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Abstract—Existing convolution recurrent neural networks 

(ConvRNNs)-based memory cells majorly take advantage of gated 

structures and attention mechanisms to extract discontinuous 

latent associations for spatial-temporal sequence forecast (STSF) 

problems, which may lead to serious over-fitting and spurious 

relationships with correlated noise. It is a consensus that 

incorporating cause-effect relationships in modeling can alleviate 

these problems. In this paper, we propose a Causality Attention 

Unit (CAU) to assist ConvRNNs by complementing the causal 

inference ability in a plug-and-play way. Specifically, CAU serially 

consists of the attention module and causality module. The former 

is constructed by a spatial-channel attention layer, which 

preliminarily generates the correlated future with the correlations 

between historical memories and the current state. The latter 

borrows the idea of transfer entropy (𝑻𝑬) to detect the latent 

cause-effect relationships and precisely correct the correlated 

future. A space-time exchange strategy for accelerating the 

calculation of 𝑻𝑬  in CAU is also designed. CAU can be easily 

combined with the existing ConvRNN cells, and we construct a 

simple general model to predict long-term spatial-temporal series, 

which consists of encoder/decoder and stacked CAU paralleled to 

stacked ConvRNN cells. After determining the optimal model 

structure, we carry out a series of experiments to evaluate model 

performance, including comparisons with other advanced models, 

training loss analysis, and multiple ablation and sensitivity studies. 

Experimental results show that our proposed model can effectively 

improve the performances of existing ConvRNNs to the state-of-

the-are level on representative public datasets, including Moving 

MNIST, KTH, BAIR, and WeatherBench. The ablation and 

sensitivity studies verify the superiority of CAU. The learned 

causal maps precisely distinguish the pixel attributions and motion 

characteristics in sophisticated entangled scenarios. 

 
Index Terms—Spatial-temporal Sequence Forecasting, 

Causality Attention Unit, Causal Inference, Transfer Entropy. 

I. INTRODUCTION 

patial-temporal sequence forecasting (STSF) problem 

[1] is one of the most cutting-edge challenges, which 

manifests in multiple research areas, such as video 

prediction [2]–[4], traffic congestion estimation [5], 

motion/trajectory prediction [6], and even weather/climate 
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forecasting [7]–[10], etc. In recent years, deluges of advanced 

and efficient deep learning (DL) frameworks are proposed 

emergently for tackling the STSF problem, which has achieved 

landmark progress and is driving our pursuit of more accurate 

forecasts. 

The rapid developments of DL STSF models can be initially 

summarized as starting from the design of convolutional 

recurrent neural networks (ConvRNNs), e.g., convolution long 

short-term memory (ConvLSTM) [11] and convolution gated 

recurrent unit (ConvGRU) [12]. ConvRNN possesses not only 

the typical capability of extracting spatial characteristics via 

convolutions but retains the ability to infer the future via 

multiple gated structures (e.g., update, reset, and forecast gates) 

of RNN. Though such models are the successful expansions of 

conventional 1-dimensional LSTM to the 2-dimensional 

manifolds, they still inherit some shortcomings inevitably, such 

as the narrow temporal receptive field and restricted 

expressions for complex scenarios (See Section II.A). 

Furthermore, with the development of attention mechanisms 

[13], researchers tend to leverage distinctive attentions to 

augment the capture of potential spatial dependencies and long-

term temporal memories, e.g., Memory attention unit (MAU) 

[14], spatial-temporal attention based memory (STAM) [15], 

etc. These attentions are usually hand-craftily designed to focus 

on qualifying the detailed and crucial correlations between 

different spatial and temporal states, which raises the upper 

limits of describing the most significant variations in sequence 

evolutions and broadens the practicalities in the real world (See 

Section II.B). 

The sophisticated variability of temporal memories and the 

elusive uncertainty of spatial distributions are indeed the 

toughest barriers to the STSF problem, which can be alleviated 

by customized attention mechanisms to some extent. However, 

excessive focus on the correlation dependencies in spatial-

temporal contexts can lead to serious over-fitting of training 

data and capture spurious relationships with unpredictable noise 

[16], [17], especially when the objects in the scene are severely 
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entangled. For instance, the arms of a walking man are rotating 

and shifting, two pedestrians overlap each other in the view of 

a camera, and the passing car is moving away and shrinking. 

But the waving arms, as well as the overlapped pedestrians and 

the running car, are usually predicted very vaguely or even 

disappear by many attention-based models. This is because the 

correlations are usually non-directional, which cannot 

distinguish the causes and effects among disentangling abstract 

features (or representations) in the top-level (so-called encoder) 

of DL models[18], [19]. So, some significant information is 

mistaken for noise. Not to mention the captured associations 

may be useless (spurious) that cannot contribute to deducting 

the future. 

To solve the above problems, numerous efforts have been 

paid on incorporating causality into the DL model. Causality 

has unambiguous directions and exists in extensive time-series 

data, especially non-stationary distributions, which is the key to 

further performance improvement. At present, there has been 

lots of pioneering work on causal mining using neural 

networks, but few studies have focused on the STSF forecasts 

so far (See Section II.C). 

Therefore, unifying the causality in STSF modeling has 

great significance. Suppose there is a frame 𝒳𝑡 that contains 𝑁 

grids 𝑥𝑡
(𝑖)
∈ 𝒳𝑡 (𝑖 = 1:𝑁) and evolves along the timeline 𝑡. For 

the prediction of a certain grid 𝑖 , a direct formula 𝑥𝑡+1
(𝑖)

=

ℱ(𝑥1:𝑡
(𝑖)
)  is the common approach ( ℱ(∙)  is the forecasting 

system, and 1: 𝑡 represents the historical sequence). But when 

the other grids 𝑥1:𝑡
(𝑗)

 ( 𝑗 = 1:𝑁\𝑖 ) also contribute to this 

prediction according to the dynamical derivation or physical 

analysis, it is better to append them as 𝑥𝑡+1
(𝑖)

= ℱ(𝑥1:𝑡
(𝑖)
, 𝑥1:𝑡
(𝑗)
), 

which can effectively improve forecast accuracy especially 

when there is a cause-and-effect relationship between 𝑥1:𝑡
(𝑗)

 and 

𝑥𝑡+1
(𝑖)

. Take a common scene in the Moving MNIST dataset as 

an example (See Fig. 1). The digit “5” and “7” are sliding and 

bouncing in a fixed region. When their previous locations are 

given in Fig. 1(a), the causal inference helps infer the future 

states more accurately. As visualized in Fig. 1(b) and (c), they 

are both monitoring the locations of each other when they are 

entangled, which is because they tend to distinguish the 

attribution of pixels during motions. In addition, they are both 

monitoring the boundary before they are about to bounce. These 

are the “causes” of their future variations, with which we can 

precisely predict the evolutions as shown in Fig. 1(d). (Note that 

the sub-figures in Fig. 1 are all the inference processes of our 

proposed model by visualizing the learned causal maps.) 

The above illustrations also work well in other scenarios. 

Reasonable use of causality can identify and select the most 

valuable features from the historical state. In this paper, we 

propose a Causality Attention Unit (CAU) to mine latent cause-

effect relationships overlooked by vanilla ConvRNNs 

according to the above notion. Specifically, there are two 

sequential modules in CAU: The attention module and the 

causality module. The attention module uses the historical 

memories and current state to preliminarily infer future 

variations, and the causality module corrects such inferred 

variations with the help of transfer entropy ( 𝑇𝐸 ) 

mathematically, which is a concept from information theory 

and can be interpreted as the quantized cause-effect information 

(See Section III.C). Meanwhile, we also design a novel way of 

space-time exchange to accelerate the calculation of 𝑇𝐸, which 

originally has multi-level loops. The computational efficiency 

drops from 𝒪(𝑁2) to 𝒪(𝑁). CAU can be easily combined with 

the existing ConvRNN cells, and then we construct a simple 

general model, which consists of an encoder, a decoder, and 

stacked CAUs paralleled to stacked ConvRNN cells. This 

model can iteratively predict long-term spatial-temporal series. 

After determining the optimal model structure, we carry out a 

series of experiments on comparisons with other ConvRNN-

based STSF models, and model performance evaluation via 

ablation and sensitivity studies. 

Some scientific contributions are as follows: 

● CAU can mine the latent causal relationships via 𝑇𝐸 

mathematically, which can be rapidly calculated by a 

space-time exchange strategy and can be easily combined 

with the existing ConvRNN cell (e.g., MIM, PredRNN++) 

in a plug-and-play way. 

● The simple general model based on CAU can effectively 

improve the performances of existing ConvRNNs 

compared to other advanced models on multiple public 

datasets, including common scenarios (Moving MNIST 

dataset), video predictions (KTH and BAIR datasets), and 

 
Fig. 1. An example of using causal inference in the STSF problem for 

Moving the MNIST dataset. (a) represents the historical status. (b) and (c) 

show the causal maps for the digit “5” and “7” respectively, which means 

they are monitoring the locations of each other for precisely distinguishing 

the pixel attribution and the location of the boundary before bouncing. The 

gray arrows describe the motion directions. (d) represents the prediction 

results. Note that all the sub-figures are the real results of our proposed 

model after refactoring and post-processing. 
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weather forecasting (WeatherBench dataset). 

● The simple general model based on CAU is easier to 

converge under the same training configurations because it 

has no gated structures, which weakens gradient explosion 

and vanishing. 

● The visualized causal maps learned by CAU demonstrate 

that CAU can precisely distinguish the pixel attributions 

and motion characteristics in sophisticated entangled 

scenarios, such as rotating, shifting, and scaling in common 

STSF problems. 

The remainder of the paper is organized as follows. Section 

II provides a summary of the literature regarding the existing 

STSF models. Section III depicts the methodology, including 

the formalization of the STSF problem, the framework of CAU, 

the interior implementation and accelerated calculation of high-

dimensional 𝑇𝐸, and a simple general model based on CAU. 

Section IV describes the experimental schemes, which consist 

of the introduction of datasets, the comparison results, and the 

performance evaluations. The conclusions and future works are 

summarized in Section V. 

II. RELATED WORKS 

In this section, we introduce the development footprints of 

DL STSF models from the most fundamental ConvRNN to 

attention-augmented frameworks. Subsequently, we also 

illustrate some outstanding methods of performing causal 

inference by neural networks. 

A. ConvRNN-based STSF Models 

Due to the irreplaceable capability of resolving temporal 

memories, RNN, e.g., LSTM and GRU, is the first structure 

naturally considered in the STSF problem. [11] designs the 

ConvLSTM by integrating the convolution and LSTM together, 

which has a very low time-/resource-consuming in dealing with 

spatial-temporal features. The same superiority is also reflected 

in ConvGRU [12]. Furthermore, to extend the effective 

temporal length (memories) that vanilla RNNs can handle, [20] 

proposes PredRNN by adding more memory units in LSTM 

cells, and [21] proposes PredRNN++ by adding a gradient 

highway unit (GHU), which are all conducive to the 

preservation and transmission of longer-term memories. In 

addition, other novel upgrades are also advantaged in dealing 

with non-stationary sequences, which incorporate spatial 

dependencies and incorporate physical laws. For example, [22] 

designs the Memory in Memory (MIM) module to individually 

resolve instantaneous and tendency. [23] proposes E3D-LSTM 

to capture spatial features in different timestamps by 3D 

convolution and increase the temporal receptive field by a new 

memory unit named eidetic. [24] introduces PhyDNet by 

constructing the simulations of dynamical partial differential 

equations paralleled to the memory unit, which effectively 

represents the prior physical knowledge. 

Besides, there are many Transformer-based spatial-

temporal forecasting models proposed recently [25]–[28], 

which have further advanced prediction accuracy and quality, 

demonstrating great potential. These models formalize the 

STSF as the relationships mining from historical sequence with 

no memory filtering/transferring involved during prediction 

iterations. In this paper, we majorly focus on the ConvRNN-

based models. How to incorporating causality into 

Transformer-based models is the future topic. 

B. Attention Techniques for Video-related Tasks 

To overcome the common issues of information loss and 

gradient disappearance in vanilla ConvRNN-based models for 

multiple video-related tasks, (self-)attention techniques are 

gradually applied for capturing comprehensive correlations 

among different semantics (dimensions). Specifically, for STSF 

problem, SA-ConvLSTM (self-attention ConvLSTM) [29] is a 

successful attempt in quantifying the associations between the 

current state and historical memories, improving long-term and 

teleconnections. Some other upgrades [30] contain more 

efficient and diverse structures based on (self-)attention, which 

exhibit significant skills in the modulation of spatial-temporal 

relationships at the pixel level. The adjustable spatial and 

temporal receptive fields via attention mechanisms attract lots 

of interest. Memory attention unit (MAU) [14] and its variation, 

spatial-temporal attention based memory (STAM) [15], are two 

representative memory cells, which can both optimally extend 

the receptive fields. In addition, temporal attention unit (TAU) 

[31] decouples the attention into intra-frame statics and inter-

frame dynamics, bringing a brand new insight into attention 

utilization and improving prediction performance. In addition, 

for other typical video-related tasks, such as action recognition 

and anomaly detection, multiple attention techniques are 

coupled in the temporal, pixel, or channel dimension to enhance 

the discrimination of locating the key frames of action 

occurrence and recognizing the key features of action type 

[32]–[34]. This shows that the customized attention 

mechanism, as a neural operator, can be applied to any 

dimension and exert positive effects in a plug-and-play way. 

In this paper, the proposed CAU performs the spatial-

temporal evolutions on the single-frame image alone the time 

lines. The internal feature maps in CAU do not contain temporal 

dimensions, so we choose the spatial-channel coupled attention 

mechanism, which can extract the multimodal (channel level) 

and pixel (spatial level) dependencies of the decoded feature 

map of a single-frame image simultaneously. 

C. Causal Inference for Video-related Tasks 

The most criticized points of (self-)attention are over-fitting 

and easy-capturing of spurious correlations [16], which can be 

alleviated by effective sparsity [35], [36] and causal inference 

[37]. The latter is a more direct way, which can make more 

concrete deductions that are not easy to change under 

sophisticated scenes. However, for the STSF problem, existing 

works are few and focus on integrating the (dilated) causal 

convolutions into STSF models [38], [39], which only consider 

the form but ignore the principle and measurement of cause-

effect. Meanwhile, these models often encounter the 

shortcomings of local information loss, high computation 

complexity, and low interpretability. For the other video-related 

tasks, causal inference has been pioneeringly applied in model 
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training strategy to effectively explain the decision process of 

"black-box" models on the given results. For example, [41] uses 

causal graphs to analyze the confounder effects of unsupervised 

training of pseudo-labels and eliminates the negative effects of 

errors/noises in pseudo-labels via blocking the backdoor effect 

paths, improving the performance of anomaly detection. [42] 

analyzes the spatial-temporal effects of the image-to-video 

adaption using a causal graph with counterfactual inference, 

and applies the learned spatial-temporal migration features to 

compensate for performance degradation during classifier 

migration. The causal effects involved in the above models 

generally act at the macro level, such as global temporal scale, 

appearance scale and action scale, and only implicitly express 

the causal relationships through the high degree of neural 

networks nonlinearity. Recent years, some causal inference 

approaches are proposed in the directed acyclic graph (DAG) 

learning in the areas of natural language processing (NLP), such 

as text generation [40], which is a big forward for sequence 

forecasting problems. However, due to the difficult unification 

of the textual token and image token, these advanced insights 

are hard to transfer into video-related tasks to perform causal 

inference at micro (image patch or pixel) level. 

In this paper, the transfer entropy-based causal inference 

used in our proposed CAU quantifies the causality of individual 

pixel features of single-frame image within the spatial-temporal 

sequence, acting on a micro spatial scale with explicit 

mathematical implications. 

III. METHODOLOGY 

In this section, we first clarify the general formalization of the 

STSF problem. Then, we illustrate our proposed Causality 

Attention Unit (CAU), which is implemented via transfer entropy 

(𝑇𝐸) mathematically and can complement the existing methods 

with the ability of mining the latent causal relationships hidden in 

spatial-temporal sequence. Meanwhile, we design a space-time 

exchange strategy to rapidly calculate 𝑇𝐸. Finally, we propose a 

simple general STSF model based on CAU and exhibit its detailed 

structure, especially the encoder and decoder. 

A. STSF Problem Formalization  

STSF problem can be typically regarded as using historical 

𝜏 sequential data 𝒳1:𝑡  to forecast the observed scene (ground 

truth) 𝒳𝑡+1 of the next time step, which can be depicted in (1), 

 �̂�𝑡+1 = ℱ(𝒳1:𝑡) (1) 

where 𝑡 is the current time and �̂�𝑡+1 is the prediction result. 

ℱ(∙)  represents the forecasting system. In general, this 

paradigm can be iterated by multiple times by feeding the 

predicted results into the right side of this equation to obtain a 

predicted sequence �̂�𝑡+1:𝑇. The goal of the STSF problem is to 

optimize (2) 

 min∑ 𝒬(𝒳𝑠, �̂�𝑠)
𝑇
𝑠=𝑡+1  (2) 

where 𝒬  is the chosen quality assessment indicator, such as 

𝑆𝑆𝐼𝑀  (structural similarity) for human-eye perception and 

𝑀𝑆𝐸 (mean square error) for distance measure of errors. 

DL model, as a common solution, is a reliable tool for 

constructing the forecasting system ℱ , which can be usually 

decoupled into three parts with different effects as (3). 

 {

𝐸𝑛𝑐𝑜𝑑𝑒𝑟: 𝑣𝑡 = ℰ(𝒳𝑡)
𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑟: ℎ𝑡+1 = ℐ(ℎ𝑡 , 𝑣𝑡)

𝐷𝑒𝑐𝑜𝑑𝑒𝑟: �̂�𝑡+1 = 𝒟(ℎ𝑡+1)

 (3) 

where ℰ  (Encoder) is used to capture the current spatial-

temporal feature 𝑣𝑡 , ℐ  (Informer) is used to make a memory 

inference for the hidden state ℎ𝑡+1 of the next sequential time 

step with hidden memory ℎ𝑡  and 𝑣𝑡  (ℎ0 is generally obtained 

by internal initialization, and when the unit layer is more than 

1, 𝑣𝑡  is usually from the output of previous layer), and 𝒟 

(Decoder) is used to restore the feature to the predicted value 

�̂�𝑡+1 . ℰ  and 𝒟  are usually constructed by convolutional 

skeletons. ConvRNN, such as some advanced variants (e.g., 

PredRNN, MIM, etc.), plays the role of ℐ, which is a memory 

inference unit with varied gated structures as (4). 𝑓𝑜𝑟𝑔𝑒𝑡𝑡(∙,∙) 
serves as the forget gate and 𝑖𝑛𝑝𝑢𝑡𝑡(∙,∙) represents the input 

gate (∗ is convolution operator). These three parts modulate 

closely to achieve more accurate forecasts. 

 ℎ𝑡+1 = 𝑓𝑜𝑟𝑔𝑒𝑡𝑡(𝑣𝑡 , ℎ𝑡) ∗ ℎ𝑡 + 𝑖𝑛𝑝𝑢𝑡𝑡(𝑣𝑡, ℎ𝑡) ∗ 𝑣𝑡 (4) 

ℐ  is the key component of the STSF problem. Broadly 

speaking, 𝑓𝑜𝑟𝑔𝑒𝑡𝑡(∙,∙) and 𝑖𝑛𝑝𝑢𝑡𝑡(∙,∙) are both with activation 

functions in the interval [0,1], and are tied as 𝑓𝑜𝑟𝑔𝑒𝑡𝑡(∙,∙) +
𝑖𝑛𝑝𝑢𝑡𝑡(∙,∙) = 1. However, such architecture makes the forget 

gate very easy to saturate (i.e., close to 1), especially when 

addressing long-term memories [43], which induces the 

gradient vanishing and hampers memory updating. Meanwhile, 

although multiple attention mechanisms are applied in ℐ  to 

enhance the extraction of discontinuous latent spatial-temporal 

dependencies, they tend to “create” fake associations between 

 
Fig. 2. (a) represents the two serial modules (attention module and causality module) of CAU. (b) shows the detailed calculation process of these two modules. 
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two dependent variables especially when they are influenced by 

the third latent variable according to Reichenbach’s common 

cause principle [19], which are spurious correlations. This is a 

very fatal issue for the STSF problem, because the spurious 

correlations may cause the feature of unrelated objects in the 

scene to be updated together after receiving the same high 

attention weights, making predictions blurry and distorted. 

It is a consensus that complementing neural networks with 

the ability of causal inference can effectively eliminate useless 

attentions. The process of causal inference emphasizes the 

lagged spatial-temporal relationships and imperceptible causes, 

which is naturally suitable for predicting future scenarios in the 

STSF problem. So, in this paper, we propose a Causality 

Attention Unit (CAU) to achieve this purpose. It can perform 

the causal inference paralleled to ConvRNN in a plug-and-play 

way. 

B. Causality Attention Unit: CAU 

CAU has two sub-modules, which can be systematically 

described in (5) (𝑘 = 1:𝐾 represents the unit layer). 

 {

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛: 𝑓𝑎𝑡+1 = 𝒜(ℎ𝑡
𝑘, 𝑣𝑡

𝑘)

𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦: 𝑓𝑐𝑡+1 = 𝒞(ℎ𝑡
𝑘, 𝑣𝑡

𝑘, 𝑓𝑎𝑡+1)

𝑜𝑢𝑡𝑝𝑢𝑡: ℎ𝑡+1
𝑘 = 𝑓𝑎𝑡+1 + 𝑓𝑐𝑡+1

 (5) 

where 𝒜  and 𝒞  are the attention and causality modules 

respectively. The former is to generate correlated future 𝑓𝑎𝑡+1 

according to latent correlations, and the latter is to mine the 

cause-effect relationships hidden in historical sequence, 

generating causal future 𝑓𝑐𝑡+1. 

As (5), CAU has two internal components, which are 

connected sequentially. We model them respectively as shown 

in Fig. 2(a). Note that there is no gated structure in CAU, 

because CAU makes correlation and causality inferences along 

the timeline, which plays a substitute role in memory filtering 

and updating. 

The detailed structures of attention (green shadow) and 

causality (yellow shadow) modules are described in Fig. 2(b), 

the operators of which are marked above the figure. Overall, 

before feeding inputs into the attention module, we first 

concatenate (marked as ||  in (7)) the hidden state ℎ𝑡
𝑘  and 

current status 𝑣𝑡
𝑘 , which is a simple but effective manner to 

couple all memories. Then, after the propagation of these two 

modules, the summation output ℎ𝑡+1
𝑘  is passed into the decoder 

𝒟 or the next layer (𝑘 + 1). 
The attention module is also the summation of two parts as 

(6) (the green shadow of Fig. 2(b)), 

 𝑓𝑎𝑡+1 = 𝒜(ℎ𝑡
𝑘, 𝑣𝑡

𝑘) = 𝑝𝑡 + 𝑓𝑡+1 (6) 

where 𝑝𝑡  is the resolved previous (historical) memories and 

𝑓𝑡+1 is the residual correlated future. These two parts can be 

obtained by (7) respectively, where 𝐴𝑡𝑡(∙)  is the chosen 

attention layer, and 𝐶𝑜𝑛𝑣(∙)  is used to resolve the coupled 

memories. 

 𝑝𝑡 = 𝐶𝑜𝑛𝑣(ℎ𝑡
𝑘||𝑣𝑡

𝑘), 𝑓𝑡+1 = 𝐴𝑡𝑡(𝑝𝑡) (7) 

It is worth noting that 𝐴𝑡𝑡(∙) in the attention module should 

be selected carefully. Considering the characteristics of 

memories 𝑝𝑡, which contains the resolved spatial features at the 

pixel level with various semantics in different channels, the 

spatial-channel attentions should be used for a comprehensive 

capture of significant correlations, such as CBAM [44], Triplet 

[45], and CoT [46]. We make a comparative study for 

determining the optimal attention layer in Section IV.B. 

As for the causality module, we use Transfer Entropy (𝑇𝐸) 

to quantify the spatial-temporal causality (including the 

intensity and direction) among all grids of a certain feature map, 

which acts on memories 𝑝𝑡 to make causal inferences for causal 

future 𝑓𝑐𝑡+1 as (8) analogous to the attention matrix (the yellow 

shadow of Fig. 2(b)). 

 𝑓𝑐𝑡+1 = 𝒞(ℎ𝑡
𝑘, 𝑣𝑡

𝑘, 𝑓𝑎𝑡+1) = 𝑇𝐸 × 𝑝𝑡 (8) 

Here, 𝑇𝐸  is constructed as an 𝑁 × 𝑁  matrix, where 𝑁 =
𝐻 ×𝑊 is the size of the feature map and 𝐻/𝑊 represents the 

height/width. Finally, the correlated future in (6) and causal 

future in (8) are added together as (5) to complement each other. 

C. The Implementation of TE 

In (8), 𝑇𝐸  is an information-theoretic measurement of 

causality proposed by [47], the calculation of which depends on 

both the historical and predicted (future) information. 

Continuing the example in the Introduction, taking the spatial-

temporal features (𝑥(𝑖) and 𝑥(𝑗)) on two different grids (𝑖, 𝑗 =
1:𝑁) of a feature map as an example, the causal relationship 

quantified by 𝑇𝐸 between them can be measured as (9), 

 𝑡𝑒𝑗→𝑖 = ∑𝒫(𝑥𝑡+1
(𝑖)
, 𝑥1:𝑡
(𝑖)
, 𝑥1:𝑡
(𝑗)
) log

𝒫(𝑥𝑡+1
(𝑖)

|𝑥1:𝑡
(𝑖)
,𝑥1:𝑡
(𝑗)
)

𝒫(𝑥𝑡+1
(𝑖)

|𝑥1:𝑡
(𝑖)
)

 (9) 

where 𝑥1:𝑡
(𝑖)

 is the historical feature on grid 𝑖, 𝑥1:𝑡
(𝑗)

 represents the 

historical feature on grid 𝑗  to be investigated, and 𝑥𝑡+1
(𝑖)

 

represents the future feature to be predicted. 𝒫(∙,∙,∙) is the joint 

probability and 𝒫(∙ | ∙)  is the conditional probability. 

According to this formula, 𝑇𝐸 can be understood intuitively as 

the variations of the information entropy of 𝑥𝑡+1
(𝑖)

 when 𝑥1:𝑡
(𝑗)

 is 

known or not. Extensive research indicates that 𝑇𝐸  does not 

need to assume the form of the causal relationship between 

grids, which is suitable for the long-time series analysis of 

nonlinear systems [48]. 

To circumvent the probability calculation in neural 

networks, we rewrite (9) as conditional mutual information and 

divided into a combination of several simple terms in (10). 

 

𝑡𝑒𝑗→𝑖 = 𝐼(𝑥𝑡+1
(𝑖) ; 𝑥1:𝑡

(𝑗)
|𝑥1:𝑡
(𝑖)
)

= ℋ(𝑥𝑡+1
(𝑖)
, 𝑥1:𝑡
(𝑖)
) +ℋ(𝑥1:𝑡

(𝑗)
, 𝑥1:𝑡
(𝑖)
)

−ℋ(𝑥𝑡+1
(𝑖)
, 𝑥1:𝑡
(𝑗)
, 𝑥1:𝑡
(𝑖)
) −ℋ(𝑥1:𝑡

(𝑖)
)

 (10) 

where 𝐼(∙;∙ | ∙)  represents the conditional mutual information 

and ℋ(∙) (ℋ(∙,∙) and ℋ(∙,∙,∙)) represents the (joint) entropy. 

After nested traversing 𝑖 and 𝑗, we can get a cause-effect matrix 

𝑇𝐸 ∈ ℝ𝑁×𝑁 as shown in (11), which is similar to the attention 

matrix. 

 𝑇𝐸 =

[
 
 
 
 
𝑡𝑒1→1 𝑡𝑒2→1 𝑡𝑒3→1 ⋯ 𝑡𝑒𝑁→1
𝑡𝑒1→2 𝑡𝑒2→2 𝑡𝑒3→2 ⋯ 𝑡𝑒𝑁→2
𝑡𝑒1→3 𝑡𝑒2→3 𝑡𝑒3→3 ⋯ 𝑡𝑒𝑁→3
⋮ ⋮ ⋮ ⋱ ⋮

𝑡𝑒1→𝑁 𝑡𝑒2→𝑁 𝑡𝑒3→𝑁 ⋯ 𝑡𝑒𝑁→𝑁]
 
 
 
 

 (11) 

Following the such generic example, we independently 

learn and mine the spatial-temporal causal relationships 

between individual grids of the correlated future 𝑓𝑎𝑡+1 ∈
ℝ𝐶×𝐻×𝑊  and the previous memories 𝑝𝑡 ∈ ℝ

𝐶×𝐻×𝑊  ( 𝐶 

represents channel). Specifically, we reshape both 𝑓𝑎𝑡+1 and 𝑝𝑡 
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into ℝ𝑁×𝐶 (𝑁 = 𝐻 ×𝑊). For a memory feature 𝑝𝑡
(𝑖) ∈ ℝ1×𝐶 on 

an individual grid 𝑖 = 1:𝑁  and the corresponding correlated 

future state 𝑓𝑎𝑡+1
(𝑖) ∈ ℝ1×𝐶, we use 𝑇𝐸 to identify and quantify 

the causal contribution of states 𝑝𝑡
(𝑗)
∈ ℝ1×𝐶 of other grids 𝑗 =

1:𝑁 on the inference of (𝑝𝑡
(𝑖), 𝑝𝑡

(𝑗)
) → 𝑓𝑎𝑡+1

(𝑖)
 (Here, we do not 

exclude 𝑖  from the value range of 𝑗 , because the causal 

relationship of itself cannot be ignored). We mark this process 

as 𝑡𝑒𝑗→𝑖 = 𝐼 (𝑓𝑎𝑡+1
(𝑖) ; 𝑝𝑡

(𝑗)
|𝑝𝑡
(𝑖)
)  like conditional mutual 

information in (10). 

Before calculating 𝑡𝑒𝑗→𝑖, we set two transformation weights 

𝑊𝑝,𝑊𝑓 ∈ ℝ
𝑐×𝛽 (𝛽 is the hyper-parameter of hidden dimension, 

as shown in the two orange boxes in the yellow shadow of Fig. 

2(b)) to precisely assess the (joint) entropy of the historical state 

and correlated future state with [0,1]-normalization as (12), 

 ℎ𝑝𝑡
(𝑖) = 𝜎(𝑊𝑝 × 𝑝𝑡

(𝑖)), ℎ𝑓𝑡+1
(𝑖) = 𝜎(𝑊𝑓 × 𝑓𝑎𝑡+1

(𝑖) ) (12) 

where 𝜎 is the sigmoid activation function. ℎ𝑝𝑡
(𝑖)

 and ℎ𝑓𝑡+1
(𝑖)

 are 

the normalized entropy. We make a comparative study for 

determining the optimal hidden dimension 𝛽 in Section IV.B. 

Subsequently, 𝑡𝑒𝑗→𝑖 can be obtained by (13) analogous to (10) 

and forms the cause-effect matrix 𝑇𝐸. This process is shown in 

the gray boxes of the yellow shadow in Fig. 2(b). 

 

{
 
 

 
 𝑡𝑒𝑗→𝑖 = 𝐼 (ℎ𝑓𝑡+1

(𝑖) ; ℎ𝑝𝑡
(𝑗)
|ℎ𝑝𝑡

(𝑖)
)

= ℋ(ℎ𝑓𝑡+1
(𝑖) , ℎ𝑝𝑡

(𝑖)) +ℋ (ℎ𝑝𝑡
(𝑗)
, ℎ𝑝𝑡

(𝑖)
)

−ℋ (ℎ𝑓𝑡+1
(𝑖) , ℎ𝑝𝑡

(𝑗)
, ℎ𝑝𝑡

(𝑖)
) −ℋ(ℎ𝑝𝑡

(𝑖))

 (13) 

Furthermore, we take advantage of the asymmetry of 𝑇𝐸 to 

identify the both intensity and direction of causal relationships. 

On the one hand, the larger 𝑡𝑒𝑗→𝑖, the greater the effect of grid 

𝑗 on 𝑖, the more reliable causality. On the other hand, if 𝑡𝑒𝑗→𝑖 >

𝑡𝑒𝑖→𝑗, the feature of grid 𝑗 is the effect while the feature of grid 

𝑖 is the cause. We then use (14) to remove the “effect” and retain 

the "cause", 

 𝑇�̃� = 𝑚𝑎𝑥(𝑇𝐸𝑇 − 𝑇𝐸 + 𝑑𝑖𝑎𝑔(𝑇𝐸), 0) (14) 

where ∙𝑇  represents the transpose and 𝑑𝑖𝑎𝑔(∙)  represents the 

diagonal to supplement its own causality (e.g., 𝑡𝑒1→1, 𝑡𝑒2→2, 

etc.). After such filter, we normalize the cause-effect 

relationships by a mask-Softmax operator as (15). 

 {
𝑇�̃�𝑚𝑠 = 𝑚𝑎𝑠𝑘_𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑇�̃�𝑖,:) =

𝑒
𝑡𝑒𝑗→𝑖

∑ 𝑒
𝑡𝑒𝑗→𝑖𝑁

𝑙=1

(𝑖, 𝑗 = 1:𝑁, 𝑖𝑓 𝑡𝑒𝑗→𝑖 ≠ 0)
 (15) 

We practically use the normalized causality map 𝑇�̃�𝑚𝑠  to 

augment the historical memory 𝑝𝑡 to generate the causal feature 

in (8). 

D. The Accelerated Calculation of TE 

The calculation of 𝑇𝐸 requires two levels of loops (𝑖 and 𝑗), 
which is a time-consuming process. We use space-time 

exchange for acceleration. After in-depth analysis, two 

ingredients of 𝑡𝑒𝑗→𝑖  are more difficult to compute: 

ℋ(ℎ𝑝𝑡
(𝑖), ℎ𝑝𝑡

(𝑗)
) and ℋ(ℎ𝑓𝑡+1

(𝑖) , ℎ𝑝𝑡
(𝑗)
, ℎ𝑝𝑡

(𝑖)
), because they are 

related to the traverse of 𝑖  and 𝑗 concurrently. Therefore, we 

design a replication-cascade strategy to construct the traverse 

as shown in Fig. 3. 

As shown in this figure, the historical state and the 

correlated future are first replicated along the "Z-"axis, 

meanwhile the replicated historical state also needs to transpose 

the second and third dimensions, which is to construct a 

traversal cascade for all different positions. Then, we cascade 

them in the required order and calculate their joint entropies 

respectively. Such operation can construct the traverse of 𝑛 and 

𝑙 simultaneously. The time-consuming is reduced from 𝒪(𝑁2) 
to 𝒪(𝑁)  according to mathematical analysis ( 𝑁 = 𝐻 ×𝑊 

represents the size of the feature map). We also perform a 

validation experiment to monitor the elapsed time of these two 

strategies when calculating 𝑇�̃�𝑚𝑠 under 𝑁 = 16 × 16 with our 

computing resource mentioned in Section IV.A. The average 

time-consuming for the former is 6.017 (ms) and that for the 

latter is 0.030 (ms), which is nearly a 200-fold increase (two 

orders of magnitude of acceleration ratio). 

E. A Simple General Model for STSF Problem based on CAU 

As mentioned above, CAU can be easily combined with 

existing ConvRNN cells for solving the STSF problem. We 

 
Fig. 3. Our proposed space-time exchange strategy for accelerating the 

calculation of 𝑇𝐸 in CAU. It requires replication of tensors and ordered 

concatenation. 

 
Fig. 4. The detailed structure of the encoder and decoder of our proposed 

model, which both consist of stage blocks and transition blocks. CNR and 

TCNR are our defined integrated components. 
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build a simple general model based on it according to (3), as in 

Fig. 4. 

We use an encoder and a decoder respectively to resolve and 

restore the spatial-temporal features hidden in the input 

sequence in this model. Between the encoder and decoder, the 

stacked CAU and ConvRNN cells are constructed in parallel. 

Analogous to ConvRNN, each layer of CAU receives the output 

of the previous layer and maintains the individual historical 

memories. The output of CAU is added to the output of 

ConvRNNs and subsequently fed to the decoder to make 

forecasting end-to-end. In this model, CAU assists in 

complementing the causal inference ability while ConvRNNs 

are performing memory updating. The selection of ConvRNN 

cells is important, and we perform experiments to verify the 

performance of CAU combined with different ConvRNN cells 

(See Section IV.D). 

As for the encoder and decoder, we construct the fully-

convolution networks respectively as shown in Fig. 5, which 

are both composed of two integrated blocks, that is, the stage 

block and transition block. The stage block consists of two 

CNRs (TCNRs) with different convolution kernel sizes, which 

resolve (restore) the spatial information by expanding 

(shrinking) the channel. The transition block is also constructed 

by CNR or TCNR, but the stride of the convolution layer is set 

as 2, which compresses the redundant information by reducing 

the feature maps and restores image details end-to-end by 

enlarging the feature maps in the trainable way. 

In general, using the residual connections or some 

pooling/upsampling can effectively improve the performance 

of network, such as bridging the short-cut in the stage block, 

using the pooling/upsampling layers in the transition block. 

However, after extensive experiments, we find these two 

modifications are not suitable for improving the performance 

(See Section IV.D). We summarize that the short-distance 

residual connections produce the constant mapping easily, 

obviously preventing the features from evolving with time lines 

and keeping them align with historical features. In addition, the 

untrainable pooling/upsampling may violently discard the 

crucial details or introduce the redundant noise in the feature 

maps. 

Subsequently, we tune the model configuration to the 

optimal performance (See Section IV.B) and solve the STSF 

problem in a common scenario (Moving MNIST dataset), video 

predictions (KTH and BAIR datasets), and weather forecasting 

(WeatherBench dataset) to comprehensively evaluate its 

performance (See Section IV.C). In addition, we also perform 

some ablation and sensitive studies for our model (See Section 

IV.D).  

IV. EXPERIMENTS 

A. Experiment Schemes 

Datasets We select 4 different datasets from different scenarios 

to evaluate the performance of CAU. ① Moving MNIST [49], 

the most widely used benchmark dataset for the STSF problem, 

which is an ideal scenario of handwritten number twisting and 

shifting. ②  KTH [50], a human performing video dataset 

containing 6 different actions, including walking, jogging, 

running, boxing, hand waving, and clapping. ③ BAIR [51], an 

object-moving video dataset pushed by a robotic arm. ④ 

WeatherBench [52], a global hourly weather reanalysis data 

from 1979 to 2018, from which we collect the sub-sets of air 

temperature and geopotential. The image size, training 

paradigm, and testing paradigm are shown in Table I. 

Model Settings and Training We conduct all the subsequent 

experiments on a server with a GPU of NVidia RTX 3090, and 

all models are optimized with Adam [47] for MSE (mean 

square errors). In addition, we have first carried out a series 

joint tuning experiments to determine optimal major hyper-

parameters under our computing resource (See Section IV.B). 

To summarize, Triplet is selected as the attention module in 

CAU, the block number in encoder/decoder is 3, the CAU 

number is 3, and the hidden dimension for the calculation of TE 

is 48. For a more robust training effect, we set a “warm-up” 

phase in the early training epoch. In this phase, the recurrent 

training of model just uses the standard label rather than the 

previous time step’s prediction, and the “warm-up” length is 

equal to the input length as shown in Table I. After the “warm-

up” phase, the model performs the formal iterative prediction. 

The “warm-up” phase can make the model load more correct 

memories and guide a precise/rapid direction of parameter 

learning in the early training epoch. We set the “warm-up” 

phase as 50 epochs for the subsequent experiments. 

Metrics We select 3 different metrics to evaluate model 

performance, including 𝑀𝑆𝐸  (lower is better), 𝑃𝑆𝑁𝑅  (peak 

signal-to-noise ratio, larger is better), and 𝑆𝑆𝐼𝑀 [53] (structural 

 
Fig. 5. The architecture of our proposed model. CAU is constructed parallel 

to vanilla ConvRNN cells in a plug-and-play way, which can complement 

the ability of causal mining. CAU can be stacked in multiple layers. 

Table I 

DESCRIPTION OF OUR CHOSEN DATASET AND EXPERIMENTAL SETTINGS FOR THEM. THE TRAINING AND TESTING PARADIGMS 

DENOTE THE NUMBER OF THE FRAME AS THE INPUT AND THE OUTPUT DURING TRAINING AND TESTING. 

Dataset Resolution Training Paradigm Testing Paradigm 

Moving MNIST [43] 1 × 64 × 64 10 → 10 10 → 10 

KTH [44] 1 × 64 × 64 10 → 10 10 → 40 

BAIR [45] 3 × 64 × 64 10 → 10 10 → 40 

WeatherBench [46] 1 × 32 × 64 24 → 24 24 → 96 
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similarity, larger is better). These three metrics focus on not 

only the prediction errors at the pixel level but the human-eye 

perception of the predictions. The precise equations of these 

three metrics can be referred to as (16) to (18). 

 𝑀𝑆𝐸 =
1

𝜅
∑ (�̂�𝑠

(𝑖)
−𝒳𝑠

(𝑖)
)
2

𝑡+𝜅
𝑠=𝑡+1 , 𝑖 = 1:𝑁 (16) 

 𝑃𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔10(
𝑀𝐴𝑋2

𝑀𝑆𝐸
) (17) 

 

{
  
 

  
 𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 =

2𝜇
�̂�
2 𝜇𝒳

2 +𝑐1

𝜇
�̂�
2 +𝜇𝒳

2 +𝑐1

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
2𝜎�̂�𝒳+𝑐2

𝜎
�̂�
2+𝜎𝒳

2+𝑐2

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 =
𝜎�̂�𝒳+𝑐3

𝜎�̂�𝜎𝒳+𝑐3

𝑆𝑆𝐼𝑀 = 𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒𝑎 ∙ 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑏 ∙ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑐

 (18) 

where �̂�𝑠
(𝑖) and 𝒳𝑠

(𝑖) are the ground truth and prediction result 

on the grid 𝑖  in the predicted sequence respectively, 𝜅 

represents the sequence length. In 𝑃𝑆𝑁𝑅, 𝑀𝐴𝑋 is set as 255. In 

𝑆𝑆𝐼𝑀, 𝜇�̂�  (𝜇𝒳) is the average for �̂� (𝒳), and 𝜎�̂�  (𝜎𝒳) is the 

corresponding standard deviation. 𝜎�̂�𝒳  represents the 

covariance, 𝑎 = 𝑏 = 𝑐 = 1  for fair measurement of every 

ingredient of 𝑆𝑆𝐼𝑀 , 𝑐1 , 𝑐2 , and 𝑐3  are all trivial values for 

preventing the denominator from being 0. 

B. Determination of the Optimal Structure 

The interior structure of CAU consists of many adjustable 

modules that influence the model performance. Here, we 

majorly divide them into two categories according to different 

scales: The structure-level macro design and the parameter-

level micro design. The former contains the choice of attention 

module in CAU and the depth of encoder/decoder, and the latter 

contains the hidden dimension of the causality module and the 

stack number of CAU in the entire network. We first determine 

the optimal combination for the macro design and then tune the 

parameters of the micro design with the help of the Moving 

MNIST dataset. Note that other parameters also affect the 

model performance, such as the convolution kernel (channel 

and size). We omit the tuning process of these parameters 

because these are not the focus of this paper. In addition, we 

have adjusted them to the optimal in the subsequent 

experiments. 

Macro Design For the attention module, we have selected 3 

candidates according to the review of [54]: CBAM [44], X-

Linear [55], Triplet [45], Coordinate [56], and CoT [46]. They 

are all plug-and-play spatial-channel attention techniques and 

have different characteristics. CBAM calculates the spatial and 

channel attentions individually and is the most widely used 

technique. X-Linear exploits the spatial-channel-wise bilinear 

attention distributions to capture the 2nd (or even infinity) order 

interactions between the multi-modal features. Triplet focuses 

on the cross-domain interactions between spatial and channel 

levels and aggregates their information together. Coordinate 

incorporates the position encoding of feature maps into the 

capture of spatial-channel attention. CoT capitalizes on the 

contextual information among input keys to guide the learning 

of dynamic attention matrix and thus strengthens the capacity 

of visual representation. These five types of attention 

mechanisms can cover most other options according to their 

motivations and implementations, and we select one from them 

for CAU. 

For the depth of the encoder/decoder, we can deepen the 

model by increasing the number of stage modules before the 

transition module. (To ensure the size of the encoded features 

is not too small, we fix the number of transition modules to 2). 

Considering the above factors, we carry out an experiment to 

evaluate the joint effects of the attention module and model 

depth. Here, the CAU number is 1 and the hidden dimension is 

36. The result is shown in Table II. 

The effects of different attention modules are not much 

different with fluctuation of no more than 1 under the same 

block number, among which Triplet exhibits slightly high 

performance. This is because Triplet stresses the discriminative 

interactions of features in different angles, which is useful for 

capturing the rotating or shifting of the object during temporal 

evolutions. CoT also possesses a comparable performance, 

because it emphasizes the neighborhood interactions, 

strengthening the localized historical memory correlations and 

Table II 

THE JOINT EFFECTS ON PERFORMANCE WITH MULTIPLE 

MACRO DESIGNS, WHICH CONTAIN DIFFERENT ATTENTION 

MODULES IN CAU AND BLOCK NUMBERS OF 

ENCODER/DECODER. (THE CAU NUMBER IS 1 AND THE 

HIDDEN DIMENSION IS 36). BOLD NUMBERS REPRESENT THE 

BEST PERFORMANCE. 

Attention Module Block Number 
Metrics 

MSE SSIM 

CBAM [39] 

1 35.4 0.917 

2 34.9 0.919 

3 34.4 0.920 

Triplet [40] 

1 34.6 0.919 

2 33.9 0.921 

3 33.4 0.922 

Coordinate [50] 

1 35.1 0.917 

2 34.8 0.919 

3 33.8 0.921 

X-Linear [56] 

1 35.2 0.916 

2 34.6 0.918 

3 34.2 0.918 

CoT [46] 

1 34.5 0.917 

2 34.0 0.919 

3 33.6 0.920 

 

Table III 

THE JOINT EFFECTS ON PERFORMANCE WITH MULTIPLE 

MICRO DESIGNS, WHICH CONTAIN DIFFERENT CAU 

NUMBERS AND HIDDEN DIMENSIONS FOR ENTROPY 

CALCULATION IN 𝑇𝐸 OF CAU. (THE ATTENTION MODULE IS 

TA AND THE BLOCK NUMBER IS 3). BOLD NUMBERS 

REPRESENT THE BEST PERFORMANCE. 

CAU Number 
Hidden 

Dimension β 

Metrics 

MSE SSIM 

1 

24 35.7 0.915 

36 33.4 0.922 

48 31.7 0.924 

2 

24 34.9 0.918 

36 30.6 0.926 

48 28.5 0.931 

3 

24 33.1 0.922 

36 29.6 0.929 

48 26.7 0.939 
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spatial-temporal dynamic evolutions. On the other hand, the 

larger block number has a significant performance 

improvement. Because a deeper structure favors resolving and 

restoring the spatial features. 

According to the best performance, we use Triplet as the 

attention module in CAU and the block number in the 

encoder/decoder is set as 3 in the subsequent experiments. 

Micro Design The number of stacked CAUs affects the 

efficiency of memory propagation, and the hidden dimension 𝛽 

is closely related to the accuracy of entropy calculation in 𝑇𝐸. 

These are two critical parameters. We design an experiment to 

determine the optimal combination of them. The result is shown 

in Table III. 

Overall, more CAUs bring an obvious performance gain. But 

stacking CAU also induces a large computational load, and the 

improvement rate gets slower with the CAU number from 1 to 

3. Meanwhile, increasing the hidden dimension 𝛽 undoubtedly 

promotes the points of 𝑀𝑆𝐸  and 𝑆𝑆𝐼𝑀 , which makes the 

calculation of entropy more precise. The parameter settings for 

this experiment are the widest adjustable ranges under our 

computing resources. In the future, more complex parameter 

determinations will be performed on larger-scale high-

performance devices. 

According to the best performance, we set the CAU number 

as 3 and the hidden dimension 𝛽  as 48 in the subsequent 

experiments. 

C. Comparisons with Other ConvRNN-based STSF Models  

In this section, we compare the results of our proposed 

model and other representative STSF models on the four chosen 

datasets. Specifically, the comparisons of quantitative metrics 

are depicted in Table IV to Table VII, and the comparisons of 

visual quality are presented in Fig. 6 to Fig. 9. Note that some 

results of other models are either collected from the official 

papers or remade by the official codes. 

Moving MNIST Fig. 6 illustrates the forecasting results, where 

our model obviously outperforms the other methods with 

sharper edges and more accurate placement of digits. 

Specifically, the visual qualities of these models are similar 

before 𝑇 = 20, while the prediction qualities of PredRNN++ 

and E3D-LSTM drop steadily after 𝑇 = 24. In addition, there 

is little difference between our model and MAU in human-eye 

perception, but our model has improvements numerically as 

shown in Table IV, which are not easy to detect. 

For the comprehensive comparison, we also add the official 

records of other STSF models on this dataset. From Table IV, 

though our model has not achieved the best performance, it can 

still compensate for the causal mining ability of the basic 

ConvLSTM units, bringing the performance of it up to first-tier 

level. In addition, our model is not a sequence-input model and 

has no gated structures, which means it has fewer trainable 

parameters and easy convergence (See Section IV.D), saving a 

lot of time and computation resources. It is worth noting that 

our model does not achieve the best performance on this dataset, 

which are SimVP [26] (23.8@𝑀𝑆𝐸 , 0.948@ 𝑆𝑆𝐼𝑀 ) and 

MogaNet [25] (15.67@𝑀𝑆𝐸, 0.966@𝑆𝑆𝐼𝑀). Instead of using 

ConvRNN-based structure, they both utilize the autoregression 

to predict the future directly via the conv-skeleton or the 

transformer-style models. This may be a better choice trend for 

prediction accuracy. However, our model emphasizes more on 

temporal memory transfer of correlation and causality, which 

can effectively help bring the performance of multiple 

ConvRNN modules up to first-tier level, and is more in line with 

the laws of development of things in the physical/natural world 

and the human understanding of the spatial-temporal evolution 

of objects. 

KTH Our model can achieve excellent performance on the 

KTH dataset as shown in Fig. 7. Previous models (PredRNN++ 

and E3D-LSTM) can only forecast the rough position and 

boundary of the standing man, but our model can predict finer 

and clearer movements, such as arm waving and clapping. 

Compared with STAM (the upgrade of MAU), our model has a 

slight improvement, especially after 𝑇 = 35, exhibitting more 

precise description of motion details. 

Table V shows the numerical comparisons between our 

model and other models. Our model gains improvements on 

these two measurements both, especially when extending the 

forecast lead time from 10 to 30. On the other hand, the 

performance of our model can maintain a high level with the 

forecast lead time increases. We speculate that our model is less 

affected by accumulated errors during forecasting iteration. 

Because it receives one-frame data as input, which contains 

fewer errors. While most other models receive sequential data 

as input, which involves more uncertainties. Besides, the 

performance of our model is comparable to the conv-skeleton 

model SimVP [26], the 20-step performance of which achieves 

33.72@𝑃𝑆𝑁𝑅 and 0.905@𝑆𝑆𝐼𝑀, and the 40-step performance 

of which achieves 32.93@𝑃𝑆𝑁𝑅 and 0.886@𝑆𝑆𝐼𝑀. This also 

reflects the high degree of consistency and generalization of our 

model in iterated forecasts. 

BAIR This dataset contains more sophisticated scenarios and 

actions, but our model can also forecast future frames with the 

better visual quality compared with other models as shown in 

Fig. 8. It can be seen from two aspects. On the one hand, the 

background (objects) of the predictions maintains a high 

consistency, which shows little change as the lead time 

increases. On the other hand, although the robotic arm is blurred 

to some extent, its position and size can be predicted more 

accurately compared to other models. 

Table VI shows the quality measurements. It indicates that 

our model can achieve comparable 𝑀𝑆𝐸  and 𝑆𝑆𝐼𝑀  scores, 

which exhibits the superiority of our proposed model. 

WeatherBench Fig. 9 shows the prediction results of 

temperature and geopotential respectively. As for this dataset, 

 
Fig. 6. Predictions of different methods on the Moving MNIST dataset 

(10 → 30). 
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all of the models can achieve a high-level performance, which 

is because the weather changes in the hour scale are very few. 

Numerically, our model still leads the way in this dataset. 

Table VII displays the comparison results. From 24-hour to 96-

hour forecasts, our model has achieved the best scores on all 

metrics, which shows that it has a good potential for inference 

of weather evolution. 

Summary of Four Datasets For the 4 chosen datasets, our 

model can effectively improve the performance of existing 

ConvRNN cells in a plug-and-play way with outstanding 

quantitative scores and visual quality, reaching the SOTA level, 

especially in the long-term forecasts. It implies that our 

proposed CAU is an effective tool for mining causality hidden 

in long-term spatial-temporal evolutions, which is exactly the 

lack of vanilla memory units. 

D. Performance Evaluations 

Training Process Analysis During the training process of the 

4 chosen datasets, an interesting phenomenon occurs: Our 

model converges faster than other models on the testing set. For 

example, Fig. 10 shows the performance curves of 4 different 

models as the training epochs increase on Moving MNIST and 

WeatherBench (T300) datasets, which is the average result of 

20-time training. The blue lines belong to our model, which has 

a larger slope than others, especially in weather forecasting. 

This indicates that time-/resource-consuming will be saved. 

We think this is majorly due to the non-gated structure of 

CAU compared to traditional RNN. During the training of RNN, 

the gradient vanishing (or explosion) easily shows up, 

especially in a non-stationary series and long-term propagation. 

The gated structures may exacerbate this phenomenon by 

generating a quite strict gated mask, because it is shared by all 

frames and easily ignores location-variant anomalies, such as 

rotation and scaling, etc. Therefore, the performance curves of 

gated-based RNN models (PredRNN++, E3D-LSTM, MAU) 

are gentler. CAU has no gated modules, the training of which is 

easier to converge. 

Ablation and Sensitive Studies To validate the effectiveness 

of the sub-modules (i.e., attention and causality modules) and 

the robustness of the model structure, we carry out the 

following four experiments in this section. Note that for a fair 

comparison, we uniformly use the Moving MNIST dataset as 

the STSF scenarios, and the other hyper-parameters are set the 

same. Table VIII shows the results. 

● Exp.1 Remove one of the sub-modules of CAU. 

● Exp.2 Swap the two sub-modules of CAU. 

● Exp.3 Use short-cut residual connections in stage block 

and pooling/upsampling layer in transition block 

● Exp.4 Add a gate module in CAU (Appending a vanilla 

RNN above two modules in CAU). 

● Exp.5 Exchange other spatial-temporal cells parallel to 

CAU. 

As for Exp.1, we find that the absence of sub-modules leads 

to a severe performance drop, especially when removing the 

causal module, the 𝑀𝑆𝐸  score has dropped 6 points. This 

indicates the effectiveness of our proposed causality module 

and particularly the combination of attention and causality. 

As for Exp.2, the reverse of attention and causality modules 

causes performance loss to a certain extent. We think this is due 

to the failure of the attention module. When swapping the 

attention and causality modules, CAU will first perform the 

causal inference and then compute the correlations between 

different grids based on the causality-augmented features. 

However, the causality-augmented features have already 

filtered the spurious associations (with a mask-Softmax 

operator), which means the attention modules make a repetitive 

and ineffective contribution. So our proposed formalization is 

a better choice for the order of attention and causality modules. 

Table V 

THE SAME WITH Table IV, BUR FOR THE KTH DATASET. 

Model 
10 → 20 10 → 40 

𝑃𝑆𝑁𝑅 𝑆𝑆𝐼𝑀 𝑃𝑆𝑁𝑅 𝑆𝑆𝐼𝑀 

ConvLSTM [11] 23.6 0.712 22.9 0.639 

SAVP [52] 25.4 0.746 24.0 0.701 

PredRNN++ [21] 28.5 0.865 25.2 0.741 

E3D-LSTM [23] 29.3 0.879 27.2 0.810 

SRVP [53] 30.1 0.885 28.6 0.816 

WAM [54] 29.9 0.893 27.5 0.854 

STAE [55] 29.9 0.899 27.9 0.859 

STAM [15] 30.5 0.929 28.9 0.906 

CAU (ours) 30.4 0.927 29.1 0.911 

 

Table VII 

THE SAME WITH Table IV, BUR FOR THE WEATHERBENCH 

DATASET (10→10). 

Model Z500 (𝑅𝑀𝑆𝐸) T850 (𝑅𝑀𝑆𝐸) 

PredRNN [20] 331.2 1.49 

MIM [22] 323.6 1.45 

E3D-LSTM [23] 308.6 1.45 

SA-ConvLSTM [29] 314.2 1.47 

CrevNet [51] 283.7 1.34 

MAU [14] 253.9 1.29 

CAU (ours) 237.0 1.25 

 

Table VI 

THE SAME WITH Table IV, BUR FOR THE BAIR DATASET. 

Model 
10 → 20 10 → 40 

𝑃𝑆𝑁𝑅 𝑆𝑆𝐼𝑀 𝑃𝑆𝑁𝑅 𝑆𝑆𝐼𝑀 

SAVP [52] 20.5 0.844 18.4 0.795 

SVG [43] 21.2 0.857 19.0 0.816 

PredRNN++ [21] 21.0 0.849 18.6 0.803 

E3D-LSTM [23] 21.1 0.851 19.1 0.814 

SRVP [53] 23.7 0.867 19.6 0.820 

WAM [54] 25.4 0.881 21.0 0.844 

CAU (ours) 25.1 0.884 20.9 0.846 

 

Table IV 

QUANTITATIVE RESULTS OF DIFFERENT MODELS ON THE 

MOVING MNIST DATASET. THE METRICS ARE AVERAGED 

OVER THE PREDICTED FRAMES (10→10). BOLD NUMBERS 

REPRESENT THE BEST PERFORMANCE, UNDERLINED 

NUMBERS REPRESENT THE SECOND-BEST PERFORMANCE. 

Model 𝑀𝑆𝐸 𝑆𝑆𝐼𝑀 

ConvLSTM [11] 103.3 0.707 

PredRNN [20] 55.8 0.867 

MIM [22] 44.2 0.910 

PredRNN++ [21] 46.5 0.898 

E3D-LSTM [23] 41.3 0.910 

SA-ConvLSTM [29] 43.9 0.913 

CrevNet [51] 38.5 0.928 

MAU [14] 29.5 0.931 

PhyDNet [24] 24.4 0.947 

CAU (ours) 26.7 0.939 
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Fig. 8. Predictions of different methods on the BAIR dataset (10 → 40). 

 
Fig. 7. Predictions of different methods on the KTH dataset (10 → 40). 

 
Fig. 9. Predictions of different methods on the WeatherBench dataset (24 → 96). The above sub-figure is for temperature, and the below sub-figure is for 

geopotential. 
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As for Exp.3, these two structures both influence the model 

performance. Specifically, using pooling/upsampling layers in 

the transition block has a more severe impact on STSF models. 

The short-cut residual connections tend to homogenize 

predictions, which is not good for distinguishing variations over 

time. Pooling/upsampling layers with no learnable parameters 

may discard important spatial information and introduce 

redundant noise, which lead to large uncertainties in resolving 

and restoring spatial features. It provides a solid suggestion for 

the construction of the encoder/decoder of future STSF models. 

In addition, in order to fully utilize the advantages of residual 

connections, the feature maps in the encoder can be “remotely” 

connected to the decoder, which eliminates the constant 

mapping and makes the STSF model recognize more spatial-

temporally discriminative features to improve performance, 

like [14]. 

As for Exp.4, the gated structures are serious handicaps for 

CAU from the experiment results. This is major because the 

mask-Softmax operator in CAU has been equivalent to a gated 

structure from the aspect of the memory filter. If other gated 

structures are added, the output of the entire CAU will become 

extremely harsh (i.e., the memory filtering will become very 

strict), which is very likely that the gated unit is all 0. In a word, 

the gated modules are not suitable for integration in CAU. 

As for Exp.5, the exchange of other spatial-temporal cells 

indeed helps improve the performance of CAU. The paralleled 

spatial-temporal cells complement the insufficiency of the CAU 

for memory propagation, so the better the long-term memory 

processing, the better the performance. It can be seen from the 

table that the MIM cell is a better choice for CAU, which is 

good at capturing the changes between memories, maintaining 

both instantaneous and tendency. On the other hand, CAU, as a 

plug-and-play unit, has strong robustness and can effectively 

improve the performance of existing models simply. 

Visualization of Causal Maps To interpret what CAU has 

learned, we choose a typical scenario in the Moving MNIST 

dataset and visualize the learned causal maps of the crucial pixel 

as shown in Fig. 11. In this figure, the big image in every sub-

figure represents the prediction results of CAU, and two small 

images are the visualizations of causal maps of the 

corresponding pixel in colored boxes (marked as orange and 

green pixels respectively) on the big image, which are both the 

“head” of each digit. 

Although the position characteristics of these two pixels are 

similar, their causal maps are quite distinctive. As for the pixel 

of digit "2" (the causal maps of which are the orange small 

images), the sensitive regions of the causal maps are usually at 

the tail of digit "2" and merely located at the head, such as in 

(a)-(d). While as for the pixel of digit "7" (the causal maps of 

which are the green small images), the significant regions just 

spread around it. The tail of digit "2" and the head of digit "7" 

will meet and mix together during the whole evolution as shown 

in (f)-(h). This shows that CAU can find the most critical 

regions of object evolution in the image and make prominent 

processing. 

Meanwhile, the causal maps of these two pixels also imply 

that they are "monitoring" each other, especially when two 

digits are entangled. For example, there are two obvious 

highlighted regions in both causal maps in (a)-(g). But when the 

two digits are far apart, the individual causal maps tend to focus 

only on their own changes, such as in (h)-(j). It indicates the 

causal maps learned by CAU exhibit a good semantic 

segmentation ability, clearly separating the positions of the two 

digits. This is also the reason why the predictions of CAU are 

clearer and sharper. 

 
Fig. 11. The visualization of causal maps learned by CAU during 

prediction. The big image is the prediction result and the two small images 

are the causal maps in (a)-(j). Specifically, the causal maps with orange 

(green) borders are the causal maps of the pixel in the small orange (green) 

box on prediction results. 

 
Fig. 10. The comparisons of performance on the testing set during training 

between our model and others. The left sub-figure is for the Moving MNIST 

dataset, and the right sub-figure is for the WeatherBench dataset 

(temperature). 
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V. CONCLUSIONS AND FUTURE WORKS 

In this paper, we propose a Causality Attention Unit (CAU) 

to improve the prediction accuracy and visual quality for the 

STSF problem. It contains two sequential attention and 

causality models, playing a significant role to compensate for 

the ability of ConvRNN-based models to mine causal 

relationships via the superiority of transfer entropy (𝑇𝐸). In 

addition, a time-space exchange strategy is designed to 

accelerate the calculation of 𝑇𝐸 , a simple general model for 

STSF problem based on CAU is constructed. To evaluate the 

model performance, we carry out multiple comparison 

experiments with other STSF models on four different public 

datasets (i.e., Moving MNIST, KTH, BAIR, and 

WeatherBench), accompanied with some ablation and 

sensitivity studies. The experiment results indicate that our 

proposed CAU-based model can effectively improve the 

quantitative measurements and visual qualities of existing 

ConvRNN cells (e.g., MIM, PredRNN++) in a plug-and-play 

way, reaching the SOTA level. The visualization of the learnt 

causal maps demonstrates that CAU is an outstanding tool for 

distinguishing pixel attribution and motion state in 

sophisticated entangled scenarios. 

The demand for accurate forecasts is endless. In the future, 

we will make better use of the causal module in CAU, 

identifying key patterns (e.g., saliency map) interpretably. In 

addition, we will also continue to optimize and reduce the high 

memory occupation in 𝑇𝐸 ’s computation caused by the 

necessary tensor replication, and then explore the application of 

CAU in more research areas and datasets for a more 

comprehensive causal relationship mining. 
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