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The Accuracy of Subjects in a Quality Experiment:
A Theoretical Subject Model

Lucjan Janowski and Margaret Pinson

Abstract—How accurately are people able to use the
absolute category rating (ACR) 5-level scale? Put another way,
how repeatable are an individual subject’s scores? Several
subjective experiments have asked subjects to rate the same
sequences a couple of times. Analyses indicate that none of the
subjects exactly repeated their prior scores for these sequences.
We would like to better understand this imperfection. This paper
uses ACR subjective video quality tests to explore the precision
of subjective ratings. To make formal measurements possible, we
propose a theoretical subject model that is the main contribution
of this paper. The proposed subject model indicates three major
factors that influence accuracy: subject bias, subject inaccuracy,
and stimulus scoring difficulty. These appear to be separate
random effects and their existence is a reason why none of the
subjects were able to perfectly repeat scores. There are three key
consequences. First, subject scoring behavior includes a random
component that spans approximately half of the rating scale.
Second, the sensitivity and accuracy of most subjective analyses
can be improved if the subject scores are normalized by removing
subject bias. Third, to some extent, multiple subjects can be
replaced with a single subject who rates each sequence multiple
times.
Index Terms—Design of experiments, mean opinion score,

quality of experience (QoE), subject model, subjective ratings,
video quality assessment.

I. INTRODUCTION

S UBJECTIVE experiments are key tools that link technical
solutions with human perception. A typical subjective ex-

periment presents a particular aspect of a service to a group of
subjects, to validate the service in specific way. The collected
answers are used to reach conclusions and make product devel-
opment decisions.

A. Motivation
The goal of many subjective experiments is to revel the

Quality of Experience, typically scored on a scale ranging
from “Bad” to “Excellent.” A subjective experiment, as any
measuring process, contains errors. The most common way
to deal with those errors is focusing on mean opinion scores
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(MOS), which are more stable. While MOSs portray elegant
trends, individual subjective ratings are messy indeed. Each
subject’s ratings have a confidence interval (CI), an error
term if you will. Subjects use the scale differently, and these
differences can seem troubling. Our inclination is to seek order
in this chaos. We believe that understanding the source and
magnitude of a single subject error helps to plan and analyze
more precisely future subjective experiments. Especially it
allows to use simulation as a tool analyzing an experiment with
low cost before the real subjects are invited to the laboratory.
An example of simulation analysis of a subjective experiment
can be found in [1]. A validated subject model makes such
simulation accurate and more general.
Some researchers proactively seek improved subjective test

methods. One example is to change the scale by using Double
Stimulus Continuous Quality Scale (DSCQS), Double Stimulus
Impairment Scale (DSIS), ACR 11-grade scale (ACR11), PC
(Pair Comparison), or another scale, in the hope that the preci-
sion of a subject’s ratings will improve. Alas, comparisons be-
tween discrete and continuous scales indicate no improvement
[2], [3], suggesting that subjective test methodology is not the
main reason why the obtained results are so strongly scattered.
The interesting question is, why?
Other researchers reactively reduce chaos by screening sub-

jects. The goal is to eliminate irrelevant subjects, such as people
who misunderstood the task. That is difficult, so we rely upon
post-screening algorithms with somewhat arbitrary thresholds
(e.g., Clause 11.3 of ITU-T Rec. P.913). The consequence is to
discard subjects with noisy data—regardless of whether or not
these are valid subjects. The scientific method instead demands
that we seek a deeper understanding of subject rating behaviors
and account for these human failings in our technique.

B. Contribution

The main innovation within this paper is the modeling of sub-
ject rating behavior. We propose an equation that describes sub-
ject rating behaviors; we name this equation the “theoretical
subject model.” Thanks to this equation, different characteris-
tics of subjects and subjective experiments can be derived.
The main goal of the paper is to prove that the propose model

is valid, covers different aspects of subjects behavior, and can
be used to improve subjective experiments. It is important to
understand that the proposed model does not model the quality
of a video or other stimulus. The goal is to model the process of
a subject giving an answer.
The remainder of this paper is structured as follows.We begin

by examining the rating behaviors detected in prior subjective
tests. Next, we present a subject scoring model and use discrete
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TABLE I
NULL IMPAIRMENT RATINGS FOR ITS1 DATASET

mathematics to analyze subject rating behaviors within discrete
subjective testing data. Then we derive formulae that measure
specific terms in our subject model. We look for direct evidence
supporting our subject model by applying these formulae to sub-
jective datasets, and then look for indirect proof by examining
behaviors predicted by our subject model. We close by exam-
ining the practical implications of our subject scoring model.

II. RELATED WORK

Publicized subjective quality tests occasionally include lim-
ited statistics on the distribution of rating changes. Most of this
information comes from analyses of the original stimuli. This is
called a hidden reference or the null impairment.
Let us begin with subjective video quality experiment ITS1,

conducted in 1992 [4]. The ITS1 experiment used the double
stimulus impairment scale (DSIS). With DSIS, the subject
watches the original video, watches the impaired video, and
then rates the severity of the impairment on a discrete 5-level
scale:
1) imperceptible;
2) perceptible but not annoying;
3) slightly annoying;
4) annoying; and
5) very annoying.
The ITS1 experiment was conducted on broadcast quality,

uncompressed analog format tapes (Betacam-SP). None of the
original videos were digitally compressed, so the only likely
difference between two copies of the original video was a small
amount of analog noise due to copy generation or repeated tape
use.
ITS1 included the null impairment for six original video se-

quences (SRC). Thus, the original video was played twice and
the difference rated. These null impairments ratings are shown
in Table I. From this, we see that subjects do not always rate
the null impairment as imperceptible. The SRC with the lowest
differential mean opinion score (DMOS) depicts the beginning
of a car race and it is the most difficult to code.
The T1A1 subjective experiment [5] was conducted in

1994-1995 to analyze objective video quality models. T1A1
was a subcommittee of the American National Standards
Association (ANSI) accredited Alliance for Telecommunica-
tions Industry Solutions (ATIS). Subjective data was gathered
at three laboratories using DSIS, four viewing sessions and
Betacam-SP tapes. Like ITS1, none of the original SRCs were
digitally compressed.
The T1A1 test included the null impairment for all 25 SRCs.

Of these approximately 900 ratings, in 19 cases (2%) a subject
rated the null impairment three or less (i.e., slightly annoying,
annoying or very annoying). For DSIS there is a “true” answer
(imperceptible), so these are two or more levels lower than the
expected rating. These 19 cases were all associated with three
SRCs. Of these, two are difficult to code. The quality of the third

TABLE II
NULL IMPAIRMENT RATINGS FOR MUSHRA

TABLE III
ABSOLUTE DIFFERENCE BETWEEN T1A1 REPEATED RATING PAIRS

SRC is poor, as per the absolute category rating (ACR) scale.
The average null impairment rating over all SRCs and subjects
was 4.87 [6].
This behavior has been interpreted as a flaw in the DSIS

method, such that it imposes a negative bias on the DMOS rating
received by original. Some researchers have theorized that the
bias results from the lack of a “quality improvement” rating
level, which forces quality improvements to be rated as percep-
tible but not annoying (4). Note however that the T1A1 experi-
ment did not include any intended quality improvement.
The DSIS null impairments scores may instead demonstrate

the existence of subject imprecision, by which we mean imper-
fections in perception, memory and judgment. The subject may
notice a flaw in the second viewing of the original that was not
noticed upon the first viewing. As an example, one of the three
T1A1 scenes that received low ratings is ANSI T1.801.01 stan-
dard test sequence cirkit, which zooms in on a circuit diagram
depicting thin black lines on a white sheet of paper. These black
lines occasionally appear to shimmer when viewed on a CRT.
Other double stimulus ratings of original stimuli can be found

in audio quality subjective tests conducted with MUSHRA [7].
A computer interface presents the subject with multiple ver-
sions of the same audio clip, including the explicit reference
(labeled), the hidden reference (unlabeled) and multiple impair-
ments. The subject replays and compares stimuli before rating
each on a continuous scale spanning [0..100]. The subject is
instructed to rate the explicit reference as excellent (100). Al-
though the hidden reference is always rated, papers do not al-
ways report the ratings for the hidden reference. Table II re-
ports a few MUSHRA hidden reference MOS values that were
clearly labeled as such. These values show the same trend that
was observed with DSIS: the null impairment is occasionally
rated slightly lower than expected.
The T1A1 test provides us with a limited number of direct

observations of multiple ratings by a single subject for iden-
tical stimuli. Within each of the four sessions, the subject rated
one stimulus twice for the purpose of examining viewer reli-
ability. Subjects were divided into three pools, and each pool
used a different set of stimuli for these viewer reliability checks.
Table III shows the distribution of rating differences between
these two scores for the same stimuli, aggregated over all 114
subjects and all 12 stimuli [6]. Three ratings were missing, and
these statistics include subjects who were later removed.
Note that score changes of or more are much more

common in Table III than we saw for the prior null impairment
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statistics. This may reflect a difference in the difficulty of the
scoring task. The null impairment statistics reflect the simple
task of comparing a stimulus to itself. For both DSIS and
MUSHRA, the expected rating value is pegged at the top end
of the quality scale. By contrast, the stimuli used to calculate
Table III lay in the middle of the quality range (from 1.96
to 4.04, average 3.17) and contained digital coding artifacts.
Moreover, 54% of the subjects had no prior experience with
this technology [6].
The T1A1 subjective test relied upon repeated sequence

scores and vision tests to screen subjects. An analysis of
standard error indicated that reducing the number of subjects
from 114 to 90 was more harmful than including the noisy data
from the 24 screened subjects. Standard error was smaller for
the 114 subjects, which is advantageous for all analyses that
use averaged data (e.g., MOS). [6]. This suggests that subject
scoring imprecision acts as a random variable within subject
ratings.
An examination of 95% confidence intervals forMOSs shows

greater or lesser agreement among subjects depending upon the
stimuli (e.g., Fig. 2 of [11]) that cannot be explained by differ-
ences in MOSs. Kovács et al. [12] performed a subjective test
that mimics a “tumbling E” eye chart, to determine the mon-
itor’s effective spatial resolution. The results shows large error
bars for the worst quality level—larger than we would expect
if the data were only driven by random chance. This indicates
that even if we eliminate differences of opinion, subjects do not
agree (e.g., due to differences in rating accuracy, visual system,
and stimuli).
Cermak and Fay [6] analyzed the behavior of subjects in

the T1A1 experiment and concluded that subjects center their
scores around different fulcrum points. Cermak and Fay tried to
explain this behavior using the subject ratings and questionnaire
data gathered for the 114 subjects (i.e., gender, experience with
video teleconferencing, age, visual acuity, color vision). Their
conclusion was that demographic differences and the subject’s
choice of fulcrum point were not meaningful in predicting rat-
ings of video quality. Their theory is supported by Pinson et al.
[13], which serves as the starting point for the subject model
presented in this paper.
Ostaszewska and Żebrowska-Łucyk [14] and van Dijk et al.

[15] model subject ratings around the assumption that neither
the subject’s choice of fulcrum point nor the range of the sub-
ject’s ratings are meaningful. In van Dijk et al. [15], the data is
normalized without proposing a detailed subject model. Some
of the conclusions that we reach in this paper support the nor-
malization method proposed in [15]. We also include a deeper
understanding of when it can be used. An interesting alterna-
tive was proposed by Ostaszewska and Żebrowska-Łucyk [14],
where a subject model is proposed. That model focuses on er-
rors generated by differences between subjects. We believe that
such differences cannot always be removed. Individual opinion
is a core factor in quality of experience (QoE) research.
Hossfeld, Schatz and Egger [16] examined the relationship

between MOS and standard deviation of opinion scores (SOS).
Their analysis of the discrete 5-level scale indicates a square
relationship between MOS and SOS as follows:

(1)

Fig. 1. AGH/NTIA was run in a sound isolation chamber.

where is MOS and characterizes the dataset. Based on pub-
licly available datasets, was estimated to be 0.04 for image
coding artifacts; 0.13 to 0.21 for video streaming; 0.27 to 0.34
for cloud gaming; and 0.27 to 0.59 for web surfing delay pat-
terns. Variable appears to measure the difficulty that subjects
had scoring the stimuli within a particular dataset. The model
proposed in our paper also contains a term describing stimulus
difficulty, and as such is in line with the research presented in
[16].

III. DATASETS

We will use 18 different subjective experiments to analyze
our subject model. Dataset AGH/NTIA provides us with
training data, while the other 17 experiments are used to verify
our results.

A. Subjective Video Quality Experiment AGH/NTIA

We designed the AGH/NTIA experiment to investigate the
following three issues:
• the behavior of subjects;
• the impact of source video reuse on subjective data; and
• the suitability of subject screening methods.
All three investigations depend upon the availability of

repeated scores for the same stimulus (e.g., subjects can be
screened by repeated scoring of the same stimulus). However,
the three design goals resulted in a complicated experiment
design. A simplified experiment summary is presented here,
and the full description can be found in [17].
Experiment AGH/NTIA is an ACR test conducted according

to ITU-T Rec. P.910. This video-only experiment used 1080p
30fps content displayed on a laptop using a beta version of the
web-enabled subjective test (WEST) software [18]. The WEST
software runs subjective experiments from a local drive or over
a network. It is able to randomize the provided sequences or
display them in particular order, as was done for AGH/NTIA.
The AGH/NTIA videos were played on a laptop with 17” screen
(see Fig. 1). The WEST software recorded the ACR scores and
ended each session with an automated questionnaire. Subjects
rated video in three sessions.
The experiment included five hypothetical reference circuits

(HRC). The HRCs were manually chosen to present five quality
levels:
• original;
• good plus;
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• good minus;
• poor plus; and
• poor minus.
The experiment included 94 SRCs. A full matrix of SRC by

HRC was not used. Of the 470 possible processed video se-
quences (PVS), only 110 appeared in the experiment. Four of
the SRCs were impaired with all five HRCs. The other 90 SRCs
were only impaired with one HRC, such that there was an even
balance of 18 SRC per HRC.
The AGH/NTIA experiment was designed around three

viewing sessions. Each PVS was viewed and rated either once,
three times, or six times. By rating three or six times, we mean
that exactly the same 8 second long PVS was shown to a subject
three or six times. Never was the same SRC shown one after the
other, therefore the same PVSs shown in the same session were
always separated by other PVSs. Subjects did not know that
some PVSs were shown more than once. PVSs that were rated
six times appeared twice in each of the three sessions; PVSs
rated three times appeared once in each session; and PVSs
rated once appeared either in session two or session three. Note
that this paper uses three subsets of the AGH/NTIA experiment
for different purposes: PVSs rated three times, PVSs rated six
times, and PVSs rated either three or six times.
Twenty eight subjects participated in the experiment. Sub-

jects were randomly assigned to one of two orderings (“red”
and “blue”). Due to the nature of the experiment, session order-
ings were held constant (e.g., all people in ordering red had an
identical viewing experience with regards to stimulus ordering).
Twenty seven of the subjects were obtained from a temporary
hiring agency. One subject was a visiting researcher, who was
instructed to maintain maximum scoring consistency (i.e., try to
repeat the prior rating for each stimulus).
Two subjects were intentionally given incorrect instructions,

in an attempt to simulate two subjects who misunderstood the
test instructions. These incorrect instructions asked the subject
to jointly rate both the quality of the sequence and their opinion
of the content. Only one of these two subjects appeared to be an
outlier (i.e., ratings were obviously different than MOS com-
puted with the other subjects’ ratings). Those subjects should
be removed from a typical experiment. We intended to add them
to increase the variability of the subject’s behavior in order to
verify the proposed model. Nevertheless, the primary reason to
run this experiment was to derive themodel for a typical subject.
All subjects were retained for this analysis, because our focus

was subject repeatability. For this analysis, we were interested
only in the repeatability of subjects’ ratings, measured through
repeatedly rating the same PVS. We did not care whether or
not a subject was using the subjective scale correctly, by some
measure of correctness.

B. Other Datasets

We used 17 other subjective datasets to analyze our subject
model. Our evaluation is focused on the 5-point scale. The pos-
sibility of using this model for different scales is left as fu-
ture research. Therefore, all datasets presented within this paper
used the discrete 5-point ACR scale from “Excellent” to “Bad.”
These 17 ACR datasets were divided into three sets.

First is a collection of six high definition television (HDTV)
experiments conducted by the Video Quality Experts Group
(VQEG) to validate HDTV objective quality metrics. These
datasets are named vqegHD1, vqegHD2, vqegHD3, vqegHD4,
vqegHD5, and vqegHD6. The individual subject ratings are
included in the VQEG report [19]. Each subjective experiment
was designed according to identical specifications, to contain
a full matrix of 9 SRCs by 16 HRCs, plus a common set of
24 PVSs, for a total of 168 PVSs. The subjective data were
collected using the ACR method.
Second, dataset vqegMM2 is an audiovisual subjective

dataset that contains 60 PVSs. Subjective data was collected
at six different labs in ten different environments, for a total
of 213 subjects. The subjective data were collected using the
ACR method. For a summary of the experiment and access to
the subjective scores, see [20].
Third, dataset NTIA/Verizon [21] compares the performance

of MPEG-2 and AVC/H.264 on HDTV, both coding only and in
the presence of transmission errors. This experiment contains a
partial matrix design, drawn from 12 SRCs and 9 HRCs, for a
total of 144 PVSs. The subjective data was collected using the
ACR method.

IV. SUBJECT SCORING MODEL

The above cited work and our observations indicate that sub-
jects do not provide stable and repeatable scores. In order to
rigorously evaluate and be able to model such answers, we pro-
pose a subject scoring model. This model helps with not only
predicting but also describing the uncertainty coming from the
subjects.
A subjective quality test is a measurement of users’ opinions.

As with any measurement, subject opinion can be described by
a model. We propose the model given by

(2)

where:
• is the observed rating for subject , PVS , and repe-
tition ;

• is the true quality of PVS ;
• is the overall shift between the th subject’s scores and
the true value (i.e., opinion bias); and

• is the error (i.e., scoring imprecision)
We assume that:
• there is a true value , despite our inability to measure
this value in absolute terms;

• the random variable has zero mean when observed
across all subjects;

• is influenced by both a subject’s imprecision and the
PVS scoring difficulty (e.g., PVSs with consistent quality
throughout are easier to score consistently than PVSs with
spatial or temporal quality changes); and

• random variable has zero mean both generally (over all
subjects and PVSs and repetitions) and conditionally (for
a particular subject or PVS)

Thus, if the th subject is asked to rate the quality of PVS
many times, the obtained value should converge to . At
this point we are not discussing how to estimate . This true
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value could be based on many ratings from many users, who
could rate the sequencemore than once. Equation (2) is the same
as (1) from [22], except that the subscript has been added.1
The model given by (2) assumes that there is a true value

and a subject bias . In the case of quality measurement, this
is not obvious. QoE research shows that a subject’s opinion is
influenced by many factors [23]. Moreover, humans in general
are not precise in their answers andmany theoretically irrelevant
factors influence them [24]. Nevertheless, the most probable an-
swer [25] or mean can be used as , even if is influenced
by many factors. The important contribution of (2) is to divide
scoring error into two different terms, and , which can
be drawn from the greater complexity of a subject’s behavior.
Therefore, we will focus on major trends (measured system-

atically) and omit higher order variables (observed anecdotally).
We know that (2) may be too simplistic. Nevertheless, the model
can be useful only if it is simple enough that the model param-
eters can be estimated and detailed enough to provide useful
information. With in this paper, we prove that our model fulfills
the above criteria.
Our analysis of the proposed model will be conducted in three

steps. First, the notation is described. Second, the rating differ-
ences are analyzed based on the discrete nature of the answers.
Third, we assume that and are real numbers, and use
continuous variable analysis to further investigate the proposed
model.

A. Notation

The subject answer notation is a simplification of BT.500 no-
tation wherein means a score for subject , condition ,
source , and repetition . In this paper, marks a subject
score, where and are combined to single letter meaning
PVS (i.e., specific condition for specific source).
We present two separate analyses: one assuming , ,

and are discrete values and the other assuming continuous
values. The estimation of discrete values is denoted by with
an index denoting the estimated model parameter, for example

. Similarly estimation of the continuous values is denoted
by with an index, for example .
An example of our estimate of is the MOS (Mean Opinion

Score) obtained for PVS . This is denoted by and given by

(3)

where:
• denotes estimation from the data, assuming that the
model with continuous is considered;

• is the total number of subjects for PVS ; and
• is the total number of repetitions for PVS .
Besides MOS, standard deviation is also used and denoted by
and the variance is denoted by . For example, the standard

1In [22] the model is named “theoretical user model.” We changed the name
to “theoretical subject model” to emphasize that we are modeling subjects, i.e.,
users asked to rate quality in an experiment not users judging a service in the
real-life situation.

deviation of all answers obtained for PVS is denoted by and
given by

(4)

where:
• denotes estimated standard deviation; and
• denotes standard deviation computed over all sub-
jects and repetitions.

In some places we aggregate specific values. Thus we intro-
duce as a set aggregation. For example, a set of differences
between all repeated scores and the first score given by the same
subject is given by

(5)

where under means that all possible values are included.
(capital letter to indicate set) represents a set of values, and

a single value can appear multiple times. Therefore, is the
standard deviation of this set. To remove some elements of a set
we use the set subtraction sign . For example, means
that set contains elements of set decreased by number of
the same elements in set : thus if set contains five elements
equal to one and set contains three elements equal to one, then
the obtained set contains two elements equal to one.

V. DISCRETE MODEL ANALYSIS

The first step of the analysis is based on discrete values. Such
an assumption is correct from the formal mathematical point
of view. The ACR scale is ordinal so are ordinal and in
order to find the true quality we should use mode not mean [25].
Discrete analysis assumes that the distance between “Excellent”
and “Good” is not necessary the same as the distance between
“Good” and “Average.” The mean operation assumes that those
distances are the same and therefore it is incorrect to use mean
in the case of ordinal data. In addition, for this analysis we also
assume that and are discrete. In order to drive the results
presented in this section, we need PVSs scored by the same
subject more than once. Therefore, these analyses are based only
on the AGH/NTIA experiment, using both three and six repeats.
We think that in the case of the discrete analysis, it is reason-

able to choose as the most probable answer. In this case
and distract from the answer that we observe the most often.
For discrete analysis we use to denote

(6)

Similarly to the previous equation, in the case of discrete anal-
ysis, is computed as the most probable difference between
a subject score and . For discrete analysis we use to
denote

(7)



JANOWSKI AND PINSON: ACCURACY OF SUBJECTS IN A QUALITY EXPERIMENT 2215

Using the notation defined in (6) and (7), different subject
error distributions can be displayed. We start from an error dis-
tribution based only on the repeated scores and then we show
an error distribution according to the subject answer model [see
(2)].
The subject scoring of a PVS can be influenced by many fac-

tors. Nevertheless, if a subject scores the same PVS multiple
times, we can find the most probable answer (let us denote it by

). Thus is the intended answer of subject for PVS
and is given by

(8)

where calculates a discrete mode. If two values are
equally likely we select one at random. If three values are
equally likely we select the central one.
Knowing , a difference between a subject answer and

can be treated as an error. A set of all errors given by a single
subject is denoted by and given by

(9)

In (9), the term is needed to remove all zeros that
result from removing . Removing generates one zero
for each PVS. This extra zero is a property of the algorithm that
computes (not of the subject accuracy). Therefore, the extra
zero has to be removed.
The distribution of for each subject shows how far they are

scoring from their own most probable answer. Note that values
of different from zero do not come from a scoring model in-
accuracy, since no scoring model is used to calculate . The
only assumption is that multiple scores given by the same sub-
ject for the same PVS should be the same.
Fig. 2(a) shows the observed distribution of errors from

(9) as a normalized histogram. In Fig. 2(a) the image intensity
indicates the fraction of ratings in the bin, light yellow indicates
an empty histogram bin, and the y-axis identifies the histogram
bin ( ). Subjects are sorted by the probability of the
correct repetition (i.e., ), which ranges from 50%
to 82%.
From Fig. 2(a), we see that subjects are not capable of per-

fectly repeating subjective scores, even when using the cogni-
tively simple five-level ACR scale. All subjects occasionally
changed their score by one category. Even the most repeatable
subjects had 18% of scores different than the most probable
score given by the same subject for the same PVS. An inter-
esting observation is that the two most repeatable subjects, in
terms of the greatest probability of repeating , had values
of two, which is half of the scale.
Computing is difficult since a relevant value calls for

many repetitions and the estimated value can be imprecise.
On the other hand, in a typical experiment only one score per
PVS per subject is collected. We next address the case where
some repeats exist, but not enough to calculate . In this case
an interesting question is: how does a score change, assuming

Fig. 2. Error distribution for each subject sorted by probability of correct an-
swer. (a) Compared to mode. (b) Compared to the first score. (c) Compared to
model.

TABLE IV
DIFFERENCE BETWEEN AGH/NTIA REPEATED RATINGS

that the first score given by a subject for PVS is the correct
one. The set of such answers is denoted by and is given by

(10)

The distribution for different subjects is shown in Fig. 2(b),
and the probability of correct repetition ranges from 36% to
74%. Comparing Figs. 2(a) and 2(b) we see lower values of cor-
rect answers and stronger scattering. This is an obvious conse-
quence of choosing the first instead of themost common answer.
Table IV shows the overall distribution of for all subjects.
Analyzing Fig. 2(b), we can be sure that if a PVS is repeated it

has a high probability of being scored differently. Moreover the
difference by does not indicate that a subject is not relevant
since even those with the highest repeatability made such an
error. We also cannot see any clear pattern in the change of
the obtained distribution. One could expect that the order of
repeatability will also determine the order of the maximum
values. To the contrary, the fifth most repeatable subject has at
least one value of and the third least repeatable subject



2216 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 12, DECEMBER 2015

Fig. 3. Observed distribution of rating changes ( ) for each PVS, sorted by MOS (red dots).

has only very small number of and no other values
.

The distribution of needs repeated scores. In a typical ex-
periment the scores are not repeated and therefore an error dis-
tribution cannot be obtained. Nevertheless, thanks to the subject
model such a distribution can be estimated.
The distribution shown in Fig. 2(c) is based on the proposed

model given by (2). In this case a set of errors is denoted by
and given by

(11)

where and are given by (6) and (7), respectively. In
Fig. 2(c), the probability of correct repetition ranges from 38%
to 76%.
In Fig. 2(c) the distribution is shown. Comparing and
distributions we can see that they are similar from the point

of view of the range. The obtained distributions are statistically
different, which is to be expected as includes between sub-
ject–sequence interactions while does not. Regardless, this
shows that the proposed model covers subject variability well.
Therefore, (11) is recommended to be used to estimate error dis-
tribution in different experiments.
Scattering of the results obtained for each subject shows that

individual subjects cannot repeat answers precisely. We also
know that individual subjects do not agree on answers. One of
the questions is how much PVSs influence this lack of repeata-
bility and agreement. In order to answer this question of vari-
ations both within and between subjects, we computed distri-
bution of differences between the most probable answer for a
particular PVS (i.e., ) and the actual answer. Such set is de-
noted by and given by

(12)

Fig. 3 shows the observed distribution of from (12) as a nor-
malized histogram, with PVSs sorted by MOS. The image in-
tensity indicates the fraction of ratings in the bin, light yellow
indicates an empty histogram bin, and the left side y-axis iden-
tifies the histogram bin ( ). MOS is displayed on the
right side y-axis and plotted as red dots.
From this figure, we see a spread of ratings for each PVS

that typically spans three of the five levels. In no case do all
responses fall on a single rating, and in some cases the ratings
span the entire scale. We see more PVSs with the higher MOS
since original sequences are analyzed as well.

The greatest repeatability (within and between subjects)
is 93% in case of very bad quality. The best quality PVSs
cannot obtain such vote uniformity. This shows that there
is greater agreement (within and between subjects) for bad
quality than for good quality. The worst repeatability is 31% for
sequence ; further investigation of
this sequence shows that it cuts between content with different
qualities and thus is difficult to score consistently. We will come
back to this problem later in the case of continuous analysis.
Note that includes the influence of both and on

the observed scores’ unrepeatability. From Fig. 3 it cannot be
deduced if the observed spreading of scores is caused by differ-
ences among subjects ( ) or by errors they make ( ). Such
analysis for discrete and requires a large number of repe-
titions and subjects. Therefore, in the next section we present an
analysis based on the assumption that and are continuous
values.

VI. CONTINUOUS MODEL ANALYSIS

We now choose to assume that and are continuous, so
their estimations must be redefined compared to (6) and (7). The
continuous subject model is different from the discrete subject
model. A continuous model will reveal different characteristic
of the subject scoring process. For the continuous analysis we
assume that is a deviation from a true value . We
assume that such deviations have a mean value of zero [see (3)].
Therefore, in the case of the continuous analysis is the mean
value denoted by and is given by (3).
Let us define the observed bias of each subject with respect

to . It is denoted by and given by

(13)

In other words, estimates by taking the average differ-
ence between the th subject’s ratings and all subjects’ ratings.
Equation (13) follows from substituting for in our sub-
ject model (2), as shown in Janowski and Pinson [22].
We will now present a series of analyses that indicate the

correctness of our proposed model, using continuous analysis.
Taken together, these analyses will prove the utility of our sub-
ject model from (2).

A. Analysis of

We begin by demonstrating that each subject has a bias and
that the bias is stable.
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Fig. 4. Observed distribution of subject bias ( ) with 95% confidence inter-
vals, for dataset AGH/NTIA.

Fig. 5. Normal probability plot of indicates an approximately normal
distribution.

Fig. 4 shows for dataset AGH/NTIA, with subjects sorted
by . The small CIs2 indicate that is stable.
Fig. 5 shows the normal probability plot of for all nine

datasets mentioned in Section III. Variable has mean zero
and standard deviation 0.34. From this, we can see that has
a normal distribution and 85% of the calculated values of
fall into the range (which is one-quarter of the full scale).
We have shown that has a small confidence interval. This

demonstrates that is stable, and we can reasonably treat this
as a variable that depends upon . It appears to be reasonable to
ignore the underlying complexities that we know occur (e.g.,
compression near the end of the ACR scale).

B. Analysis of

We now examine the error term, . We understand error
to mean the standard deviation of the error. In Section V, we
saw evidence that the error term is a function of both subject
and PVS. We now seek a model that incorporates both factors.
Let be an error parameter for the th subject and let be
an error parameter for the th PVS. The two simplest possible
models for are as follows.
1) Multiplicative model: is a random variable with mean

zero and standard deviation , i.e.

(14)

where .

2CI is CI for mean with assumption that the sample follows normal
distribution.

Fig. 6. Scoring difficulty measured by number of rating levels used over three
repetitions: level, levels, and levels. Subjects
and PVSs are sorted by the average number of levels used.

2) Additive model: is a sum of two random variables with
standard deviations and , i.e.

(15)

where , and and are independent.
The philosophy behind each model is different. In the case of

the multiplicative model we say that if a PVS is very easy (small
) the observed variance, even for an inaccurate subject (high
), is small. Also the reverse situation is true. So if a subject

is very stable (small ), even for a very difficult PVS (high )
the obtained variance is relatively small. On the other hand, for
the additive model we say that PVS and subject error level are
independent. So for a difficult PVS even a perfect subject will
make significant errors because there is a PVS error level which
cannot be decreased.
With the data we have it is not possible to decide whether

(15) or (14) is more correct. Nevertheless, we think that the ad-
ditive model is more appropriate. Evidence is shown in Fig. 6,
which is a visual representation of the rating accuracy for each
subject and each PVS, limited to PVSs that were rated exactly
three times (i.e., once per session). Fig. 6 indicates that an addi-
tive error model is more likely than a multiplicative model. We
see that the most difficult PVSs are not much more repeatably
scored by the most repeatable subjects than by the least repeat-
able subjects.
Equation (15)may be too simplistic. It is possible that the sub-

ject model should contain both terms, (15) and (14), along with
other variables not yet considered. However, we want model pa-
rameters that can be estimated and the theoretical equations are
much easier if we choose (15). Therefore, we will move forward
with the additive model given by

(16)

where , and and are independent.
The first step of the model analysis is and estimation.

Since the standard deviation of in the case of additive model
is , estimation of and is based on the variance
of , not standard deviation.
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1) Estimation in the Case of Multiple Answers Per PVS: We
start with PVSs that were scored numerous times by each sub-
ject. In this case, a standard deviation of the th PVS scored by
the th subject can be computed. Let us denote it by , which
is an estimation of the true standard deviation. We propose to
minimize the squared difference between the observed variance
and the model variance, as given by

(17)

where and are vectors of all and respectively.
The above equation is a function of and , since are

obtained from the data and are known. We are looking for the
minimum of (17). Note that all and are standard deviations
so they cannot be negative. So the minimization problem is

(18)

Equation (18) is not the only possible way to estimate and
parameters. As a future research topic, we will analyze dif-

ferent options and choose the one that gives the best estimator.
All candidates for the minimum of (18) can be obtained by

setting the derivative of (18) with respect to each and to
zero. The obtained derivative has the form

(19)

and a similar expression is obtained for the derivative with re-
spect to .
The obtained equation has two possible solutions

(20)

or

(21)

In the case of derivative over we have

(22)

or

(23)

The above equations generated many alternative sets of equa-
tions that are different by the choice of the indexes of and ,
which are zeros. From those equations the optimal solution can
be found. Since such a procedure would be complicated we pro-
posed a simpler solution. Nevertheless, we need a proof that the
above proposed solution is optimal. This is left for future re-
search.
Transforming (21) and (23) we obtain

(24)

(25)

The above equations have similar means over certain vari-
ances. For simplicity we introduce notation

(26)

and

(27)

which simplifies (24) and (25) to:

(28)

(29)

Additionally we assume that all and are in increasing
order. Such an assumption does not change anything, since the
numbers that link with a particular subject or PVS are not im-
portant from the computation point of view.
Let us assume that all and are greater than zero. In this

case (24) and (25) are used to estimate and . Since we have
as many equations as variables and one of those equations is a
linear combination of the other equations, there is no unique
solution. Instead we can find an infinite number of solutions,
which are function of a single free parameter. In order to find a
solution, we say that (the smallest ) or equals . Let us
assume that the smallest value is so based on (24) we
can say that

(30)

Note that the order of determines the order of . There-
fore, the smallest value was used to estimate .
The final equations for and , which depend on , are

(31)

and

(32)

If all obtained results are positive, we are looking for a unique
solution. A unique solution is obtained by choosing a particular
value of . The value of can be interpreted as trade between
difficult PVSs or inaccurate subjects. Since we cannot decide
which situation occurred a simple solution where is used.
However, (32) can result in negative values. In this case we

conclude based on (20) that . For , (25) is not valid
anymore since we used alternative equations. Therefore, the set
of equations (24) and (32) have new forms. Equation (24) is
valid for and (32) has the form

(33)



JANOWSKI AND PINSON: ACCURACY OF SUBJECTS IN A QUALITY EXPERIMENT 2219

where the sum starts from 2, not 1 as it did previously. In this
case the set of equations are not linearly related and can be
solved. Again some solutions can be negative. In this case
the smallest value should be changed to zero and the next set
of equations should be solved. The set of positive solutions
is found iteratively. We used actual values of from the
AGH/NTIA subjective test results to verify the new algorithm
described in (24) through (33). Specifically, we applied a
commercially available optimization problem solver to (17)
and found that it produced the same values of and as the
new algorithm in every case. A formal proof of optimality is
outside the scope of this paper.
2) Estimation in the Case of a Single Answer Per PVS: Equa-

tions (31) and (32) can be computed only if numerous answers
per PVS are given by the same subject. Such data are expensive
for the researcher and boring for the subject. In a typical sub-
jective experiment a single PVS is scored once by a subject. We
want equations for and that require only one answer per
PVS per subject, i.e., without repetitions on . Using the
proposed model it is possible.
We cannot derive the equation based on the variance estima-

tion since only one answer per subject and PVS is known.
Nevertheless, an error given by single subject can be measured
assuming that and are known by the equation

(34)

where is a residual of the answer after removing the PVS
and subject influence.
According to the additive model, , both

and are independent normally distributed variables with mean
zero and standard deviation 1. Collecting answers from different
subjects and the same PVSwill give us a set of random variables
from different distributions for which variances are .
Since this result is not obvious it is proved in Appendix B.
Computing the variance of for a fixed is the same as

computing the variance of a collection of random variables that
have variances . Since each subject gives one answer

. So the obtained variance is
. This variance can be computed from the data since

we have values of . The variance computed from the data
is denoted by , hence

(35)

Exactly the same reasoning can bemade for computing a vari-
ance obtained for all PVSs scored by a single subject. Then we
obtain

(36)

Since and are known and we are estimating and ,
the latter have to be derived from (35) and (36). Note that if
is substituted for and for , then the above equation is
identical to (28) and (29), the equations for multiple answers.
Therefore, the solving algorithm is exactly the same.

C. Estimating Model Parameters

Subsections VI-A and VI-B derive equations that estimate the
model parameters , and .
The precision of the estimation procedure has to be evaluated

as well, especially since is based on , on both
and , and finally on all other parameters. Such cascades
generate larger and larger errors.
In order to evaluate the estimation precision, a simulation was

run.We generated subjects’ answers for different , , and
as specified by (16). For each simulation spanned from

1.1 to 4.9, from 0.03 to 0.6, from to 0.6, and
from 0.03 to 0.7. Each PVS was described by and . For
example, if only four of the PVSs were used in the simulation
scenario then , (1.1, 0.6), (4.9, 0.03), and
(4.9, 0.6). If more PVSs were used, the other PVSs were spaced
linearly within the area defined by these four points. Similarly,
each subject was described by and . The same procedure
was used to create a set of ( , ) pairs that evenly spanned
the available area. This forms a set of values used as an imput
to the simulator. The same values should be estimated in the
estimation process.
The simulated scores are calculated as

(37)

where each instance of and is a pseudorandom number
drawn from the standard normal distribution, and function
rounds the value to the nearest integer within the range [1],
[5]. From these simulated scores, we can estimate , ,
, and using (3), (13), (31), and (32). We measure the ac-

curacy of these estimates by computing R-squared ( ) for the
simple linear fit between the true values and the obtained esti-
mates. We are using a linear fit since we are more interested in
the relation between the parameters than the exact value of par-
ticular parameter.
This simulation and estimation procedure was repeated for

different numbers of PVSs and different numbers of subjects.
Because we chose ( , ) and ( , ) to evenly span two
dimensions, the number of simulated PVSs and the number of
simulated subjects must be squares of natural numbers starting
from nine (i.e., 9, 16, 25, 36, … 225). To reduce the impact of
specific and values obtained by chance, each simulation
was run 30 times and the results averaged.
Fig. 7 uses a color map to indicate the values produced by

simulation runs in the case that the same subject rates the same
PVS six times. Fig. 7 shows that both and can be esti-
mated precisely. The worst case is the rare case of both many
subjects and a low number of PVSs but even then is 0.85.
The estimation of and is not so good. Moreover their pre-
cision calls for contradicting conditions—i.e., a large number of
PVSs and a low number of subjects for estimation and a large
number of subjects and low number of PVSs for estimation.
This is good news if we are interested only in one of those two
parameters.
If we need a good estimation of all parameters the precision

can be described by minimum , as shown in Fig. 8. Based
on Fig. 8 we can see that reasonable precision can be obtained
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Fig. 7. Precision of estimation of a particular model parameter calculated as
of a linear fit between the true values and the obtained values, for .

Fig. 8. Precision of estimation of the model parameter for which of a linear
fit between the true values and the obtained values is the lowest, for .

for 25 subjects and 25 PVSs. These 25 PVSs rated six times by
each subject gives 180 sequences to watch, which is possible.
A similar analysis was made in the case of single answer es-

timation (i.e., each subject rates each PVS once.) The obtained
results are shown in Figs. 9 and 10. As expected, the obtained
precision is worse than in the case of multiple answers per PVS.
To precisely estimate all model parameters we need around 180
PVSs, which is a typical number for a subjective experiment,
but also around 180 subjects, which is difficult to obtain.
The AGH/NTIA experiment contains 10 PVSs with 6 repeti-

tions scored by 28 subjects. For those sequences, we have two
different ways to calculate the error generated by a subject and
the error generated by a PVS. The first is discrete analysis, as
shown in Section V. We will use the repeatability of the first
score as shown in Fig. 2(b). The second way to calculate those
errors is using the continuous model and estimating and .

Fig. 9. Precision of estimation of a particular model parameter calculated as
of a linear fit between the true values and the obtained values, for .

Fig. 10. Precision of estimation of themodel parameter for which of a linear
fit between the true values and the obtained values is the lowest, for .

We expect that both metrics will correlate strongly, since they
both show the same phenomena.
The scatter plots obtained are shown in Figs. 11(a) and 11(b).

As we can see, in the case of subject analysis the correlation
is weaker. This is a natural consequence of limits in the es-
timation for a small number of PVSs. As shown in Fig. 7, the
expected accuracy measured by is around 0.5. Amuch better
result is obtained for the PVS analysis. Again, this is in line with
the results obtained at the beginning of this section. This com-
parison between the discrete and continuous analyses shows the
correctness of the proposed model.
The overall precision of the proposed estimation algorithm is

not sufficient for many real world applications. Calling for 180
subjects is especially unrealistic, and also it would be better if
the estimated values are very close to the original by value not
only by order. Therefore, further studies are needed on better
estimation algorithms to replace (17) through (36).
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Fig. 11. These two scatter plots compare the discrete analysis estimates (y axis)
and continuous analysis estimates (x axis). The Pearson correlation between
x and y is identified on each plot. Red dots indicates subjects with incorrect
instruction and green dots indicate an expert. (a) Subject error. (b) PVS error.

Fig. 12. Distribution of for the six VQEG HDTV datasets.

VII. MODEL CORRECTNESS BY DEDUCTION

We would like to measure our subject model’s ability to ex-
plain subjective data. More precisely, we will now show that
the model explains certain behaviors observed in real subjec-
tive data.

A. Model Correctness by Normalizing Subjective Data

Our analysis of in Section VI-A indicates that we should
be able to remove the influence of from any subjective
dataset. This normalization will not impact and should
decrease our estimate for from (see (4)) to , given by

(38)

We expect to see

(39)

while remains constant. The consequences should be the
ability to differentiate between more pairs of PVSs.
To test this theory, let us examine the six datasets from the

VQEG validation of HDTV video quality objective metrics.
Fig. 12 shows the distribution of values for all datasets. This
distribution shows the normal distribution seen in Fig. 5.

Fig. 13. Shift in standard deviation. Impact of removing from the six
VQEG HDTV datasets. Larger dots indicate more data.

Fig. 13 shows the difference between and . The dot size
indicates the data density. While is generally less than ,
is larger for small values of .
When is removed, decreases by 0.035 to 0.167 on av-

erage, depending on the dataset. Removing usually moves
the minimum and maximum value toward the median, thus
eliminating extreme values. This means that for the minimum
variance, (39) is not satisfied. We believe that the small values
of are caused by clipping of the MOS scale and not an im-
perfection of the model given in (2).
For all PVS pairs within each of the six VQEG HDTV

datasets, a Student’s -test was used to calculate whether or not
the PVSs had equivalent MOS at the 95% significance level.
This calculation was repeated on the normalized scores (with

removed). Based on the combined results from all six
datasets, removing had the following impact:
• 97.22% no change;
• 2.69% increase in sensitivity (equivalent different);
• 0.08% decrease in sensitivity (different equivalent);
• 0% inversions (opposite conclusions; inversions are
impossible).

Overall, normalizing each subject’s scores by seems to
improve the ability of these datasets to distinguish between PVS
and MOS in a meaningful way. The impact may be more pro-
nounced than is indicated here, because subjective experiments
often compare stimuli with similar quality. More examples can
be found in Janowski and Pinson [22]. This supports the correct-
ness of our subject model and provides corroborating evidence
for the term .

B. Model Correctness by Subject Reuse ( )
The traditional experiment design uses a large number of sub-

jects to rate each PVS. However, our final subject model, (16),
claims that all subjects agree on quality comparisons, such as
stimulus is better quality than stimulus . No matter how
subjects are divided into subsets, we do not expect to find score
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Fig. 14. Voting differences from one subject’s repeated votes (blue) compared
with the voting differences from one subject to another (light green). The left
histogram shows all subjects, and the right histogram shows subjects with a high
correlation to MOS.

inversions. Empirical data from Pinson et al. [13] supports this
hypthesis. Comparisons between five sets of 25 to 34 subjects
calculated the probability of inversion at less than 0.03%.
If this is true, then a viable alternative would be to use fewer

subjects and have each subject rate each PVS multiple times.
Fig. 14 displays two distributions of Spearman correlations.

The dark blue histogram shows correlation within one subject’s
ratings, between two different sessions. The light green his-
togram shows correlation between two different subjects for the
same session. The left subplot uses data from all subjects; the
right subplot uses the 50% of subjects with the highest Pearson
correlation to MOS. We see that the within-subject correlations
are only slightly higher than the between-subject correlations.3
Let us consider only PVSs from the AGH/NTIA dataset with

three or six ratings per subject. We randomly chose two dis-
parate subsets:
(A) 18 subjects, retaining only the 1st rating;
(B) 6 subjects, retaining three ratings (the first of each

session).
Thus, the two subsets contain an equal number of ratings per

sequence, and the subsets do not overlap. We calculated MOS
over these two subsets, and compare their MOS to , the MOS
computed using all ratings from all subjects. This process was
repeated 1000 times.
The between subset (A) and is on average 0.984, and

at a minimum 0.967. The between subset (B) and is on
average 0.966, and at a minimum 0.933. The average value
is quite high, because all subjects in each subset are also used to
calculate . The minima are strongly impacted by the behavior
of aberrant subjects, who were not screened.
The above two subsets are not quite equivalent. This is to be

expected, because subset (B) partially ignores the impact of
on the subject pool—subset (B) does not contain a sufficient va-
riety of . If we replace subset (B) with subset (C) and increase
the size as follows:
(A) 18 subjects, retaining only the 1st rating;
(B) 7 subjects, retaining three ratings (the first of each session)

3Spearman correlation is used, as it is intended for ordinal data. These same
histograms can be computed with Pearson correlation, but the trend is identical.

then between subset (C) and is on average 0.983, with at
a minimum 0.953. This is similar to the performance of subset
(A).
The similar behavior of subsets (A) and (C) supports the

theory that that all subjects agree on the relative rankings of
stimuli. This provides supporting evidence for our subject
behavior model—as opposed, for example, to a hypothetical
subject behavior model that allows for opinion motivated score
inversions. The similar behavior of subsets (A) and (C) has
several practical implications, which we will consider later.

VIII. CONCLUSION
We have shown that subjective ratings are influenced by sub-

ject bias ( ), subject inaccuracy ( ) and PVS inaccuracy ( ).
These appear to be separate variables for each subject and PVS.
There are several practical consequences of this behavior.
First, subjects’ scoring is a random process. This is expected

behavior that must be accepted; not a flaw or fault that can be
eliminated. These error terms explain apparent inconsistencies
within a single subject’s data and probably cause much of the
lab-to-lab differences seen in datasets scored at multiple labs.
These error terms also explain why the original video sequence
is not rated “imperceptible” by DSIS and other double stimulus
subjective methods.
We observe that the , , and distributions combined

span about 25% of the rating scale. This may be why prior
research concluded that a discrete 5-level ACR scale is just as
accurate at measuringMOS as a continuous scale [2], [3]. These
error terms are so large that rounding to a discrete rating is unim-
portant. Also this large error could be the reason why subject
demographics factors appear irrelevant.
Second, we propose that subjective data should sometimes

be normalized by removing , as per (13). Whether or not to
remove depends upon the type of data analysis.
• When the analysis focuses onMOS comparisons, then
should be removed. Most subjective tests use this type of
MOS analysis. The sensitivity of statistical comparisons
between stimuli usually improves but the cost of the sub-
jective test does not change.

• When the analysis compares objective and/or subjective
data with user descriptions (e.g., from blogs, forums, or
questionnaires), then MOS and subject bias should be
retained.

• When the analysis focuses on subject behavior, then the
analysis could focus only on . The vqegMM2 dataset
[13] provides an example.

Third, the number of subjects in an experiment can be re-
duced, if each subject scores each PVS multiple times. We saw
that one rating from each of 18 subjects yields approximately
the same accuracy as three ratings from each of seven subjects.
By extension, one rating from each of 24 subjects should yield
approximately the same accuracy as three ratings from each of
nine subjects. This ratio is of interest, because Pinson et al.
[13] recommend 24 subjects for an ACR experiment. This tech-
nique would not be appropriate when the goal of the experiment
is to accurately characterize the magnitude of , because the
smaller subject pool allows for less averaging of subject biases.
Fourth, we cannot support the use of repeated sequences to

screen subjects. Subjects are unable to perfectly repeat their
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prior score. Obtaining an accurate estimate of for a subject
would require a large number of repeated scores, but proposals
for screening subjects by repeated scores use a small number of
PVSs. Inaccuracies can occur randomly and are thus unlikely to
indicate poor behavior on the part of the subject.
Similarly, subject screening techniques need to be rethought.

For example, the screening technique from ITU-R Rec. BT.500
and thresholds based on Pearson correlation tends to reject sub-
jects with large . The problem is with the confidence interval.
Since we estimate the expected value, we would like to have as
good an estimation as possible. The 95% confidence interval is
approximately

(40)

where is the sample size. Removing inaccurate subjects de-
creases yet also decreases . This can increase the confi-
dence interval.
Fifth, when the subject pool for a single experiment is split

among two or more labs, the raw scores should be pooled. That
is, when all subjects observe and rate an identical set of stimuli,
then the subjects represent the larger pool of all people. Thus,
their scores can be mingled without applying any scaling or fit-
ting function. This is neither surprising nor novel, since this pro-
cedure is in common use (e.g., by T1A1 and VQEG).
Sixth, if you want to detect subject demographics and labo-

ratory environmental factors, then the number of subjects needs
to increase dramatically over what is used today. This would
explain why researchers had difficulty identifying subject de-
mographics and laboratory environmental factors that explain
lab-to-lab differences.
Seventh, the error distributions of subjects and PVSs can be

characterized by the following:
• defined in (11) and shown in Fig. 2(c); and
• defined in (12) and shown Fig. 3.

IX. FUTURE WORK

We know that (2) is imperfect. It assumes that each subject
has an identical and symmetrical error distribution. We know
this is not true, but these differences may be small enough that
they can be safely ignored. It assumes that each subject’s bias
remains constant over time, yet the Mann Whitney U test in-
dicates that six of our 28 subjects had some significant differ-
ences in depending upon the session number. Equation (2)
assumes that subject bias is limited to an additive factor, yet
we observe an occasional subject who chooses to use ACR as a
4-level or 3-level scale (e.g., ignoring the “excellent” category,
the “bad” category or both). Equation (2) ignores time depen-
dencies within the session (i.e., sequence order). A more com-
plicated model of subject behavior would be an interesting topic
for future investigation.
Our model is based on the 5-level scale and video quality

evaluation. Based on results presented in [2] and [3], we expect
the main concept of the model should not change if ACR is
replaced with another scale (e.g., DSCQS, DSIS, ACR11, or
PC). We hope to generalize the obtained model for different
services, such as image or sound quality, and to include terms
that explain lab-to-lab differences. These generalizations are left
as a future work, which should be made in cooperation with
other researchers.

In the AGH/NTIA experiment, we just touched the problem
of irrelevant subjects. An experiment focusing on different as-
pects of why subjects are irrelevant can be proposed. The pro-
posed model can be both validated if it is relevant to detect spe-
cific subjects behavior and eventually extended to a more per-
fect model.
We are also planning to work on better model parameter es-

timation methods that do not call for such large and impractical
experiments. We will focus on methods that do not call for re-
peated scores.
The subject model should be used by the community in order

to evaluate different experiments and better understand partic-
ular subjective results. We are planning to evaluate more sub-
jective data which are available online, especially data in [26]
and Qualinet databases.4

APPENDIX A
PARAMETERS ESTIMATION

The MATLAB code estimates , , , and from the
raw subjective data can be found at http://www.its.bldrdoc.gov/
resources/video-quality-research/software.aspx. Both codes re-
flecting a simplified for of (16) that assumes and
are available. Also any update of the estimation method will be
described at this web page.

APPENDIX B
VARIANCE OF RANDOM VARIABLE DROWN FROM

DIFFERENT DISTRIBUTIONS

If a random sample is drawn from independent distribu-
tions with mean zero and finite variance, then the variance of the
obtained sample is a weighted sum of the variances of the dis-
tributions used, where the weight is the probability of choosing
a particular distribution.

Proof: is drawn from different distributions having
probability density functions and variance ; each
distribution generates random variable . Let us as-
sume that all distributions are independent, for
all , and each variable is drawn with probability .
Then according to the total probability rule has distribution

. The variance of any random variable is
given by . Nevertheless, we assumed that all
variables have mean zero, so . Therefore, both

and variances can be computed using or
respectively. Let us compute

(41)

which finishes the proof.

4[Online] Available: http://dbq.multimediatech.cz/
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