
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 12, DECEMBER 2016 2321

Quadtree Degeneration for HEVC
Yuan Gao, Pengyu Liu, Yueying Wu, and Kebin Jia

Abstract—The quadtree is one of the most advanced techniques
contributing to the excellent compression performance of high
efficiency video coding (HEVC). However, the computational
complexity increases because the quadtree examines all coding
unit (CU) sizes to obtain the optimal CU partitioning. This paper
focuses on quadtree degeneration based on a proposed quadtree
probability mechanism. Two techniques, a quadtree probability
model (QPM) procedure and a quadtree probability update
(QPU) procedure, are proposed. The QPM process estimates a
CU distribution model based on a quantization parameter (QP)
and a group of pictures (GOP). Based on the model, a new
quadtree is constructed by skipping low probability tree nodes.
The QPU process is performed to update the new quadtree based
on scene content change. Update addresses model distortion and
ensures the accuracy of the new quadtree. Experimental results
demonstrate that the proposed quadtree probability mechanism
for quadtree degeneration considerably reduces average encoding
time (27.55%) for the low delay condition. Applied to lossless
coding, the proposed mechanism achieves a significant 43.10%
encoding time reduction. The experiments also show that the
proposed quadtree probability mechanism improves HEVC coding
efficiency for a variety of applications and sequence characteristics.

Index Terms—Group of pictures (GOP), high efficiency video
coding (HEVC), quadtree, quantization parameter (QP), scene
content.

I. INTRODUCTION

S INCE the development of H.264/AVC, video coding
standards have been continuously improved for network

services and mobile communication. HEVC [1] has now been
finalized by the Joint Collaborative Team on Video Coding
(JCT-VC) after a decade of preparations. Due to the rapid
growth of multimedia services, realizing high-efficiency video
coding while simultaneously providing high-quality images
with minimal transmission delay has remained a challenge
[2]. HEVC is designed to offer better coding efficiency and

Manuscript received September 23, 2015; revised December 22, 2015, March
1, 2016, and May 31, 2016; accepted July 22, 2016. Date of publication Au-
gust 8, 2016; date of current version November 15, 2016. This work was sup-
ported in part by the National Natural Science Foundation of China under Grant
61672064, in part by the Project for the Key Project of Beijing Municipal Educa-
tion Commission under Grant KZ201610005007, in part by the Beijing Postdoc-
toral Research Foundation under Grant 2015ZZ-23, in part by the China Postdoc-
toral Research Foundation under Grant 2015M580029 and Grant 2016T90022,
and in part by the Computational Intelligence and Intelligent System of Beijing
Key Laboratory Research Foundation under Grant 002000546615004. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Prof. Zhu Li.

The authors are with the Beijing Advanced Innovation Center for Fu-
ture Internet Technology, Beijing University of Technology, Beijing 100124,
China, the Beijing Laboratory of Advanced Information Networks, Bei-
jing 100124, China, and also with the College of Electronic Information
and Control Engineering, Beijing University of Technology, Beijing 100124,
China (e-mail: yuangaoyg001@emails.bjut.edu.cn; liupengyu@bjut.edu.cn;
wuyueying@emails.bjut.edu.cn; kebinj@bjut.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2016.2598481

greater flexibility than H.264/AVC [3], [4]. In addition, HEVC
is expected to have more impact on high-resolution video (4K
and 8K) and high fidelity video (for high-resolution displays
such as high definition TV (HD-TV) and ultra-high definition
TV (UHD-TV) in the future [5], [6]. HEVC not only inherits
crucial elements of H.264/AVC but also adopts numerous new
techniques to achieve superior performance. In H.264/AVC, en-
coding a macroblock (MB) is a complicated technique derived
from mode decision [7]. HEVC uses a more complex, quadtree
technique to improve compression performance. However, the
quadtree greatly increases the computational complexity of the
encoder. Computational complexity reduction with negligible
performance loss is a major research concern [8], [9]. At
present, improving HEVC efficiency by reducing quadtree
complexity is a particular research concern, and various
research studies have been carried out to achieve this goal.

A considerable amount of effort has been focused on quadtree
complexity reduction. Studies on fast coding unit (CU) encod-
ing improvement attempt to represent the redundant informa-
tion that is often present in quadtree traversal computing. This
state of the art research applies machine learning theory to low
complexity CU encoding. Zhang [10] proposes a flexible com-
plexity allocation that converts the CU depth decision problem
into a classification problem. Ye [11] makes use of Bayesian
decision theory in adaptive CU depth decision, which achieves
a notable encoding time reduction. Kim [12] combines scene
change detection with a minimum error Bayesian decision rule.
However, these machine-learning based approaches have large
computation and memory costs. This is primarily why machine
learning theory has not been widely applied to video coding,
even though it could achieve significant performance improve-
ments. Hence, the back-to-basics approach based on the en-
coder parameters is designed to improve low complexity video
coding efficiency. Traditionally, dynamic information redun-
dancy in videos occurs in the spatial and temporal contexts.
Thus, alternative mechanisms for intra mode decision and in-
ter mode decision would be interesting. Many works focus on
the development of fast quadtree computation based on early
CU size decision for HEVC intra encoders [13]–[15] and inter
encoders [16]–[19]. Shen [13] skips low probability intra pre-
diction modes in the parent CUs of the upper depth levels or spa-
tially nearby CUs. Ahn [16] simplifies the rate-distortion (RD)
competition processes by selectively conducting a mode deci-
sion process based on inter predicting unit (split-type, square-
type, or non-square-type) modes. Xiong [18] uses a nearest
neighbor method to determine CU splitting. These approaches
effectively reduce encoding time by using fast mode decision at
the prediction unit (PU) and transform unit (TU) levels. How-
ever, these approaches need to traverse all CU sizes to obtain
the optimal CUs, causing performance limitations. In HEVC,
whether to split the CU is determined by PU and TU partitions.

1520-9210 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

2322 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 12, DECEMBER 2016

Fig. 1. Complete quadtree in HEVC.

Thus, the encoder can save significant CU encoding time by
directly skipping some of the quadtree nodes rather than PUs
or TUs. Accordingly, mechanisms based on low complexity CU
encoding that combine early determination with other coding
parameters have been successfully applied. A few works have
focused on speeding up quadtree computing through early termi-
nation mechanisms [20]–[26]. Cen [22] proposes a fast CU depth
decision mechanism that uses spatial correlations to achieve
a CU depth range determination. Song [25] presents an early
merge mode decision method to avoid exhaustive mode checks
for CUs derived from recursive quadtree partitioning. Despite
these achievements, some prominent studies [27], [28] into low
complexity schemes focus solely on quadtree prediction. For
instance, Guo [28] proposes a fast CU size selection algorithm
based on hierarchical quadtree correlations and determines the
size of the current CU based on the subtree distributions of
adjacent CUs. In general, current researchers concentrate on re-
ducing quadtree complexity by selecting a specific tree depth to
search, instead of traversing all depths. In other words, current
approaches only focus on reducing the leaf nodes of the quadtree
by lessening depth, which means that the quadtree continues to
be computed from its maximum tree root node. However, with
different scene contents and different coding parameters, it is
possible to distinguish a best quadtree for each frame using a
different tree root node size and different tree depth. Indeed,
using a befitting quadtree is a key method for reducing HEVC
encoder computational complexity. The problem is choosing
the appropriate tree root node and tree depth to degenerate a
quadtree. Our work presents a quadtree probability mechanism
to achieve quadtree degeneration. We propose two important
concepts, the quadtree probability model (QPM) and quadtree
probability update (QPU), for quadtree degeneration.

In the rest of this paper, Section II reviews quadtree struc-
ture and the motivation for quadtree degeneration. Section III
describes the discovery and analysis of the factors affecting CU
distribution probability. Section IV provides the details of the
QPM and QPU. Extensive experimental results are documented
and discussed in Section V to evaluate the performance of the
proposed quadtree probability mechanism for quadtree degen-
eration. Finally, Section VI presents our conclusions.

II. OVERVIEW AND MOTIVATION

A. Overview of Quadtree Structure in HEVC

HEVC hierarchical coding structure is implemented by
quadtree, as shown in Fig. 1. A quadtree is defined as a tree

Fig. 2. Traverse a complete quadtree for CU partitioning result. CU64, CU32,
CU16, and CU08 represent the optimal CU size ranging from a depth = 1 to a
depth = 4.

in which each node has exactly zero or four children. In other
words, every node is either a leaf or has four children. The num-
ber of nodes must meet the maximum, and all the leaves must
be in the same layer. Based on this definition, HEVC usually
uses root node and depth for describing a quadtree. The root
node of the quadtree is a square region called a coding tree unit
(CTU) with a size of 64 × 64 and a leaf node of a quadtree
partitioning is a CU. The quadtree allows recursive splitting of
each unit into four equally sized nodes, beginning with the CTU
and terminating when maximum tree depth is reached. Thus, a
complete quadtree has a CTU of size 64 × 64, a maximum tree
depth of four, and each CU may be as large as 64 × 64 or as
small as 8 × 8.

The encoder selects the optimal CU partitioning for the cur-
rent CTU by calculating the coding costs J of various CU sizes.
The cost function J is specified by

J = SSE + λ · B (1)

where B specifies the bit cost, SSE represents the difference
between two blocks with the same block size, and λ is the cost
computation Lambda value. For each CTU, the decision to split
the current CU is based on the minimum between the J value
of the current CU size and the summed J values of the resulting
four smaller CU sizes. A CU partitioning result is calculated by
a complete quadtree as shown in Fig. 2.

The flexible quadtree structure of HEVC provides a signifi-
cant improvement in coding gain. However, it causes a dramatic
increase in encoding complexity because the encoding process
needs to explore every single quadtree node size from 64 × 64
to 8 × 8. Each quadtree node tries all possible PU and TU sizes
to determine the best PU and TU partition. This exhaustive tree
node check results in an enormous increase in computational
complexity.

B. Motivations for Quadtree Degeneration

In HEVC the encoder calculates one CTU by traversing a
complete quadtree with root node size 64 × 64 and depth 4. In-
creasing video resolution increases the number of CTUs rapidly,
which leads to increased encoding complexity. The process of
quadtree degeneration reduces CU encoding time by omitting
some tree nodes.

As stated above, a quadtree is described by root node size
and tree depth. Thus a rough way to determine the relationship
between quadtree complexity and encoding time is to downsize

GAO et al.: QUADTREE DEGENERATION FOR HEVC 2323

TABLE I
ENCODING TIME SAVING (%) UNDER DIFFERENT QUADTREE STRUCTURES COMPARED

WITH HEVC QUADTREE WITH A DEPTH OF FOUR AND A CTU SIZE OF 64 × 64

Sequence Depth = 3 Depth = 2 Depth = 1

CTU CTU CTU CTU CTU CTU CTU CTU

64 × 64 32 × 32 64 × 64 32 × 32 16 × 16 64 × 64 32 × 32 16 × 16

Traffic 19.62 20.72 51.39 39.59 45.81 73.48 71.27 64.96
Cactus 16.98 18.34 31.88 27.18 43.31 69.34 67.49 62.63
Party Scene 20.17 23.01 35.25 37.91 39.55 74.62 71.99 68.24
Race Horses 23.59 29.74 32.26 38.14 44.45 76.90 70.84 66.98
Johnny 17.95 16.40 49.27 48.42 46.36 70.73 68.49 62.41
Slide Show 22.24 18.86 40.39 41.38 42.27 70.02 66.17 64.28
Average TS(%) 20.09 21.18 40.07 38.77 43.63 72.52 69.38 64.92

Fig. 3. CU distribution probability based on QP.

the root node and depth of a complete quadtree. Our experiment
compares various degenerated quadtree structures to the HEVC
complete quadtree structure. As illustrated in Table I, quadtree
complexity drops proportionally with decreasing depth. In ad-
dition to depth, CTU size is also related to quadtree complexity.
Table I shows not only that a simpler quadtree structure can
contribute to reduced encoding complexity but also that the en-
coder can improve time complexity by choosing a larger CTU
and shallower depth.

However, encoding accuracy drops severely when a quadtree
is too simple. Thus, for the encoder to save CU encoding time
while maintaining encoding accuracy, the quadtree degenera-
tion must be built with the provision that a low probability tree
node can be omitted, but others must be retained. However, both
internal and externSal encoder factors affect the final CU par-
titioning probability. Thus it is necessary to identify the factors
affecting CU distribution and then use these factors to ascer-
tain how to predict CU distribution to obtain the optimal CU
partitioning probability.

III. FACTORS AFFECTING CU DISTRIBUTION

A. CU Distribution Based on QP

First we test different types of videos to investigate general
CU distribution. The statistics are obtained in a common video
coding condition [29] recommended by JCT-VC. This configu-

ration leads to a non-uniform J by defining the cost computation
λ in (1) as

λ = α · Wk · 2
(Q P −1 2)

3 (2)

where α and Wk are weighting factors related to different config-
urations. Thus for any specific configuration, λ is related to the
quantization parameter (QP). Indeed, the QP affects the optimal
CU partitioning by changing J . For example, Fig. 3 shows the
CU distribution probability of the encoded BQSquare sequence
and demonstrates that there is a high correlation between the QP
and the optimal CU partitioning. CU partitioning distribution in
a particular range occupies a greater percentage of the CU allo-
cation in the same sequence. In general, smaller QPs are highly
likely to be encoded by CUs of small sizes. In contrast, larger
CUs are much more likely to encode larger QPs. For a small
QP, a CU size of 64 × 64 has quite a low probability, while a
small CU size has a high probability. For example, CU sizes of
16 × 16 and 8 × 8 occupy 88.70% of the CU distribution when
QP = 17. In the range QP = 22 to QP = 42, the CU distribution
changes dramatically. The probabilities of CUs of size 64 × 64
and 32 × 32 rapidly increase, while the probability of a CU
size of 16 × 16 or 8 × 8 rapidly declines. The total number
of the CUs of sizes 64 × 64, 32 × 32 and 16 × 16 comprise
98.90% of the CU distribution when QP = 42. Therefore, it
can be inferred that QP is an important parameter in determin-
ing CU distribution. We can also estimate the CU distribution

2324 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 12, DECEMBER 2016

Fig. 4. CU distribution probability based on GOP.

Fig. 5. CU distribution probability based on scene content.

percentage for a specific QP. Thus, it is unnecessary to calcu-
late all quadtree nodes from CU64 to CU08 when determining
the optimal CU partitioning. Based on QP, encoders need to
traverse only the tree nodes with the greatest CU distribution
probabilities, and can skip tree nodes with low CU distribution
probabilities, as these low probability quadtree nodes are rarely
used and contribute little to promoting coding efficiency.

B. CU Distribution Based on GOP

The QP has a serious impact on CU distribution. However,
when encoding a video sequence, an HEVC encoder makes
use of a complex QP offset rather than a constant QP value.
The QP offset causes the encoder to use different QPs based
on the temporal layer. For different coding configurations, the
QP of each inter encoded picture is derived by adding an off-
set to the QP of the intra encoded picture (QPI), depending
on the temporal layer. For example, if a base QP is set to
the QPI for the first layer, the QP of the second layer QPL2
= QPI + 2, the QP of the third layer QPL3 = QPI + 3, and so
on. In HEVC, the QP offset hierarchy level is configured within
the group of pictures (GOP). This means the encoder sets a
series of QP values for each frame in a GOP, and each GOP
has the same QP configuration. It can be inferred that frames
in the same order in different GOPs may exhibit a similar CU
distribution. As an example, Fig. 4 demonstrates the CU dis-
tribution probability of the encoded FourPeople sequence with

QPI = 32 and QP offset = 3, 2, 3, 1. We observe that there is a
relationship between GOP structure and optimal CU partition-
ing. A CU size of 64 × 64 has the greatest probability in the
first three frames of a GOP. However, in the fourth frame, the
probability of a CU of size 64 × 64 drops severely and other
CU sizes’ probabilities simultaneously increase markedly. It
is noteworthy that almost all of the GOPs in this sequence
follow the above pattern. Because different frames have the
same, fixed QP offset in different GOPs, each GOP fixes
the picture order count (POC), and the same POC has the same
QP offset, there is a similar CU distribution in adjacent GOPs.
Therefore, we conclude that GOP structure affects CU distribu-
tion when a QP offset is present. Moreover, we find that the N th

frame and the (N + GOPSize)th frame have a similar CU dis-
tribution. We use this rule to predict CU distribution probability
and then omit low probability quadtree nodes.

C. CU Distribution Based on Scene Content

Another factor affecting CU distribution is scene content
change. A variety of factors may cause scene content change
including shot change, lens zoom, lens rotation, and motion oc-
clusion. A current frame may be different from the previous
frame due to the introduction of new objects. In other words,
the steady CU distribution probability related to QP and GOP is
broken. For example, Fig. 5 shows the CU distribution probabil-
ity for the encoded BasketballPass sequence. To eliminate the

GAO et al.: QUADTREE DEGENERATION FOR HEVC 2325

influence of a varying QP, we set the QP offset equal to zero. All
the frames are coded with QP = 32. If there were no scene con-
tent change, the CU distribution probability would not change
during the sequence. However, probability of a CU of size
64 × 64 drops below 10% and the probability of a CU of
size 8 × 8 increases to 20% in the 9th GOP. A typical scene
content change occurs in the 9th GOP and obviously affects the
CU distribution. In addition, Fig. 5 shows that the CU distri-
bution changes begin at the 51st frame; the previous CU distri-
bution probabilities show little change, as scene content does
not change much for 50 frames. However, the frame rate of this
sequence is equal to 50 fps. We believe that the interval of scene
content change is usually longer than one second. Therefore,
excluding the effect of the QP and GOP, CU distribution is not
invariable and varies due to scene content change. Updating CU
distribution is important in maintaining an accurate CU distribu-
tion probability. When updating the CU distribution probability,
the frame rate parameter must be considered for updating CU
distribution probability and determining when to compute a new
quadtree.

IV. PROPOSED QUADTREE PROBABILITY MECHANISM

Based on the factors affecting CU distribution probability
presented above, we propose a quadtree probability mechanism
for quadtree degeneration. Fig. 6 shows the flowchart for the
implementation of the quadtree probability mechanism in the
HEVC encoder. The encoder encodes the first GOP, then uses
its CU partitioning result to direct the encoding of later GOPs.
Frames in later GOPs degenerate the quadtree based on pre-
vious GOPs. The quadtree probability mechanism consists of
two key procedures. The first concerns the quadtree probabil-
ity model, which determines how to establish the probability
model and how to predict a new quadtree using the model. The
second is the quadtree probability update, which determines
how to recompute the probability model and how often to per-
form an update. The goal of our method is to achieve HEVC
encoding complexity reduction with negligible additional
computation.

A. Quadtree Probability Model

The quadtree probability model (QPM) uses an optimal CU
partitioning to establish a probability model. The key technique
proposes to use the N th optimal CU partitioning to predict the
(N + GOPSize)th quadtree. QPMs are designed to construct a
new quadtree for each frame. The QPM process uses two steps
to obtain the root node size and depth for constructing a new
quadtree.

Step 1. QPM establishing: First, a probability model is es-
tablished by computing the CU distribution probability for an
encoded GOP (this may be the first GOP). The QPM uses the
optimal CU partitioning acquired via a complete quadtree to es-
tablish the function Festa . Festa(CU,Frame|GOPcoded) rep-
resents the probability of each CU size for each frame in the

encoded GOP. Festa is defined as

Festa (CU,Frame |GOPcoded) = Pij

=

⎡
⎢⎢⎣

P (CU64 , F rame1) · · · P (CU64 , F ramen)
...

. . .
...

P (CU08 , F rame1) · · · P (CU08 ,Framen)

⎤
⎥⎥⎦ (3)

where Pij is a two-dimensional matrix in which each element
is calculated as

P (CU,Frame) = P (CU |Frame)

= CU
/

CU64 + CU32 + CU16 + CU08 (4)

where is P an empirical frequency used to approximate the
corresponding conditional probability of a certain CU size in a
frame. Each CU size is determined based on a 4 × 4 pixel block.

Step 2. QPM Predicting: Second, QPM predicts a new
quadtree for the current, unencoded GOP. Another important
function, δij , is used to determine whether the nodes of the new
quadtree exist. δij contains only {0, 1} which means the state
of the node is {nonexistent, existent}

δij =

{
0, Pij < σ

1, Pij ≥ σ
(5)

where σ is an empirical value.
A new function, Fpred , similar in form to Festa , predicts the

new quadtree of each frame in the current GOP:

Fpred (CU,Frame |GOPcurrent) = δij

=

⎡
⎢⎢⎣

δ (CU64 , F rame1) · · · δ (CU64 , F ramen)
...

. . .
...

δ (CU08 , F rame1) · · · δ (CU08 ,Framen)

⎤
⎥⎥⎦ (6)

A new quadtree is calculated for each frame when
δ(CU,Frame) = 1.

1) Root node is the maximum size of δ(CU,Frame)
leaf node is the minimum size of δ(CU,Frame)

2) Depth is log2(Root node) − log2(leaf node) + 1, node
= {64, 32, 16, 8}

As shown in Fig. 6, the proposed method uses a complete
quadtree,δij , to encode the first GOP. After the quadtree prob-
ability model process runs, the encoder obtains a degenerated
quadtree δij . δij is used to encode later GOPs. The root node
or depth of the new quadtree is less than or equal to that of
the complete quadtree, which means the encoder can obtain an
approximate optimal CU partitioning result without searching
all the CU sizes.

B. Quadtree Probability Update

Quadtree probability update (QPU) is designed to address
the problem that scene content change leads to inaccuracy in
the probability model. First, the key to guaranteeing coding ef-
ficiency is to determine how often to perform a QPU. Overly

2326 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 12, DECEMBER 2016

Fig. 6. Flowchart of the proposed quadtree probability mechanism.

frequent updating introduces unnecessary computational com-
plexity, but updating too infrequently causes QPM inaccuracy.
Second, the QPU process defines how to recompute Festa for
the current GOP. Once the encoder performs the QPM process,
the new Fn

esta replaces the Fn−1
esta or constructing the quadtrees

of later GOPs.
1) Update Depends on Frame Rate: To balance coding effi-

ciency, QPU is performed based on the frame rate parameter of
each sequence. The frame rate parameter determines the number
of frames per second. The number of GOPs within one second
is given by N as

N = GOPSize · floor
(

FrameRate
GOPSize

)
. (7)

The QPU period T is defined as

T =

{
floor

(
N
2

)
, GOPSize < FrameRate

GOPSize, GOPSize ≥ FrameRate.
(8)

T is the frame interval between updates. When GOPSize is
small, T is a multiple of GOPSize that is close to the frame rate.
When GOPSize is large, T is equal to GOPSize and frame rate
is immaterial. The GOPSize setting impacts the performance of
QPU because the larger GOPSize is, the less frequently Festa

updates.
2) Update Depends on Fn−1

esta : Although the frame rate period
determines the frame where update occurs, if the current Fn

esta

and the previous one, Fn−1
esta have the same CU distribution, it is

unnecessary to update Fn
esta . If Fn

esta and Fn−1
esta have different

CU distribution probabilities, then QPU must make use of Fn−1
esta .

Hence, Fn
esta is updated in the QPU according to

Fn
esta =

{
Fn−1

esta , Z (Fn
esta) = Z

(
Fn−1

esta

)

ρ · Fn−1
esta + (1 − ρ) · Fn

esta , Z (Fn
esta) �= Z

(
Fn−1

esta

)
(9)

where Z represents the number and positions of the “0” elements
in matrix F . ρ is an equilibrium factor used for adjusting the
performance of QPU and is in [0, 1]. Next, the encoder uses (5)
and (6) to obtain a new Fpred .

As shown in Fig. 6, whether the encoder performs QPU is
determined by T . After update, the encoder obtains a new de-
generated quadtree δij . This δij is used to encode later frames.
QPU is needed in video coding not only to maintain the accuracy
of the probability model but also to avoid propagating errors to
later GOPs.

In summary, the QPM avoids traversing a complete quadtree
by constructing a new quadtree for encoding later frames. QPU
maintains the accuracy of the new quadtree while limiting in-
crease in computational complexity as much as possible.

V. PERFORMANCE ASSESSMENTS

A. General Experimental Configuration

To evaluate the coding effectiveness of the proposed quadtree
probability mechanism, we make experiments with respect to

GAO et al.: QUADTREE DEGENERATION FOR HEVC 2327

TABLE II
TEST SEQUENCES

Class Size Sequence Frame Rate

Class A 2560 × 1600 Traffic, PeopleOnStreet 30fps, 30fps
Class B 1920 × 1080 ParkScene, Cactus 24fps, 50fps
Class C 832 × 480 RaceHorses, BQMall, Basketbal Drill 30fps, 60fps, 50fps
Class D 416 × 240 Rac Horses, BQSquare, BasketballPass 30fps, 60fps, 50fps
Class E 1280 × 720 FourPeople, Johnny 60fps, 60fps
Class F – ChinaSpeed, SlideShow 30fps, 20fps

TABLE III
GENERAL EXPERIMENTAL CONFIGURATION

PC Configuration

CPU Intel Core i7
Memory 8 GB

CU Definition

Max CTU 64 × 64
Min CTU 16 × 16
Max Partition Depth 4
Min Partition Depth 1

Parameter Setting

σ in (5) 0.15
ρ in (9) 0.25

HEVC test model version 15.0 and sequences of various resolu-
tions from 2560 × 1600 to 416 × 240, as shown in Table II. The
encoder configures all the sequences according to the common
test conditions of HEVC standardization. Table III shows other
experimental design details. For the experiments, HM15.0 sets
an anchor by using a completed quadtree.

Performance is measured by distortion and rate for a variety
of conditions. The Bjøntegaard delta peak signal-to noise ratio
(BDPSNR) and the Bjøntegaard delta bit rate (BDBR) [30] are
used to evaluate the performance of the proposed method. All
the experiments calculate encoding time-savings according to
the following equation:

TS (%) =
Enc.time (Anchor) − Enc.time (Prop)

Enc.time (Anchor)
× 100.

(10)

B. Coding Performance Assessment

For evaluation of lossy coding, the experiment has three possi-
bilities: the all intra (AI) condition, the low delay (LD) condition
and the random access (RA) condition. For all of the conditions,
the first frame is encoded by a complete quadtree, and QPI is set
to 22, 27, 32 and 37. Specifically, for AI the GOP Size is equal
to 1 and there is no QP offset. For RA, due to the Intra Period,
all I frames use the complete quadtree to guarantee the quality
of reconstruction. Table IV gives the specific configurations for
LD and RA.

Table V and Table VI show the experimental results for the
proposed quadtree probability mechanism. As shown in Table V,
under the AI condition the proposed method reduces encoding
time by 20.24% with a 0.06 dB BDPSNR drop and 0.63%

TABLE IV
ENCODER CONFIGURATION

LD RA

GOP Size 4 8
POC 1, 2, 3, 4 8, 4, 2, 1, 3, 6, 5, 7
QP offset 3, 2, 3, 1 1, 2, 3, 4, 4,3,4,4

TABLE V
PERFORMANCE OF PROPOSED MECHANISM

COMPARED WITH HM15.0 UNDER AI

Class Proposed method under AI condition

BDPSNR (dB) BDBR (%) TS (%)

Class A −0.01 0.33 14.92
Class B −0.03 0.78 21.44
Class C −0.07 0.84 23.85
Class D −0.02 0.31 15.12
Class E −0.01 0.20 11.31
Class F −0.19 1.30 34.78
Average −0.06 0.63 20.24

TABLE VI
PERFORMANCE OF PROPOSED MECHANISM COMPARED

WITH HM15.0 UNDER LD AND RA

Class Proposed method under LD condition Proposed method under RA condition

BDPSNR (dB) BDBR (%) TS (%) BDPSNR (dB) BDBR (%) TS (%)

Class A – – – −0.02 0.94 26.47
Class B −0.03 1.07 27.89 −0.03 0.76 24.29
Class C −0.08 1.44 28.61 −0.06 1.31 29.88
Class D −0.05 1.02 23.01 −0.04 1.08 19.03
Class E −0.01 0.75 32.99 – – –
Class F −0.04 1.28 25.27 −0.03 1.10 21.45
Average −0.04 1.11 27.55 −0.04 1.04 24.22

BDBR increase. Because there is a single frame in any GOP,
then Festa and Fpred have a single column vector. The quadtree
of each frame imitates its previous frame. Without a QP offset,
CU distribution under the AI condition is related to the fixed
QPI value and scene content.

In most cases, the LD condition applies to real-time com-
munication, while the RA condition applies to video playback
and stream splicing. According to Table VI, when compared to
HM15.0 LD conditions, the proposed method yields a 27.55%
average reduction in total encoding time with an average BDBR
gain of 1.11% and a 0.04 dB BDPSNR loss. Under the RA
condition, the proposed method achieves a 24.22% reduction
in total encoding time with a 1.04% BDBR gain and 0.04 dB
BDPSNR loss. The greatest improvement in encoding time oc-
curs for Class E under LD. For the Class E test sequences,
the proposed method saves on total encoding time with neg-
ligible loss in BDPSNR. This indicates that Class E has vast
background regions that exhibit little motion. Even if Class E
performs the most complex quadtree, the probabilities of CUs
of size 16 × 16 and 8 × 8 are quite small. Therefore, using
a new quadtree without CUs of size 16 × 16 or 8 × 8 as

2328 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 12, DECEMBER 2016

Fig. 7. Assessment for the number of operations.

the anchor for the frame can achieve high coding performance
while markedly reducing encoding time. The proposed method
can achieve considerable efficiency improvement and precise
quadtree prediction.

The complexity can be assessed with respect to the number
of operations per frame as shown in Fig. 7. Compared with
HM15.0, our proposed method achieves an average reduction in
number of operations of 35.57%. The proposed method achieves
greater reductions in number of operations as video resolution
increases. Moreover, a small or large QP (we assume a medium
QP to be 32) provides a greater reduction in operations.

The efficiency of optimal CU partitioning is defined as the
probability of obtaining the optimal CUs by performing a
quadtree node once. For the anchor, the CU partition time is
a constant determined by the number of nodes in the complete
quadtree. The optimal CU must be of CU size CU64, CU32,
CU16 or CU08, so the efficiency of the anchor is 0.25. For the
proposed method, the number of quadtree nodes is less than or
equal to those of the anchor. Therefore, the proposed method
obtains the optimal CU by performing fewer quadtree nodes. In
most instances, the efficiency of the proposed method is better
than 0.25. Occasionally, the omission of some low probability
nodes by the proposed method prevents it from obtaining the
optimal CU partitioning result. This deviation is reflected by
the BDPSNR drop and BDBR increase. However, the deviation
affects the coding efficiency only slightly, which we consider as
a fair trade for the coding complexity reduction.

In addition, the proposed method achieves a better coding per-
formance compared to other, similar fast quadtree algorithms.
Based on (10), the anchor is set to the same low complexity
quadtree used by the methods of [22] and [28]. Table VII com-
pares the coding performance of these two methods to the pro-
posed method’s results. Compared with the reference methods,
the proposed method maintains a good quality reconstructed
picture, the PSNR increases at most 0.15 dB, and the bit rate
drops at most 1.97%, maintaining the HEVC high compression
advantage. Most importantly, the proposed method further re-
duces encoding time an average of 8.67% and 6.09%, compared,
respectively to method [22] and method [28]. These results show
that the proposed method is more efficient than simply optimiz-
ing either the tree root node or the tree depth. Generally, the

TABLE VII
PERFORMANCE OF PROPOSED MECHANISM COMPARED

WITH SIMILAR METHODS UNDER LD

Class Compared with the method in [22] Compared with the method in [28]

BDPSNR (dB) BDBR (%) TS (%) BDPSNR (dB) BDBR (%) TS (%)

Class A 0.12 −1.04 4.50 0.01 −0.03 2.41
Class B 0.02 −1.78 9.72 −0.01 0.09 9.82
Class C −0.03 0.55 14.69 −0.02 0.18 14.09
Class D 0.01 0.02 10.02 0.01 0.06 4.18
Class E 0.15 −1.29 7.75 0.02 −0.05 3.92
Class F 0.12 −1.97 5.36 0.01 −0.04 2.11
Average 0.07 −0.92 8.67 0.00 0.04 6.09

TABLE VIII
PERFORMANCE OF PROPOSED MECHANISM COMPARED WITH HM15.0 FOR

VISUALLY LOSSLESS CODING AND LOSSLESS CODING UNDER LD

Class Proposed method for visually Proposed method for
lossless coding lossless coding

BDPSNR (dB) BDBR (%) TS (%) Bit-rate Increase
(%)

TS (%)

Class B −0.01 0.23 48.79 0.21 48.66
Class C −0.03 0.89 36.45 0.44 38.47
Class D −0.02 0.80 23.00 0.37 30.31
Class E −0.01 0.41 43.98 0.13 47.79
Class F −0.03 1.02 47.02 0.79 50.25
Average −0.02 0.67 39.85 0.39 43.10

proposed method achieves significant encoding time reduction
with negligible BDBR loss in comparison to the HM15.0 and
the state of the art low complexity quadtree methods.

Another experiment is designed to evaluate the performance
of the proposed method for lossless coding and visually lossless
coding. For the visually lossless condition, the QP is set to 0, 4,
8 and 12. For the lossless condition, QP is set to 0. The specific
configuration is sourced from [31]. Visually lossless or loss-
less compression is desirable for many professional applications
such as medical imaging, surveillance, and archiving. Table VIII
presents the coding performance of the proposed method in com-
parison to HM15.0 for the visually lossless and lossless condi-
tions. Average encoding time-savings of 39.85% and 43.10%,
respectively, are achieved, while maintaining a good RD per-
formance. Additionally, the proposed method achieves better
encoding complexity reductions for visually lossless and loss-
less coding than for lossy coding because, with small QPs, low
probability CU sizes (CU64 and CU32) occupy almost none of
the optimal CU distribution, making the new quadtree simpler.
Therefore, the proposed method provides a great approach to
complexity reduction for high quality video coding.

This paper also investigates the CU partitioning results and
object assessment of the proposed quadtree mechanism. The
CU partitioning results for the Johnny sequence are shown in
Fig. 8. The proposed method chooses not to perform an 8 × 8
CU size, due to the large number of still and flat background
blocks. Hence, the proposed method may lose some details in
lossy coding. However, it can be observed that, although CU

GAO et al.: QUADTREE DEGENERATION FOR HEVC 2329

Fig. 8. Object assessment between different CU partitioning results.

partitioning results in proposed method do not contain a CU
of size 8 × 8 in the facial area, the reconstructed picture has
little object difference compared to the HEVC method. This is
because the QP has a greater impact on quality degeneration than
does partitioning the CU without a CU of size 8 × 8. With the
lossy coding QP, the details are missing regardless of whether
the encoder performs a CU of size 8 × 8. The proposed method
uses a simpler quadtree to achieve a similar CU partitioning
result.

Generally speaking, the quadtree probability mechanism suc-
cessfully reduces CU encoding complexity by degenerating the
quadtree for each frame, reducing computing complexity and
memory usage and making the method appropriate for common
applications.

VI. CONCLUSION

Factors such as QP, GOP and scene content change greatly
affect CU partitioning. Our research emphasizes the importance
of degenerating the quadtree by both root node and depth. To
maintain compression performance, quadtree degeneration con-
siders QP, GOP and scene content change. Successful quadtree
degeneration provides an effective fast CU encoding scheme
without adding computing complexity, further validating the
universality of low complexity algorithms.

In this paper, a quadtree probability mechanism is proposed
for quadtree degeneration. We examine CU distribution to ad-
dress the high computational complexity caused by the traver-
sal of the complete quadtree in HEVC, and propose a quadtree
probability mechanism for optimizing quadtree degeneration.
We show that CU distribution is related to encoder parameters
and changes in scene content. Based on this discovery, the QPM
and QPU are designed to create a new quadtree model and up-
date it. The QPM and QPU of the proposed method together
provide better performance compared to HM15.0 and state of
the art fast CU size decision algorithms. The experimental re-
sults show that the proposed quadtree probability mechanism
achieves 24% encoding time reduction on average for lossy cod-
ing and an average 42% encoding time reduction for (visually)
lossless coding. Compared with HM15.0, the average number
of operations is reduced 36%. Compared to other advanced fast
CU size decision algorithms, the proposed method also achieves

an 8% encoding time reduction. The proposed quadtree prob-
ability mechanism prunes the original quadtree, avoiding low
probability CU traversal, reduces unnecessary encoding time
and achieves similar compression performance to the original
tree. Fundamentally, the proposed quadtree probability mecha-
nism efficiently improves the performance of HEVC real-time
encoding and can be combined with other fast video coding
techniques to accelerate encoding speed. Additionally, we be-
lieve the proposed quadtree probability mechanism can be used
for various applications with limited computational resources.

REFERENCES

[1] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[2] G. J. Sullivan, J. Gary, and J. R. Ohm “Recent developments in standard-
ization of high efficiency video coding (HEVC),” presented at the SPIE
Applications of Digital Image Processing, San Diego, CA, USA, 2010.

[3] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand “Com-
parison of the coding efficiency of video coding standards—including
high efficiency video coding (HEVC),” IEEE Trans. Circuits Syst. Video
Technol., vol. 22, no. 12, pp. 1669–1684, Dec. 2012.

[4] D. Marquardt, M. Jongbloed-Pereboom, and B. Staal “Performance com-
parison of H.265/MPEG-HEVC, VP9, and H. 264/MPEG-AVC encoders,”
in Proc. Picture Coding Symp., 2013, pp. 394–397.

[5] H. Li, K. N. Ngan, and Q. Liu “FaceSeg: automatic face segmentation
for real-time video,” IEEE Trans. Multimedia, vol. 11, no. 1, pp. 77–88,
Jan. 2009.

[6] S. Ma, S. Wang, and W. Gao “Low complexity adaptive view synthesis
optimization in HEVC based 3D video coding,” IEEE Trans. Multimedia,
vol. 16, no. 1, pp. 266–271, Jan. 2014.

[7] A. Jiménez-Moreno, E. Martı́nez-Enrı́quez, and F. Dı́az-de-Marı́a. “Mode
decision-based algorithm for complexity control in H.264/AVC,” IEEE
Trans. Multimedia, vol. 15, no. 5, pp. 1094–1109, Aug. 2013.

[8] Z. Ma, H. Hu, and Y. Wang “On complexity modeling of H.264/AVC
video decoding and its application for energy efficient decoding,” IEEE
Trans. Multimedia, vol. 13, no. 6, pp. 1240–1255, Dec. 2011.

[9] K. Won and B. Jeon “Complexity-efficient rate estimation for mode de-
cision of the HEVC encoder,” IEEE Trans. Broadcast., vol. 61, no. 3,
pp. 425–435, Sep. 2015.

[10] Y. Zhang, S. Kwong, and X. Wang “Machine learning-based coding unit
depth decisions for flexible complexity allocation in high efficiency video
coding,” IEEE Trans. Image Process., vol. 24, no. 7, pp. 2225–2238,
Jul. 2015.

[11] F. Ye “An adaptive CU mode decision mechanism based on Bayesian
decision theory for H. 265/HEVC,” in Proc. IEEE Int. Conf. Multimedia
Expo, 2014, pp. 1–6.

[12] H. S. Kim and R. H. Park “Fast CU partitioning algorithm for HEVC using
an online-learning-based bayesian decision rule,” IEEE Trans. Circuits
Syst. Video Technol., vol. 26, no. 1, pp. 130–138, Jan. 2016.

[13] L. Shen, Z. Zhang, and P. An “Fast CU size decision and mode decision al-
gorithm for HEVC intra coding,” IEEE Trans. Consum. Electron., vol. 59,
no. 1, pp. 207–213, Feb. 2013.

[14] M. Zhang, Y. Zhang, and H. Bai “Fast CU Splitting in HEVC Intra cod-
ing for screen content coding,” IEICE Trans. Inf. Syst., vol. 98, no. 2,
pp. 467–470, 2015.

[15] S. Cho and M. Kim “Fast CU splitting and pruning for suboptimal CU
partitioning in HEVC intra coding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 23, no. 9, pp. 1555–1564, Sep. 2013.

[16] Y. J. Ahn and D. Sim “Square-type-first inter-CU tree search algorithm
for acceleration of HEVC encoder,” J. Real-Time Image Process., vol. 12,
pp. 419–432, 2015.

[17] J. Xiong, H. Li, F. Meng, S. Zhu, and Q. Wu “MRF-based fast HEVC
inter CU decision with the variance of absolute differences,” IEEE Trans.
Multimedia, vol. 16, no. 8, pp. 2141–2153, Dec. 2014.

[18] J. Xiong, H. Li, and Q. Wu “A fast HEVC inter CU selection method
based on pyramid motion divergence,” IEEE Trans. Multimedia, vol. 16,
no. 2, pp. 559–564, Feb. 2014.

[19] S. Ahn, B. Lee, and M. Kim “A novel fast CU encoding scheme based on
spatiotemporal encoding parameters for HEVC inter coding,” IEEE Trans.
Circuits Syst. Video Technol., vol. 25, no. 3, pp. 422–435, Mar. 2015.

2330 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 12, DECEMBER 2016

[20] J. Lee, S. Kim, and K. Lim “A fast CU size decision algorithm for HEVC,”
IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 3, pp. 411–421,
Mar. 2015.

[21] L. Shen, P. An, and Z. Zhang “A 3D-HEVC fast mode decision algorithm
for real-time applications,” ACM Trans. Multimedia Comput. Commun.
Appl., vol. 11, no. 3, 2015, Art. no. 34.

[22] Y. F. Cen, W. L. Wang, and X. W. Yao “A fast CU depth decision mecha-
nism for HEVC,” Inf. Process. Lett., vol. 115, pp. 719–724, 2015.

[23] L. Shen, Z. Liu, and X. Zhang “An effective CU size decision method for
HEVC encoders,” IEEE Trans. Multimedia, vol. 15, no. 2, pp. 465–470,
2013.

[24] S. Huade, L. Fan, and C. Huanbang “A fast CU size decision algorithm
based on adaptive depth selection for HEVC encoder,” in Proc. Int. Conf.
Audio, Language Image Process., 2014, pp. 143–146.

[25] Y. Song and K. Jia “Early merge mode decision for texture coding in 3D-
HEVC,” J. Visual Commun. Image Representation, vol. 33, pp. 60–68,
2015.

[26] C. S. Park, B. G. Kim, G. S. Hong, and S. K. Kim “Fast coding unit
(CU) depth decision algorithm for high efficiency video coding (HEVC),”
Advances in Computer Science and Its Applications. Berlin, Germany:
Springer, 2014. pp. 293–299.

[27] G. Chi, X. Jin, and Q. Dai “A quad-tree and statistics based fast CU depth
decision algorithm for 3D-HEVC,” in Proc. IEEE Int. Conf. Multimedia
Expo Workshops, 2014, pp. 1–5.

[28] L. Guo, L. Zhou, and X. Tian “Adaptive coding-unit size selection based
on hierarchical quad-tree correlations for high-efficiency video coding,”
J. Electron. Imag., vol. 24, no. 2, 2015, Art. no. 023036.

[29] H. Yu “Common conditions for screen content coding tests,” presented at
the 18th Joint Collaborative Team Video Coding Meeting, Sapporo, Japan,
Paper JCTVC-R1015, 2014.

[30] G. Bjontegaard “Calculation of average PSNR differences,” Calculation of
Average PSNR Differences between RD-curves,” presented at the Video
Coding Experts Group Meeting, Austin, TX, USA, 2001.

[31] “Using qp=0, 4, 8, 12 for visually lossless coding experiments and
results from SC coding by packed pixel Pseudo-2D-matching inte-
grated with HM12.0RE4.0” Joint Collaborative Team on Video Coding
of ISO/IEC and ITU-T, Geneva, Switzerland, JCTVC-O0269, Oct. 23
2013.

Yuan Gao received the M.E. degree in circuit and
system engineering from the Beijing University of
Technology, Beijing, China, in 2016.

His research interest includes low complexity
video coding and low bitrate video coding for AVC
and HEVC.

Pengyu Liu received the Ph.D. degree in circuit and
system engineering from the Beijing University of
Technology, Beijing, China.

She is currently an Associate Professor with
the College of Electronic and Control Engineering,
Beijing University of Technology, Beijing, China.
She has authored or coauthored more than 30 aca-
demic papers in the video coding field indexed by
SCI/EI. Her research interest includes the develop-
ment of multimedia information processing and in-
tensive study of video coding technology.

Yueying Wu received the B.E. degree from Beijing
University of Technology, Beijing, China, in 2014,
where she is currently working toward the M.E. de-
gree in information and communication engineering.

Her research interest includes video coding.

Kebin Jia received the Ph.D. degree in signal and in-
formation processing from the University of Science
and Technology of China, Hefei, China.

Since 1998, he has been with the College of Elec-
tronic and Control Engineering, Beijing University
of Technology, Beijing, China. He is responsible for
the national 973 project, national science support
plan (sub-topic), and National/Beijing Natural Sci-
ence Foundation projects. He has authored or coau-
thored more than 150 SCI/EI papers and published
two monographs. His research interests includes im-

age/video content retrieval technology, 3D video fast coding, transcoding and
processing technology, internet-based multimedia information processing tech-
nology, and biomedical image processing technology.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

