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Corruptive Artifacts Suppression
for Example-Based Color Transfer

Zhuo Su, Student Member, IEEE, Kun Zeng, Li Liu, Bo Li, and Xiaonan Luo

Abstract—Example-based color transfer is a critical operation in
image editing but easily suffers from some corruptive artifacts in
the mapping process. In this paper, we propose a novel unified color
transfer framework with corruptive artifacts suppression, which
performs iterative probabilistic color mapping with self-learning
filtering scheme and multiscale detail manipulation scheme in min-
imizing the normalized Kullback-Leibler distance. First, an itera-
tive probabilistic color mapping is applied to construct the map-
ping relationship between the reference and target images. Then, a
self-learning filtering scheme is applied into the transfer process to
prevent from artifacts and extract details. The transferred output
and the extracted multi-levels details are integrated by the mea-
surement minimization to yield the final result. Our framework
achieves a sound grain suppression, color fidelity and detail ap-
pearance seamlessly. For demonstration, a series of objective and
subjective measurements are used to evaluate the quality in color
transfer. Finally, a few extended applications are implemented to
show the applicability of this framework.

Index Terms—Color transfer, computational photograph, edge-
preserving smoothing, image manipulation.

I. INTRODUCTION

OLOR manipulation is one of the most common tasks in
C image editing. While artists resort to photo editing tools to
manually adjust color appearance, automatic color appearance
adjustment is still of high demand, owing to the inherent diffi-
culties to handle complex structures ubiquitous in natural im-
ages. Arguably, example-based color transfer [1], which aims
at copying the color appearance from a given “example” to
a target grayscale or color image, is the most effective way
to tackle the problem. Rapid development has been witnessed
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Fig. 1. Example-based color transfer [7] is an intuitional image manipulation
technique, but it would produce some unexpected artifacts due to the complexity
of color mapping. Grain effect, color distortion and loss of details appear in the
transferred result commonly.

in the last decade in the field of color transfer. Representa-
tive approaches include classical histogram matching, statis-
tical transfer [2], N-dimensional probability density function
transfer [3], gradient-preserving transfer [4], non-rigid dense
correspondence transfer [5], progressive transfer [6], to list a
few.

Although these approaches are effective in transferring the
color information, they would occasionally produce visual arti-
facts, owing primarily to the contradictive roles of color dis-
tribution preservation and image content distribution. Taking
Fig. 1 as an example, due to the big difference in the intensity
distribution between the reference and the target, an unsatisfac-
tory transferred result was produced, with remarkable artifacts
as follows.

Color distortion. Some disharmonious or unexpected colors
appear which are not included in the reference image.

Grain effect. A phenomenon appears due to enhancing the
noise level of the picture under the stretched mapping. Com-
monly, it looks like some noises or irregular blocks.

Loss of details. The fine-level details in the target image are
missed after the color transfer.

We note that it is not a special case. Ideally, color transfer be-
tween reference and target images should satisfy the following
goals.

Color fidelity. The color distribution of the target should be
close to that of the reference image.

Grain suppression. No visual artifacts (grain/blocky arti-
facts) should be generated in the target image.

1520-9210 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. The pipeline of our framework. In the procedure of the color transfer, the self-learning filtering scheme is integrated into the probability-based color
distribution mapping to achieve triple functions, including color fidelity, grain suppression and detail manipulation. This integration has simple and efficient char-
acteristics. We will demonstrate its effectiveness in the following sections and its applicability in lots of color-related applications.

Detail preservation. Details in the original target should be
preserved after the transfer.

According to these goals, Xiao and Ma [4] pointed out that
the color transfer problem can be formulated as the following
optimization problem which minimizes the least squares error

win (37 [lo(r) = o)l + A D IVE = Vgl ), (1)

where r, £ and g denote the reference, target and transferred
images. p(-) is the probability density function and V is the
gradient operator. However, there exists a major problem in the
above equation. The Euclidean norm is not a suitable selection
for measuring the color distribution. Eq. (1) is hard to directly
solve, because the first term relates to probability distribution
and the gradient operator in the second term is applied to the
pixelwise image.

In this paper, we present a novel unified framework for ex-
ample-based color transfer, which aims to achieve simultane-
ously grain suppression, color fidelity and detail preservation.
The central to our approach is to incorporate a self-learning fil-
tering scheme into the iterative probabilistic color mapping with
minimizing normalized K-L distance as convergency. First, a
probabilistic mapping is iteratively applied to generate coarse
color mapping. Reducing the /V-dimensional probability distri-
bution of both reference and target to a one-dimensional proba-
bility distribution pair, it can match the color distribution of the
target to the reference. Second, the self-learning filtering is em-
bedded into the procedure of color mapping. By converting the
original target into an uncorrelated space, the intensity channel
is taken as the learning example into the filtering, which is fur-
ther applied to the mapped result. The k-levels details can be
extracted by the differential operator between the original target
and the set of transferred outputs. Finally, the details are recom-
bined to the transferred output to produce the result in a multi-
layer controllable manner. Our pipeline is sketched in Fig. 2.

We summarize our main contributions as follows.

* Propose a novel color transfer framework to achieve a uni-

fied corruptive artifacts suppression, which is specified in
grain suppression, color fidelity and detail manipulation.

* Emphasize on the superiority of the self-learning filtering
scheme in color transfer, rather than adopting post-pro-
cessing remedies for the artifacts.

+ Design a sort of objective and subjective measurements for
the quality evaluation of color transfer to demonstrate the
performance of our approach.

* Demonstrate our framework would be extended to some
applications which is related with color editing.

II. RELATED WORK

In this section, we just emphasize on the state-of-the-art auto-
matic color transfer approaches but not those of interactive ma-
nipulations [8], and summarize their advantages and defects. In
addition, the edge-preserving smoothing filters are introduced,
so that we can discuss them for grain effect suppression and de-
tail preservation in the following sections.

A. Color Transfer

The histogram matching (specification) [9] is able to specify
the shape of the referred histogram that we expect the target
image to have. However, histogram matching can only process
the color components of the color image independently. Since
the relationship of the color components are separated, this ap-
proach would produce the unsatisfactory look, e.g. grain effect,
color distortion. Reinhard et al. [2] firstly proposed a way to
match the means and variances between the target and the refer-
ence in the low correlated L3 color space. This approach was
efficient enough, but the simple means and variances matching
was likely to produce slight grain effect and serious color dis-
tortion. To prevent from the grain effect, Chang ez al. [10], [11]
proposed a color category-based approach that categorized each
pixel as one of the basic categories. Then a convex hull was gen-
erated in L3 color space for each category of the pixel set, and
the color transformation was applied with each pair of convex
hull of the same category. For the color distortion, Tai ef al.
[12] proposed a modified EM algorithm to segment probabilis-
tically the input images and construct Gaussian Mixture Models
(GMMs) for them, and the relationship was constructed by each
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Gaussian component pairs between the target and the reference
under Reinhard’s approach [2].

Abadpour et al. [13] proposed the exploited principal compo-
nent analysis (PCA) and created a low correlated and indepen-
dent color space to reduce the color correlation. Pitié et al. [3],
[14] proposed an NN-dimensional probability density function
transfer approach to reduce the high-dimensional PDF matching
problem to the one-dimensional PDF matching by Radon Trans-
form [9]. This operation can reduce the color correlation and
keep the color distribution of the transferred result consistent
with that of the reference. However, it would lead to the vari-
ance of image contents as the pixel intensity changed. There-
fore, the Poisson reconstruction was introduced to remedy the
result. Inspired by the gradient domain technique, Xiao and Ma
[4] proposed a gradient-preserving model to convert the transfer
processing to an optimization, and balanced the color distribu-
tion and the detail performance. However, global optimal solu-
tion usually required large computational cost.

Dong et al. [15] proposed a dominant color idea for color
transfer. When the amount of dominant colors of the target was
consistent with that of the reference, the color of the reference
would be transferred to obtain a satisfactory result. However,
when the amount of dominant colors was not balanced, the un-
satisfactory result would be produced. Wu et al. [16] improved
Dong’s approach [15] and further proposed a distribution-aware
conception to consider the spatial color distribution in the refer-
ence image. And Wang et al. [17], [18] developed the learning-
based color transfer methods to train out the proper color map-
ping relationship. Recently, HaCohen et al. [5] presented the
non-rigid dense correspondence and used it in example-based
color transfer. However, the corresponding requirements would
limit the example selection. Pouli and Reinhard [6] proposed a
progressive histogram reshaping technique for images of arbi-
trary dynamic range, which still suffers from color distortion in
some extreme cases. In addition, Wong et al. [19] investigated
the assessment of image realism for the evaluation of the image
recoloring.

B. Edge-Preserving Smoothing

The grain effect can be treated as a special type of noises
[14], and it would be removed by linear smoothing. Although
the linear smoothing can remove the grains, the over-blurring
would destroy the original image details and lower the sharpness
of edges. Edge-preserving smoothing (EPS) filters [20]-[25] are
proposed to overcome this problem. They can prevent the edge
blurring by linear filtering according to their intensity- or gra-
dient-aware properties. However, the performance of pure EPS
filters is limited [26], [27], especially if there exists the corre-
sponding version of the input image.

Joint bilateral filter (JBF) [28], [29] is the first guided
edge-preserving smoothing approach. The JBF exploits the
pixel intensity of the reference which is correlated to the target
to improve the filtering effect. However, like the bilateral filter
(BLF), JBF can not avoid the halo artifact and gradient reversal
problem. Just like aforementioned Bae’s approach [30], it
requires the gradient correction to remedy the side-effect of
BLF. He et al. [31] proposed the guided filter, which has the
advantages of JBF but overcomes the defects.
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In addition, based on the edge-preserving smoothing, the de-
tails can be extracted to manipulate in a multiscale way [32].
Fattal et al. [33] proposed an elaborate scheme for details, but
their adoptive bilateral decomposition has defects as aforemen-
tioned. Farbman et al. [21] proposed two multiscale schemes
which are simpler than Fattal’s, because the WLS-based de-
composition overcomes the defects of bilateral decomposition.
And then, Farbman et al. [34] introduced the diffusion maps
as a distance measurement to replace the Euclidean distance in
their weighted least square filter. Recently, Paris et al. [35] ex-
plored the local Laplacian pyramid to yield the edge-preserving
decomposition for fine-level detail manipulation.

III. INTEGRATED COLOR MAPPING MODEL

As mentioned in Section I, the example-based color transfer
problem lies in seeking the reasonable mapping relationship
between reference and target images, and a perfect color
transfer approach should satisfy three goals at the same time,
including the color fidelity, grain suppression and details
preservation. Motivated by the probability-based mapping and
edge-preserving decomposition, we present a novel unified
transfer framework instead. The overview of our framework is
as follows.

Color mapping stage. A probabilistic color mapping
is applied to achieve the basic color corresponding and a
self-learning filtering is embedded to avoid the artifacts and
separate the transferred target into & levels.

Detail manipulation stage. A multiscale detail manipulation
scheme is applied to preserve or enhance the details.

Integrated optimization stage. The transferred result and the
modified details are combined into an optimization solution
with the normalization Kullback-Leibler measurement to yield
the final output.

A. Kullback-Leibler Distance for Color Transfer

The Kullback-Leibler distance (K-L) [36] can measure the
similarity between two completely determined probability dis-
tributions. Here, we apply it to measure the difference between
the reference r and transferred result g in color transfer. The
minimization of K-L distance means the color appearance of
the target close to that of the reference. Let p(r) and p(g) de-
note the distributions of the reference image and the transferred
image, respectively, we have

= min Z pi{g)ln (g)

2
(1) )

win Dir,(p(g)||p(r)

Taking the K-L distance as a measurement in an optimization
procedure, to guarantee the convergence of minimization, we
require Eq. (2) should satisfy the following constraint

D (p(g™ Hllp(r)) < Dicr(p(g™)llo(r), ©)

where % is the iterative threshold in the solution. Essentially,
Dycr(+) is a monotonically non-increasing and non-negative
function, therefore it has a limit. lim Dy = 0, if the distri-
bution p(g) and p(r) are equal. The above K-L distance is a
fundamental measurement in our framework. We first break our
solution into two phases. One is the color mapping; the other is
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the detail manipulation. And then we give the integrated opti-
mization framework in Section III-E.
B. Iterative Probabilistic Color Mapping

For given gray images, the probabilistic mapping relationship
between the reference image and the transferred image is formu-
lated as

plg)dg = p(r)dr, 4

Through establishing the discrete look-up tables, we can solve
out the mapping relationship

rg) =r.

7=C10y(9), )
where (. and €, denote the cumulative distribution corre-
sponding to p(r) and p(g), respectively. However, for color
images, due to the correlated property of color channels, direct
matching in Eq. (5) is likely to yield color distortion. In our
framework, we exploit a decorrelation to tackle this issue. This
decorrelation would be regarded as a piece-wise homography
transformation with an iterative process. It is parameterized as
the projection with the randomized orthogonal transform in the
following
= [I|R}T X Qu, (6)
where [ is a 3 x 3 identity matrix and R is a 3 x 3
homography coefficient matrix as a rotation projec-
tion. (), is a randomized orthogonal matrix used for =
times iteration. In our implementation, we initial R =
[2/32/3 — 1/3;2/3 — 1/32/3;—1/32/32/3]. This setting
can make the rotation satisfy the orthogonality. Afterward, a
channel quantization with step Ag is used to control the scale
of data range, which is parameterized by the pixel intensity
or user setting. This quantization can guarantee the scale con-
sistence in different date range of the rotated channels. Then,
the corresponding 1-D probability density distributions of both
target and reference are yielded by the probability statistics
similar to the image histogram.
By the decorrelation, we use the following iterative scheme
to solve out the transferred result
gt =g + HT [7' (Hgk) — Hgk] . 7
The physical meaning of Eq. (7) could be interpreted as follows.
The projection of 1-D probability density is obtained by homog-
raphy transformation #, and the k-th mapping result is calcu-
lated. Then, the difference between before and after mapping
is evaluated by [r(Hg*) — Hg"]. The inverse transformation is
used to restore the 2D image. Finally, the intermediate ¢* is up-
dated and a cycle of iteration is completed. The illustration of
the iterative probabilistic color mapping is shown in Fig. 3.

C. Self-learning Filtering Scheme

However, there still exists a defect in the solution in
Section III-B, that is, it is likely to produce the grain effects
occasionally. To address this challenging problem, we present
a self-learning filtering scheme and incorporate it into the
aforementioned iterative probabilistic color mapping. Firstly,
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Fig. 3. The probability-based color distribution mapping with minimizing K-L
distance. In an iterative cycle, the reference image and the target image are trans-
formed into 2-D color vector pairs. By the homography projection and proba-
bilistic statistics with channel quantization, we obtain the 1-D distribution on
directive axes. The probability distribution of the target matches to that of the
reference. The restoration is performed to output the transferred result. The it-
eration would be stopped until reach the preset times or minimized error.

assume the transferred result g and its filtered output ¢ are
divided into a series of 9 x 9 patches, and each patch-pair has
1-to-1 corresponding relationship. Then, we further assume
that g and ¢ have the following linear learning relationship in
the patch p,.

g’i, = QY + ﬂh?vz € Pus (8)

where «,, and 3, are linear coefficients. Subscripts ¢ and # are
used for pixels and patches indexing, respectively. Let 1, and
o2 be the mean and variance of g in p,, |p| is the pixel amount
of p,;. Using the least squares parameter estimation, «,, and 3

can be estimated by
1 ~ ~
_ el Ziem GiGi — Mrx

— 5
Tk

where g, = ﬁ > icp, i However, § is an unknown variable.
To determine «,, and 3., we replace ¢ by the target image ¢.
Then, Eq. (9) is reformulated as

o Liep, Giti — lintr

v, =
o2 +¢

,6H = E — Qg g, (10)
where ¢ is used to compensate the error caused by the substitu-
tion. Since each patch-pair has «, and 3., the overlaps can be
treated by averaging (&, 5x) = ﬁ > (e, By ). In essence,
the self-learning filtering is an edge-preserving smoothing op-
eration under linear regression with reference image. We pre-
sented our result with this scheme and compared it with Piti¢’s

in Fig. 4 and Fig. 5.

D. Multiscale Detail Manipulation Scheme

As mentioned in Section I, details in the original target should
be preserved after the transfer. Actually, details often correlate
to the style appearance, and this characteristic is significant to
the color-related applications. Since we have incorporated the
self-learning filtering scheme into the color mapping, we can
exploit its property of edge-preserving decomposition to extract
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Fig. 4. The comparison of the integrated color mapping model and Pitié’s approach [14]. (a) Reference. (b) Target. (c) Pitié¢’s ;V-dimensional PDF step (n = 10).
There are obvious grain effect and content distortion in (c), e.g. the tone of the clouds. (d) Our improved result (i = 8, < = 1le — 3). We obtained a visual
satisfactory result under the self-learning filtering scheme. Furthermore, we compared the /V-dimensional PDF added Poisson editing [14] in (e)-(f) with our

approach in (g)-(h). e)n = 3, A=1.Dn =10, A=1.(g)k =3, =1le—3.(h)k =10, = 1le — 3.
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Fig. 5. Self-learning filtering scheme for grain suppression. Note the grain ef-
fect can be smoothed while the edge can be preserved.

the details while compensating or enhancing them in the trans-
ferred output. In our framework, k-levels details d* are obtained
by iteratively applying the self-learning filtering scheme. The
sigmoid function is further brought to avoid the hard clipping
that would occur when the detail levels are significantly boosted.
To sum up, the multiscale detail manipulation scheme is formu-
lated as

=

k

Z dkv A=1,

ko )
1

; Ty A7 L

where A is the adjustment factor for preserving (A = 1) or en-

hancing (A # 1) the details. The comparison of detail enhance-

ment is shown in Fig. 6.

E. Integrated Optimization Framework

In Section III-A, we presented the K-L distance can be used
to evaluate the similarity between the color distribution of the
reference image and that of the transferred image. For more ro-
bust, we prefer to use the normalized form instead

Dykr = (Dxr - D) / (DR - DR . (12)

Fig. 6. Detail enhancement. (a) Target. (b) Reference. (c) Without enhancing
(A = 1). (d) Detail enhancing (A = 3). The specified magnified regions corre-
sponding to (c) and (d) are shown in (e) and (f), respectively. Obviously, more
details are presented in (f) than in (e).

Then, according to Section III-A-III-D, we summarize our color
transfer framework with minimizing the normalized K-L dis-
tance in the following

min Dk (p (5(4:) + M(d: A) [lp(r)),  (13)

where S(-) and M (-) denote the self-learning filtering operator
and detail manipulation operator, respectively. With this unified
framework, we achieve our aforementioned goals seamlessly,
including grain suppression, color fidelity and detail preserva-
tion. The pseudo code of our approach is given in Algorithm 1.
Our results are presented in Fig. 4 and Fig. 7.
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Fig. 7. The influence of parameter settings. (a) Reference. (f) Target. (b) The grain effect. From (c) to (e) are the effects of grain suppression by self-learning
filtering. () e = le — 2. (d) ¢ = 1e — 3. (e) ¢ = le — 4. From (g) to (j), fixing ¢ = 1e — 3, the results are obtained by adjusting the iteration times % and the

detail enhancement factor A. (g) k=1, A=1.(h) k=3, A=1. (1) k =5,

Algorithm 1: Integrated Color Mapping Model

Input: £: target image, r: reference image, k: iterative times,
e: regularization factor, A: detail factor

Output: g: transferred result

1: ¢° =1t,i=0,6 = Dxkr(t, ) % Initialization

2: while ¢ < k£ do

3: while ' = Dykr(g,7) > 6™ do

4: H = [I,R] * orth(rand(Q,)) % Homography
Transformation

5: G=HY¢, R=H"r

6: Smin = min(G, R), Spax = max(G, R)

7: S = (Smax — Smin)/q % ¢ steps of quantization
for G&R

8: plg') = Hist(S, G), p(r) = Hist(S, R)

9: 7 = HistMatch(p(g"), p(r)) % 1D distribution
matching

10: gt = g' + H[7(G) — G] % Iterative update
11: a= (o D™t — pg™1) /(0% +e)

12: 8 =gt —au

13: § = axgtl + 3 % Apply self-learning
filtering

14: d=1-g

15: gt = G+ M(d, \) % Detail manipulation
16: end while &

17: end while &

18: return

=2.(G)k =10, = 2.
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Fig. 8. Convergence analysis. The test samples are corresponding to Fig. 7(a)
and (f). The blue line is the normal transfer without detail enhancement. And
the red line is corresponding to the enhancement A = 2. With the iteration
increasing, the values of K-L distance are reducing. That means the color distri-
bution of the transferred result gets close to that of the reference progressively.
Some results are shown in Fig. 7(g)-(j).

IV. EXPERIMENTAL ANALYSIS

In this section, we firstly discuss the parameter settings and
the convergence in our framework. Then, we compare our
framework with the state-of-the-art approaches in the visual ef-
fects and distribution visualization. To further demonstrate the
effectiveness, we design a user investigation to aid the analysis.
At last, the runtime performance is presented. All the experi-
ments were tested on PC with Intel i5-2450M 2.5 GHz CPU,
NVIDIA 610M, 4 GB DDR3 Ram, and MATLAB R2012a.

A. Parameter Setting and Convergence Analysis

Our framework refers to 4 adjusted parameters, including the
radius r of patch p,; in self-learning filtering, the regularization
factor ¢ to compensate the error caused by the substitution, the
iteration % and the detail enhancement factor A\. We will anal-
ysis the performance by adjusting these parameters. The pro-
posed self-learning filtering scheme is used to prevent the error
accumulation of grain effect or color distortion with the iteration
increasing in color transfer. The effect of self-learning filtering
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is determined by the radius r of patch p, and the regulariza-
tion factor . The former restricts the action scope and affects
the strength of the smoothing; the latter is used to balance the
edge/detail preservation and the image smoothing. To be simpli-
fied, we fixed the radius » = 20 in all of our experiments empiri-
cally. And the effect of grain suppression depends on the setting
of £. The grain effect is shown in Fig. 7(b). In Fig. 7(c)—(e), we
selected three magnitudes in whiche = [le —2,1e — 3, 1e — 4].
Observing the results in Fig. 7(c)—(e), we can see the grain ef-
fect has been suppressed and the details have been persevered
progressively.

Our framework exploits the normalized Kullback-Leibler
distance to measure the similarity of color distribution between
the transferred output and the reference image, and ensures the
convergence during the iterative procedure. We present the con-
vergence curves in Fig. 8. The tested inputs were corresponding
to the reference and the target in Fig. 7. The blue curve presents
the convergent case without the detail manipulation (A = 1),
and the red curve presents the case with 2 times enhancement
(A = 2). See from Fig. 8, with the iteration increasing, the
measured K-L values become lower. This means the color
distribution of the transferred result is more and more close to
that of the reference. For the above two cases, we give 4 groups
of parameter settings (A = 1, A=1), k=3, A=1) (k=5
A =2),(k =10, A = 2)in Fig. 7(g)—(j). Compared with these
results in visual, the color appearance of the results get closer
to the reference progressively with the iteration increasing.
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Fig. 9. The comparisons of color distribution with the state-of-the-art approaches and ours. (a) References. (b) Reinhard’s results [
results (A = 1) [4]. (d) Pitié’s results (n = 10, ¥» = 1) [14]. () Our results (k¥ = 4, & = 1e — 3). All the parameter settings are corresponding to the reference
work, respectively. From the 1-D and 2-D distributions, we can discriminate the color distortion intuitively. Our results have more similar distribution shapes than
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Fig. 10. Statistical gradient distribution. (a) Original target. (b) Our results. We
counted the gradient magnitudes and plotted them as distribution curve in Logs
pattern. Compared the gradient magnitude of the original target with those of the
transfer results, we found that our results were very close to the original target
in the gradient distributions.

B. Color Distribution Comparisons and Measurement

Although we can evaluate the results by visual observing
directly, the geometric distribution of the colors in the image
would not always be presented as the region assemble but pos-
sible dispersion. At this time, it is hard to evaluate the quality
of the transferred results by visual observing merely. In our
opinion, converting the image to 1-D color histogram and 2-D
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Fig. 11. The visual comparisons. (a) Reference. (b) Target. (¢) Histogram matching [9]. (d) Reinhard’s results [2]. (e) Pitié’s results (n = [10. 10, 3, 3,10],
¥ = 1). (f) Gradient-preserving results (all in A = 1) [4]. (g) Our results (¢ = [1,3,3.3,4], ¢ = 1le — 3). We recommend the electronic version for a high

resolution.

color scatter diagram, we can observe the shapes of color dis-
tribution to evaluate the quality intuitively. In Fig. 9, we pre-
sented two groups of analyzed results. From the top row results
in Fig. 9(b)—(d), some new colors appear in the transferred re-
sult (red dots and bars), which are not contained in the refer-
ence. By contrast, our result is faithful to the color appearance
of the reference. In the bottom row, note the most left side in 1-D
color histogram, the results in Fig. 9(b)—(d) have obvious color
distortion. However, our result has the most similarity to the
color distribution of the reference. Through these visualization

approaches, we can further measure the quality of transferred
results objectively.

Xiao et al. [4] emphasized the gradient-preserving was a
significant characteristic that should not be ignored. Here, we
designed a statistical gradient distribution to evaluate our ap-
proach. The gradient distribution of the original target is shown
in Fig. 10(a). Our results with different parameter settings
are shown in Fig. 10(b). Through these comparisons, we can
demonstrate the gradient distributions of our results are similar
to that of the original target.
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TABLE I
THE K-L MEASUREMENT OF A PORTION OF TESTED IMAGES.
ALL THE RECORDS ARE EVALUATED IN MATLAB 2012A

No. Hist Reinhard ~ GradPrev NPDF Ours

Fig. 9(top) 23.42 0.1259 0.0991 0.0284  0.0253
Fig. 9(bottom) 2331 0.3639 0.1547 0.1037  0.0493
Fig. 11. cl(left) 21.47 0.3238 0.1302 0.0810  0.2112
Fig. 11. c2 22.79 0.2781 0.2173 0.0716  0.0949
Fig. 11. ¢3 23.02 0.4225 0.1861 0.2435  0.0354
Fig. 11. c4 25.28 0.6976 04112 0.2524 0.133
Fig. 11. c5(right) ~ 22.85 1.2167 0.1347 0.1440  0.1116

(@ (e) ®
Fig. 12. Comparison with Wang’s experiments [18]. (a) Reference. (b) Target.

(c) Wang’s result. (d) Pitié’s result [37]. (e) Our result which refers to (a). (f) Our
result which uses the same color components as Wang’s withk = 3,¢ = le—4.

Our normalized K-L measurement would be extended to
evaluate the quality of the transferred results which are produced
by different approaches. We measured the results in Fig. 9 and
Fig. 11, and recorded their K-L values in Table I. Note the data,
histogram matching [9] has a terrible performance, and the K-L
values are far above the values of other approaches. From the
visual observation, the results of histogram matching are not
acceptable. The Reinhard’s approach [2] is likely to produce
the color distortion, so its K-L values are high in some cases.
The Pitié’s N-dimensional PDF [14] and Xiao’s GradPrev [4]
have acceptable K-L values. For our results, the recorded
performances are better than those of previous approaches.

In Fig. 12, we compare with Wang’s experimental results
[18]. Actually, if we consider the color consistence between the
reference image and the transferred result, we found that it is
not easy to say Wang’s result is better than Pitié’s and ours, see
Fig. 12(c)—(e). By contrast, if we limit the color components as
Wang’s, our approach would produce a style appearance similar
to Wang’s result, see Fig. 12(f).

C. User Investigation

To further demonstrate the effectiveness of our framework,
we design a user investigation with subjective experiments. We
summarized 4 types of major defects in color transfer, including
grain effect, color distortion, blurring, and distribution inhar-
mony. In the statistical sense, we provided 100 groups of exper-
imental data, and recorded the results which were produced by
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5 Hist | Reinhard GradPrev NPDF ~ Ours
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Fig. 13. User investigation. 100 samples are listed and 10 persons participated
in the investigation. The top figure is a record in our experiments. Grain effect
(G), color distortion (D), blurring (B) and inharmony (I) are evaluated by users’
visual perception. The bottom figure is a statistical analysis for our investigation.
The lower percentage means the better visual performance.

histogram matching [9], Reinhard’s [2], Pitié¢’s /N -dimensional
PDF with Poisson editing [14], Xiao’s gradient-preserving ap-
proach [4] and ours. We invited five males and five females to
participate, including 2 professional designers, 5 masters and
3 teachers. As illustrated in Fig. 13(top), the opinions of each
person are recorded and presented in visualization. With all the
investigated results, we can evaluate the statistical results. See
from Fig. 13(bottom), histogram matching has serious grain ef-
fect and color distortion in actual cases. Reinhard’s approach has
a higher percentage in color distortion as well. And the Xiao’s
and Pitié’s approaches are likely to produce the blurring. By
contrast, our framework has a better performance than the pre-
vious approaches in the aforementioned 4 aspects. The investi-
gation results are consistent with the above objective and sub-
jective results.

D. Time Performance

We adopted the experimental runtime to measure our ap-
proach, and compared it with other approaches. We selected 5
sizes as the tested samples (2562 — 2048?). The runtimes with
various parameter settings were recorded in Table II. See from
the Table II, histogram matching [9] and Reinhard’s approach
[2] had an efficient runtime response. However, as mentioned
above, both of them were hard to obtain a satisfactory visual per-
formance. Xiao’s gradient-preserving approach [4] and Pitié’s
N-dimensional PDF approach [14] required too much time,
because both of them needed to solve a large-scale optimiza-
tion equation. Especially, if the size was over large, these two
approaches would break down. By contrast, our approach had a
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TABLE II
THE RUNTIME COMPARISONS OF THE TESTED TRANSFER APPROACHES. ALL
THE RECORDS ARE EVALUATED IN MATLAB 2012A (UNIT: SECOND)

Par.  (256)2  (512)2  (1024)%>  (1600)%  (2048)2
Hist - 0.169 0.256 0.417 0.771 1.055
Rein. - 0.028 0.112 0.422 0.877 1.620
Grad. A=1 2.572 8.921 36.08 - -
n=1 2.302 8.546 3393 - -
NPDF  n=3 2624 9.656 38.21 - -
n=10 3727 13.57 53.41 - -
n=1 0.380 1.354 4.833 11.90 19.26
Ours  n=3  0.838 3.481 13.66 34.25 56.31
n=10 2.545 11.04 44.75 115.1 189.7

(© () (e

Fig. 14. Multiple-reference color transfer. (a) References with the sunshine
topic. (b) Target. (c) A serious grain effect appears in Reinhard’s result. (d) A
slight grain effect appears in Pitié’s result (n = 10) as well. (¢) Our result
(k = 8, = le — 3). The colors of multiple references are blended evenly to
produce a visual satisfactory output.

sound time response and was better than previous approaches in
usability.

V. VISUAL APPLICATIONS

In this section, we extend our framework to some image ap-
plications, including multiple-reference color transfer, high-dy-
namic-range color transfer and style transfer. Through these ex-
tended applications, we further demonstrate the applicability of
our framework.

Multiple-reference color transfer requires the transfer natu-
rally blending the colors from multiple references. However, as
illustrated in Fig. 14(a), the main difference exist among the ref-
erences. Although both of the references are the sunshine theme,
they have a big difference in the color appearance. This differ-
ence would easily lead to the grain effect in the result. As il-
lustrated in Fig. 14(c), the Reinhard’s result has a serious grain
effect. Pitié’s approach adopts the gradient correction to sup-
press the grain, but it does not prevent the color distortion, see
Fig. 14(d). Our approach deals with the grain effect and distor-
tion in each step, therefore, we can achieve a visual satisfactory
result, see Fig. 14(e).

High-dynamic-range (HDR) color transfer requires consid-
ering the image contents fidelity and the color appearance. The

Fig. 15. Our framework can seamlessly handle HDR images. (a) Ancient
photo. (b) LDR output was produced by Photoshop CSS5. (¢) Histogram
matching. (d) Reinhard’s. (¢) Bae’s Two-scale approach. (e) Ours (k = 3,
g = le — 3). Note the windows on the church roof and the whole tone
appearance.

low-dynamic-range image is produced by the HDR tools in Pho-
toshop CS5 and shown in Fig. 15(b). The results of histogram
matching and Reinhard’s are shown in Fig. 15(c)—(d), respec-
tively. Note the results, histogram matching cannot display the
whole contents effectively; and the Reinhard’s approach ex-
hibits obvious color distortion. Bae et al. [30] exploit their ap-
proach to create a “soft-yet-sharp” rendition which is a con-
vincing approximation of the effect produced by a soft-focus
lens. Their effort would produce a slight blurring, see Fig. 15(e).
However, blurring is not always expected in color transfer. By
our approach, we can obtain a clear output, in which the contents
and the details are displayed with a sound visual performance.

Style transfer is a basic requirement in art design. Lots of
image styles can be reflected by the color appearance, e.g. the
ancient, cold and rainbow styles in Fig. 16(b). We demonstrated
our approach can effectively preserve the style of the reference
in Fig. 16(c).

VI. DISCUSSIONS AND CONCLUSIONS

How to transfer the colors of the given reference to the target
effectively is a challenging problem and is significant in color
transfer. Because of the complexity of the color distribution, it
is difficult to avoid the corruptive artifacts such as color distor-
tion, grain effect or loss of details in the result of color transfer.
When these problems appear, the traditional way is to apply
some post-processing operations to remedy them, e.g. Bae’s
[30], Piti¢’s [14] and Xiao’s [4]. Unfortunately, the post-pro-
cessing operations are not always effective and would cause
other artifacts sometimes.
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Fig. 16. Style Transfer. (a) Target. (b) A group of references, including ancient,
cold, and rainbow styles. (c) Results. The artistic styles are produced by Photo-
shop CS5. In this experiment, we set the parameters k = 5, = le — 3.

TABLE III
GLOSSARY OF MAIN TERMS

Symbol Description
T the reference image
t the target image
Il the transferred goal image
k iteration times
T the mapping relationship
H the decorrelation operator for color image
Agq the step for channel quantization
a the output of self-learning filtering
Qe Br the linear coefficients of filtering in the patch p,
Lk cr% the mean and variance of g in p,
€ smooth factor for filtering
dk k-levels details
A the adjustment factor for detail manipulation
p(+) probability distribution function for images
c() cumulative distribution function for images
S() the self-learning filtering operator
M(-) the detail manipulation operator
Dk (-) | normalized K-L measurement function

In this paper, we proposed a novel color transfer framework to
deal with these corruptive artifacts by integrated a self-learning
filtering scheme into the iterative probabilistic color mapping
model. Our framework not only prevents the color distortion
and grain effect in the process of transfer, but also achieves the
effect of detail preserving or enhancing. In addition, to eval-
uate the quality of color transfer, we proposed a series of objec-
tive and subjective measurements, including convergence anal-
ysis, shape analysis of color distribution, visual comparison and
user investigation. By the experimental analyses in the objective
and subjective data, we found that our framework had a better
performance than the state-of-the-art approaches, especially in
dealing with the grain effect, color distortion, and loss of de-
tails. In addition to the one-to-one transfer, our framework was
extended to the multiple-reference color transfer, HDR color
transfer and style transfer to demonstrate its flexibility. For con-
venient, we summarized our symbols and notations in Table III.
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(a)

Fig. 17. Limitations. (a) Theme colors. (b) Target. (c) Result (k = 3, ¢ =
le — 3). If the colors in the reference are excessively limited, our approach is
likely to produce the bleeding-like effect in the result.

Strength and limitations. Our framework can achieve the
color fidelity, prevent the grain effect and preserve the detail
seamlessly. Without solving the large-scale optimization equa-
tion, our framework has a sound runtime response, see Table II.
Our framework presents the convenience in dealing with the
complicated colors, owing to that it only requires to provide the
expected references but no other auxiliary interactions.

However, our framework still has some limitations. If the
amount of the referred colors is limited, it is likely to produce
two major problems. One is the inharmony of color appearance;
the other is the color bleeding-like artifacts. As illustrated in
Fig. 17, the specified reference is given in Fig. 17(a), and the
obvious color inharmony appears in the whole image and the
bleeding-like effect appears on the hill in Fig. 17(c).

In the future, we will extend our framework to video editing.
A difficulty in video color transfer is the color consistent prob-
lems in the continuous frames, due to that the pixel colors would
have a slight offset if the contents change in the video sequences.
And how to be aware of the locations of the colors is also a crit-
ical problem. In addition, to overcome the above limitations in
our approach to enhance the style appearance needs our contin-
uous efforts.
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