method. As can be seen, none of the NR methods
is able to reach the FR method IDW-SSIM on LIVE Phase II.

Table I shows that our results on this dataset are far better than
those of IDW-SSIM for the first time.

D. Performance Evaluation on Individual Distortions

To evaluate the performance of our method more precisely,
we compare the reported results of other methods with ours
on each distortion type. Tables II, III and IV are containing
per distortion results in terms of PLCC, SROCC and RMSE
respectively. The left part of each table includes the results on
LIVE Phase I and the results of LIVE Phase II are located in the
right parts. The top two results in each column are highlighted
in bold.

Similar to the overall results, most of the per-distortion values
of our method on both datasets are still one of the top two in
terms of PLCC, SROCC and RMSE.

In LIVE Phase I dataset and based on Table II, our PLCC
results are superior to all other methods from 1% to 6% in all
distortions except the Blur images that our results are about 1%
lower than Shao’s [32]. The relevant SROCC and RMSE values
in Table III and Table IV have maintained their supremacy in
all distortions. This excellence is very impressive about FF and
JPEG compression so that our method has promoted their PLCC
results by more than 3% and 6% respectively.

Since the LIVE phase II database includes both symmetrically
and asymmetrically distorted stereo pairs, the performance re-
sults on this dataset is more meaningful to evaluate the methods
in terms of modeling different cases of distortions. The right
parts of the Tables II–IV infer that the performances are still the
best on all distortions on LIVE Phase II except for the JPEG
which is slightly lower than Chen’s [15]. The improvement of
performance results in all distortion groups by our proposed
method is indicative of its power to mimic the binocular aspects
of human quality perception.

E. Performance Evaluation on Symmetric and Asymmetric
Distorted Images

To examine the capability of the state-of-the-art SIQA meth-
ods to deal with symmetrically and asymmetrically distorted im-
ages, we list the performance of the FR and NR algorithms with
best overall performances, on related subsets of LIVE phase II
dataset in Table V. It can be seen that most of the models
can predict scores that correlate well with subjective evalua-
tions when the stereo images are symmetrically distorted. How-
ever, their performances drop down for asymmetric distortions.
Among those, our proposed NR SIQA method obtains the best
performance on both symmetric and asymmetric distortions as
well as overall achievements. Another important observation is
that the performance gap between the results on symmetric and
asymmetric distorted parts is filled somewhat by the proposed
method.

F. Comparison With 2D IQA Methods

Even though 2D IQA methods are not expected to provide
satisfying results on stereo images, we compare our results with
three commonly used FR 2D IQA metrics: PSNR, SSIM [1] and
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TABLE II
PLCC VALUES FROM OUR MODELS AND OTHER 3D IQA METHODS, PERFORMED ON LIVE PHASE I AND LIVE PHASE II DATABASES

Database LIVE phase I LIVE phase II

Type Method WN JP2K JPEG Blur FF WN JP2K JPEG Blur FF

FR Benoit [6] 0.925 0.935 0.640 0.948 0.747 0.926 0.784 0.853 0.535 0.807
FI-MS-SSIM [28] 0.814 0.840 0.579 0.817 0.568 0.933 0.867 0.874 0.707 0.745

FI-WSNR [28] 0.930 0.911 0.611 0.863 0.693 0.961 0.908 0.827 0.771 0.702
SDM-GSSIM [26] 0.935 0.940 0.671 0.952 0.865 – – – – –

Shao [29] 0.945 0.921 0.520 0.959 0.859 0.946 0.782 0.747 0.958 0.905
Bensalma [22] 0.915 0.839 0.380 0.937 0.734 0.944 0.667 0.858 0.908 0.909

Shao [27] 0.941 0.924 0.656 0.951 0.840 0.850 0.838 0.750 0.827 0.881
MS-SSIM [8] 0.942 0.912 0.603 0.942 0.776 0.957 0.834 0.862 0.960 0.901

IDW-SSIM [30] 0.939 0.929 0.692 0.945 0.821 0.945 0.861 0.873 0.974 0.939

RR Hewage [9] 0.895 0.904 0.530 0.798 0.669 0.891 0.664 0.734 0.450 0.746
Wang [11] 0.913 0.916 0.570 0.957 0.783 – – – – –

NR Akhter [14] 0.904 0.905 0.729 0.617 0.503 0.722 0.776 0.786 0.795 0.674
Ryu [31] 0.940 0.860 0.630 0.960 0.780 - - - - -
Chen [15] 0.917 0.907 0.695 0.917 0.735 0.947 0.899 0.901 0.941 0.932
Shao [32] 0.938 0.950 0.796 0.986 0.837 – – – – –

S3D-BLINQ [16] – – - – – 0.953 0.847 0.888 0.968 0.944
StereoQUE [17] 0.919 0.938 0.806 0.881 0.758 0.920 0.867 0.829 0.878 0.836

Zhou [33] 0.945 0.915 0.695 0.973 0.861 0.936 0.781 0.757 0.983 0.900
Proposed 0.951 0.973 0.867 0.976 0.890 0.970 0.946 0.869 0.991 0.960

TABLE III
SROCC VALUES FROM OUR MODELS AND OTHER 3D IQA METHODS, PERFORMED ON LIVE PHASE I AND LIVE PHASE II DATABASES

Database LIVE phase I LIVE phase II

Type Method WN JP2K JPEG Blur FF WN JP2K JPEG Blur FF

FR Benoit [6] 0.930 0.910 0.603 0.931 0.699 0.923 0.751 0.867 0.900 0.933
FI-MS-SSIM [28] 0.931 0.897 0.562 0.933 0.693 0.929 0.849 0.858 0.746 0.709

FI-WSNR [28] 0.930 0.905 0.577 0.932 0.660 0.955 0.901 0.807 0.757 0.684
SDM-GSSIM [26] – – – – – – – – – –

Shao [29] 0.941 0.894 0.495 0.940 0.796 0.965 0.785 0.733 0.920 0.891
Bensalma [22] 0.906 0.817 0.328 0.916 0.650 0.939 0.804 0.846 0.884 0.874

Shao [27] 0.943 0.875 0.615 0.937 0.781 0.846 0.848 0.720 0.801 0.851
MS-SSIM [8] 0.948 0.888 0.530 0.925 0.707 0.940 0.814 0.843 0.908 0.884

IDW-SSIM [30] 0.928 0.891 0.629 0.924 0.732 0.944 0.848 0.861 0.911 0.935

RR Hewage [9] 0.940 0.856 0.500 0.690 0.545 0.880 0.598 0.736 0.028 0.684
Wang [11] 0.907 0.883 0.542 0.925 0.655 – – – – –

NR Akhter [14] 0.914 0.866 0.675 0.555 0.640 0.714 0.724 0.649 0.682 0.559
Ryu [31] – – – – – - - - - -
Chen [15] 0.919 0.863 0.617 0.878 0.652 0.950 0.867 0.867 0.900 0.933
Shao [32] 0.935 0.936 0.818 0.927 0.814 – – – – –

S3D-BLINQ [16] – – – – – 0.946 0.845 0.818 0.903 0.899
StereoQUE [17] 0.910 0.917 0.782 0.865 0.666 0.932 0.864 0.839 0.846 0.860

Zhou [33] 0.915 0.824 0.614 0.916 0.867 0.891 0.717 0.593 0.903 0.891
Proposed 0.943 0.950 0.835 0.943 0.843 0.943 0.919 0.823 0.952 0.940

MS-SSIM [2]. Also three state-of-the-art NR 2D IQA methods
including: BLIND/Referenceless Image Spatial Quality Evalu-
ator (BRISQUE) [5], Distortion Identification-based Image Ver-
ity and Integrity Evaluation (DIIVINE) [4], and Blind Integrity
Notator using DCT Statistics-II (BLIINDS-II) [3] are studying
in the Table VI. The NR methods employ natural scene statis-
tics changes in spatial domain, wavelet domain and DCT domain
respectively. To utilize the 2D approaches in 3D case, we assess
the quality of left and right images, individually and report the
average of them as the 3D quality of the stereo image pair. The

overall results of the 2D methods on LIVE Phase I and Phase II,
in terms of PLCC and SROCC are listed in Table VI. The results
in both datasets indicate the domination of our method over the
top 2D IQA methods. The performance results by the 2D tech-
niques show that 3D quality perception of stereo images is more
than estimating the quality of left and right images especially
about the LIVE Phase II that contains both symmetrically and
asymmetrically distorted images. The results demonstrate that
our proposed method is successful in modeling the human eye
in the case of 3D quality perception.
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TABLE IV
RMSE VALUES FROM OUR MODELS AND OTHER 3D IQA METHODS, PERFORMED ON LIVE PHASE I AND LIVE PHASE II DATABASES

Database LIVE phase I LIVE phase II

Type Method WN JP2K JPEG Blur FF WN JP2K JPEG Blur FF

FR Benoit [6] 6.307 4.426 5.022 4.571 8.257 4.028 6.096 3.878 11.763 6.894
FI-MS-SSIM [28] – – – – – – – – – –

FI-WSNR [28] – – – – – – – – – –
SDM-GSSIM [26] 7.853 5.909 6.465 5.919 8.312 – – – – –

Shao [29] – – – – – – – – – –
Bensalma [22] – – – – – – – – – –

Shao [27] – – – – – – – – – –
MS-SSIM [8] 5.581 5.320 5.216 4.822 7.837 3.368 5.562 3.365 3.747 4.966

IDW-SSIM [30] 4.596 3.814 4.040 3.409 5.607 3.492 4.998 3.573 3.126 3.944

RR Hewage [9] 7.405 5.530 5.543 8.748 9.226 10.13 7.343 4.976 12.436 7.667
Wang [11] 6.777 5.189 5.374 4.178 7.725 – – – – –

NR Akhter [14] 7.092 5.483 4.273 11.387 9.332 7.416 6.189 4.535 8.450 8.505
Ryu [31] - – – – – - - - - -
Chen [15] 6.433 5.402 4.523 5.898 8.322 3.513 4.298 3.342 4.725 4.180
Shao [32] – – – – – – – – – –

S3D-BLINQ [16] – – – – – 3.547 5.482 4.169 4.453 4.199
StereoQUE [17] 6.664 4.943 4.391 6.938 9.317 4.325 5.087 4.756 6.662 6.519

Zhou [33] 5.086 4.999 4.286 3.127 5.750 3.575 5.802 4.502 2.455 4.375
Proposed 5.564 3.284 3.343 3.565 5.622 2.892 3.528 3.783 2.130 3.347

TABLE V
COMPARISON OF STATE-OF-THE-ART SIQA METHODS ON SYMMETRICALLY

AND ASYMMETRICALLY DISTORTED STIMULI ON LIVE
PHASE II DATABASE IN TERMS OF PLCC AND SROCC

PLCC SROCC

Type Method Sym Asym All Sym Asym All

FR Benoit [6] 0.734 0.770 0.762 0.696 0.747 0.744
MS-SSIM [25] 0.938 0.875 0.907 0.925 0.854 0.901
IDW-SSIM [30] 0.937 0.898 0.916 0.923 0.902 0.919

NR Chen [15] – – 0.895 0.918 0.834 0.880
S3D-BLINQ [16] – – 0.913 0.937 0.849 0.905
StereoQUE [17] – – 0.845 0.857 0.872 0.888

Proposed 0.963 0.952 0.958 0.946 0.935 0.950

TABLE VI
PLCC AND SROCC VALUES OF OUR PROPOSED METHOD VERSUS

STATE-OF-THE-ART 2D IQA METHODS, PERFORMED

ON LIVE PHASE I AND LIVE PHASE II DATABASES

Database LIVE phase I LIVE phase II

Type Method PLCC SROCC PLCC SROCC

FR PSNR 0.834 0.834 0.665 0.665
SSIM [1] 0.872 0.876 0.792 0.792

MS-SSIM [2] 0.926 0.926 0.777 0.776

NR BRISQUE [5] 0.910 0.901 0.749 0.701
DIIVINE [4] 0.939 0.929 0.697 0.669

BLINDS-II [3] 0.917 0.910 0.736 0.700
Proposed 0.963 0.958 0.959 0.951

G. Effect of Parameters

The proposed framework includes a number of parameters
such as components of the feature vectors, dictionary learning
algorithm, the number of code words in the dictionary, the

TABLE VII
PLCC COMPARISON FOR EACH COMPONENT OF THE PROPOSED

SCHEME ON LIVE PHASE I AND LIVE PHASE II DATASETS

LIVE I

Components WN JP2K JPEG Blur FF All

Phase 0.898 0.953 0.800 0.953 0.834 0.925
Contrast 0.948 0.973 0.868 0.978 0.903 0.963
Phase-Contrast 0.946 0.973 0.866 0.976 0.899 0.961

LIVE II

Phase 0.953 0.925 0.839 0.979 0.943 0.942
Contrast 0.970 0.938 0.879 0.983 0.935 0.945
Phase-Contrast 0.970 0.946 0.870 0.990 0.959 0.958

sparsity level and the feature pooling method. We investi-
gate different conditions of the parameters individually in this
section.

1) Phase and Contrast Components: To demonstrate the im-
pact of phase and contrast components in the proposed approach,
we retried our 1000 train-test iterations on the two separate sets
of features. The results of PLCC for phase only, contrast only
and the final model which uses both of them are illustrated in
Table VII. Even though using features extracted from contrast
images is more efficient than the features extracted from phase
on LIVE phase I dataset, the performance of the main model
is superior to both of the single models on LIVE phase II. It
can also be argued that both phase and contrast components are
effective in order to assessing the quality of stereo images.

2) Pooling Schemes: The effectiveness of SPA pooling
can be verified in Table VIII, and Fig. 4 where the PLCC
of subjective and objective scores using six different pooling
strategies are illustrated. While the performance indices of the
proposed approach with NNZ, SPA and AVG poolings closely
are better than other three ones on LIVE Phase I dataset, on
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TABLE VIII
PERFORMANCE COMPARISON OF THE PROPOSED METHOD USING

DIFFERENT POOLING METHODS IN TERMS OF PLCC ON

LIVE PHASE I AND LIVE PHASE II DATASETS

LIVE I

Pooling WN JP2K JPEG Blur FF All

HMax 0.580 0.607 0.256 0.761 0.653 0.707
Max 0.949 0.950 0.783 0.963 0.874 0.951
AVG 0.976 0.965 0.849 0.972 0.850 0.960
NNZ 0.957 0.973 0.844 0.974 0.903 0.964
SPM 0.947 0.967 0.833 0.970 0.872 0.955
SPA 0.948 0.973 0.867 0.976 0.885 0.961

LIVE II

HMax 0.815 0.402 0.649 0.951 0.671 0.721
Max 0.968 0.941 0.835 0.980 0.909 0.934
AVG 0.970 0.941 0.877 0.980 0.844 0.947
NNZ 0.973 0.911 0.868 0.990 0.964 0.951
SPM 0.956 0.939 0.845 0.989 0.953 0.947
SPA 0.970 0.945 0.873 0.991 0.960 0.958

Fig. 4. Performance comparison of the proposed method using different pool-
ing methods in terms of PLCC on (a) LIVE Phase I, (b) LIVE Phase II, and (c)
on symmetrically and asymmetrically distorted parts of LIVE Phase II database.

TABLE IX
COMPARISON OF CORRELATION RESULTS OF THE PROPOSED METHOD USING

DIFFERENT POOLING METHODS ON SYMMETRICALLY AND ASYMMETRICALLY

DISTORTED STIMULI ON LIVE PHASE II DATABASE

PLCC SROCC

Method Sym Asym All Sym Asym All

HMax 0.735 0.691 0.720 0.728 0.610 0.675
Max 0.927 0.933 0.933 0.917 0.910 0.923
AVG 0.960 0.934 0.946 0.935 0.917 0.941
NNZ 0.975 0.932 0.952 0.957 0.910 0.945
SPM 0.941 0.951 0.948 0.925 0.933 0.942
SPA 0.963 0.952 0.958 0.946 0.935 0.950

TABLE X
PERFORMANCE COMPARISON OF THE PROPOSED METHOD USING

DIFFERENT DICTIONARY LEARNING ALGORITHMS IN TERMS

OF PLCC ON LIVE PHASE I AND LIVE PHASE II

LIVE I

Dictionary Learning WN JP2K JPEG Blur FF All

RLS-DL [40] 0.946 0.973 0.866 0.976 0.899 0.961
KSVD [41] 0.947 0.973 0.868 0.974 0.890 0.959
ODL [43] 0.947 0.971 0.866 0.971 0.887 0.960

LIVE II

RLS-DL [40] 0.970 0.946 0.870 0.990 0.959 0.958
KSVD [41] 0.968 0.951 0.872 0.991 0.957 0.958
ODL [43] 0.966 0.950 0.870 0.991 0.962 0.958

database LIVE Phase II, SPA performs better than NNZ and
AVG. The SPM, Max and HMax results are respectively lower
than the other three pooling methods.

We repeated the experiment for symmetric and asymmetric
parts of database LIVE phase II to evaluate different pooled
features on asymmetrically distorted stereo image pairs. In
Table IX and Fig. 4(c) it can be seen that although the per-
formance results of SPA on symmetric distorted stereo images
are not as good as NNZ, its overall performances and those of
asymmetric distorted pairs has defeated all the existing methods.

3) Dictionary Learning Algorithm: We test three different
well known dictionary learning methods in our feature learning
framework including K-SVD [41], RLS-DL [40], and online
dictionary learning (ODL) [43] algorithms. The K-SVD and
RLS-DL methods make use of 0-pseudo-norm as the sparsity-
inducing regularization function, while an 1 -regularized dic-
tionary learning problem is the objective in ODL. Using these
methods, the dictionaries DP ∈ Rn×K and DC ∈ Rn×K are
trained with K = 1000 from 8 × 8 patches of training phase
and contrast images respectively. Refer to Table X it seems
there is not much difference between the quality assessment
results achieved by different dictionary learning methods. We
select RLS-DL dictionary learning algorithm just because of its
slight lead in overall correlation results over the LIVE phase I
dataset.

4) Dictionary Size: The number of dictionary atoms is an
important parameter of a dictionary which is mainly set by
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Fig. 5. Accuracy of the proposed method in terms of PLCC with various sizes
of dictionaries on LIVE Phase I and LIVE Phase II.

Fig. 6. Accuracy of the proposed method in terms of PLCC with differ-
ent values of sparsity regularization parameter λ on LIVE Phase I and LIVE
Phase II.

experience or based on empirical evaluations. We carry out
quantitative experiments to study the influence of this parame-
ter on the performance of our quality assessment method. We
test different sizes of dictionaries for best three feature pooling
schemes in our algorithm. As shown in Fig. 5 as the number of
dictionary atoms grows more than 1000, the evaluation accu-
racy of the proposed method does not improve significantly, in
terms of PLCC on both of the LIVE Phase I and LIVE Phase II.
This indicates that the proposed method does not highly depend
on huge sizes of dictionary. Another important observation is
that for both of the LIVE phase I and LIVE phase II datasets
using SPA can result in the best correlation results and early
convergence to its final performance with small sizes of dictio-
naries. Therefore, using SPA, we can select very small sizes of
dictionaries while the performance results do not drop yet.

5) Sparsity Regularization Parameter: As it is mentioned in
Section III-C, an 1 -regularized sparse coding is adopted in our
method for encoding of local image features. This sparse coding

is performed by solving the convex optimization problem in (22)
in which the 1-norm encourages the solution to be sparse and
the parameter λ ≥ 0 is used to control the trade-off between data
fitting and the sparsity of solution. In general, increasing λ leads
to sparser solution. To illustrate the effect of changing the value
of this parameter on the final performance of our method, PLCC
values between subjective and objective scores on datasets LIVE
Phase I and LIVE Phase II for different λ values are plotted in
Fig. 6. It is observed that the performance of our approach is
almost consistent with λ < 5. It can be seen that comparing
to NNZ and AVG, the SPA pooling method not only provides
better results, but also is more robust against different values of
parameter λ on both of the datasets.

V. CONCLUSION

In this paper we employed the physiological discoveries in 3D
perception of human vision to propose a 3D quality assessment
method for stereo images. The perceived phase and contrast of
the cyclopean wave were produced in a binocular combination
manner. An efficient general-purpose algorithm for NR SIQA
problem was presented that outwent the state-of-the-art. We used
the sparse representation of phase and contrast patches as local
descriptors. A spatial pyramidal pooling of the patch descrip-
tors also provided a representation of images. The unsupervised
sparse feature representation framework was adaptable to all
types of distortions and strengths. The proposed algorithm out-
performed the current 2D and 3D IQA methods on both LIVE
Phase I and LIVE Phase II datasets.
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