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Abstract—Cameras usually produce low-quality images under
low-light conditions. Though many methods have been proposed
to enhance the visibility of low-light images, they are mainly
designed for illumination correction and less capable of sup-
pressing the artifacts. In this paper, we propose to enhance the
visibility and suppress artifacts by purifying low-light images
under the guidance of the NIR enlightened image captured
by using the near-infrared light as compensation. Specifically,
we introduce a disentanglement framework to disentangle the
structure and color components from the NIR enlightened and
RGB images, respectively. Correspondingly, we introduce a new
dataset with the RGB and NIR enlightened images for training
and evaluation purposes. The experimental results show that our
proposed method achieves promising results.

I. INTRODUCTION

THE wide usage of camera sensors has made photogra-
phy to be a ubiquitous part of the human experience.

However, due to the size limitation of some devices (e.g.,
mobile phones and surveillance cameras), the aperture size
built into these devices is restricted, which limits the amount
of light received by camera sensors and leads to artifacts. As
a result, most commercial cameras can only produce low-
light images dominated by noise and artifacts for low-light
scenes (Figure 1). Thus, purifying low-light images to produce
an image with high visibility and fewer artifacts becomes a
meaningful task.

By assuming the reflectance component as the well-exposed
image, most Retinex-based methods [7], [8] have already
been able to correct the illumination well using different
learning strategies. However, the reflectance component is far
from a well-exposed image for most off-the-shelf devices.
For example, since the surveillance image always needs com-
pression before uploading to the cloud or downloading to
mobile devices, they largely suffer from compression artifacts
for low-light images, which cannot faithfully preserve the
structure information. Without considering various degradation
during the image formation or transmission process, existing
image enhancement methods (e.g., ZeroDCE [1] in Figure 1)
cannot get clean results and may even amplify artifacts during
the brightness correction process. Supervised low-light image
enhancement methods can suppress the artifacts [52]. How-
ever, the strict requirement for the paired ground truth limits
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Figure 1: Given a low-light image captured under the visible
mode and the near-infrared enlightened image captured under the
grayscale/night-vision mode both by a surveillance camera (the region
labeled by the red box), our method enhances the low-light images
with better visibility and quality than ZeroDCE [1].

their practicability in some changing environments. Though
the unpaired and unsupervised fashion like CycleGAN [30],
EnlightenGAN [31], or DPE [67] can alleviate the strict
requirement for training pairs in supervised methods, the
learning-based strategy alone without physical guidance is not
able to suppress artifacts [32].

Instead of solely relying on the paired ground truth with
normal brightness or the learning strategy, we propose to
utilize the NIR enlightened (NIRE) image with the information
from visible and NIR bands as guidance. Due to the invis-
ibility to human eyes and effectiveness in enlightening the
environment, near-infrared light has been utilized by different
devices to compensate for visible light. With more light in the
near-infrared spectrum, the NIRE image effectively suppresses
artifacts and provides reliable guidance for the whole image
enhancement process [34]. For example, recently proposed
methods [55], [35] recover the information of the visible band
by extracting them from the NIRE image. However, since
the visible and NIR information is highly mixed during the
formation process, it may be difficult to accurately obtain the
color information of the visible band for some cases.

Instead of extracting information of the visible band from
NIRE images like previous methods [55], [35], we propose
to purify the low-light images in a weakly-supervised manner
via the disentanglement of color, artifact, and structure com-
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Figure 2: The framework of our proposed approach. With the NIRE image as guidance, we adopt the disentanglement framework with the
self-compensation loss for the low-light image artifact purification. To facilitate the self-compensation, the color extraction module extracts
the color information from low-light conditions by iteratively correcting the image illumination. Id denotes the color-extracted image and
If denotes the artifact-free image for unpaired training. Nd and Nf denotes their corresponding NIRE images, respectively. For the color
extraction stage, 1⃝, 2⃝, and 3⃝ denote the feature estimation layer, illumination output layer, and the extraction layer, respectively.ES , EC ,
and EA denotes the encoder for structure, color, and artifacts, respectively. nS

d , zCd , zAd , zCu , nS
f , and zCf denote the disentangled latent factors.

More details about the network structure and latent factors can be found in Figure 6 and Section IV-B.

ponents from low-light images and NIRE images, respectively.
Since the latent factors related to the color, structure, and
artifact can be highly entangled and mixed in the examples
from the real world, the learned representations are conse-
quently prone to mistakenly preserve the confounding of the
factors [33], leading to the color and structure inconsistency
for estimated images. We further use self-compensation con-
straints to avoid interference from highly entangled latent
factors and achieve more accurate color and structure preserva-
tion. Besides, without using any specifically designed cameras
or settings, we obtain the low-light and NIRE images using
commercial off-the-shelf devices to explore the influence from
practical scenarios.

Our whole framework is shown in Figure 2. Since the
low-light conditions hide the color information, instead of
directly building the self-compensation between the estimated
image (Target image in Figure 2) and the low-light image, we
build the self-compensation loss based on the color-extracted
image with the exposed color information from low-light
conditions to preserve the color consistency better. Then,
at the artifact purification stage, We further assume that a
color-extracted image consists of an artifact component and a
color component, while the NIRE image contains a structure
component. From Figure 2, by employing the encoder for the
color (EC), artifact (EA), and structure (ES ), we disentangle
these three components from the corresponding images and
then achieve the image purification via the fusion of color
and structure component. At last, we propose a dataset with
the NIRE and low-light images for evaluation and training
purposes.

Our major contributions can be concluded as follows:
• A disentanglement framework to purify the low-light

images with the NIRE image as the guidance.
• A self-compensation loss with the color extraction mod-

ule to mutually complement NIRE and visible image for
artifact suppression and color consistency.

• A hybrid dataset with images from visible domain and
NIRE domain for training and evaluation purposes.

II. RELATED WORK

A. Low-light image enhancement

The enhancement for underexposed images has been studied
for more than decades. Guo et al. [7] developed a structure-
aware smoothing model to estimate the illumination map.
Wang et al. [61] utilized the deep networks to more effec-
tively estimate the illumination map. Recently, Wei et al. [8]
combined the classical retinex theory with the deep learning
technique to enhance the low-light images effectively. Chen et
al. [67] proposed to correct the brightness using unpaired
learning. A recent method [31] proposed an unsupervised
method based on the classical CycleGAN model [30]. In-
spired by the traditional non-learning-based methods, some
unsupervised low-light image enhancement methods have been
proposed recently to solve this problem. For example, the
method proposed by [37] enhanced the visibility of the night
scenes by leveraging advantages from the bright channel
priors. Li et al. [1] corrected the illumination by iteratively
updating the illumination map. The above methods are ef-
fective in correcting the image illumination but less capable
of suppressing the artifacts. Recently, some methods are also
proposed to suppress the image artifacts during the low-light
image enhancement process. For example, Chen et al. [10]
proposed to operate directly on raw sensor data and replace
much of the traditional image processing pipeline. The method
proposed in [29] and [21] utilized a restoration module and
adjustment module to suppress artifacts and correct the illu-
mination simultaneously. Lore et al. [36] proposed a method
based on the denoising autoencoder to do the denoising
and low-light image enhancement jointly. Recently, Yang et
al. [52] also proposed a semi-supervised method to handle the
artifacts that exist in the low-light images.
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B. Near-infrared guided computational photography

The near-infrared information has been widely employed
by different computational photography tasks. For example,
Krishnan and Fergus [38] proposed to use gradient in both
the NIR and Ultra Violet (UV) bands to improve the perfor-
mances of visible image denoising. Zhuo et al. [39] applied
the weighted least squares smoothing method to the visible
band and transferred details from the NIR band. The method
proposed in [34] tried to use the joint bilateral filtering to
decompose the visible image into a large-scale image and a
detail image. The detail image is then restored and recombined
with the large-scale image to get the final result. Shen et
al. [40] proposed a cross-field method for the image restoration
based on both the visible and NIR information. Wang et
al. [18] introduced a NIR image-guided deep networks for
color image denoising. Lyu [35] introduced to extract visible
information from the mixed multi-spectrum images to restore
image contents. Besides, Li et al. [15] introduced an algorithm
to fuse the visible and near-infrared images by considering
their different reflection and scattering characteristics. By us-
ing the image sequence as the input, Wu et al. [55] introduced
a multi-task deep network with state-synchronization modules
to better utilize texture and chrominance information for this
problem. Recently, Duan et al. [17] utilized the multi-scale
edge-preserving decomposition and multiple saliency features
for infrared and visible image fusion.

Besides the image restoration, the near-infrared information
has also been adopted by other image processing tasks. For
example, the method proposed by [41] solves the image
intrinsic decomposition problem under the guidance of NIR
images. Most above methods consider illumination correction
or artifact suppression only. We propose to correct the image
illumination and artifact suppression simultaneously under the
guidance of NIRE images. The method proposed in [29]
and [21] utilized a restoration module and adjustment module
to suppress artifacts and correct the illumination simultane-
ously. Lore et al. [36] proposed a method based on the
denoising autoencoder to do the denoising and low-light image
enhancement jointly.

C. Perceptual quality assessment

How to evaluate the quality of the images after the enhance-
ment is also a pivotal issue for low-light image enhancement
or even almost all image restoration tasks. Currently, most
methods mainly rely on PSNR and SSIM for evaluation. The
development of deep learning also introduces some novel error
metrics based on deep learning features (e.g., LPIPS [62]).
However, all those error metrics rely on ground truth/reference.
In some situations, the lack of reference images makes the
evaluation difficult. A new error metric is proposed to ad-
dress such difficulties for low-light image enhancement by
comparing the low-light images with their enhanced coun-
terparts [57], which makes substantial progress in addressing
the no-reference evaluation for low-light image enhancement.
Moreover, they further introduce an important IQA framework
specifically for low-light image enhancement problems, which
set a standard for the subsequent IQA frameworks in this

area [56]. Besides those pivotal error metrics specifically
designed for low-light image enhancement, several methods
have been developed in the past several years to provide
more robust perceptual quality assessment. The pioneers in
perceptual quality assessment also proposed to use free energy
for the quality assessment [63]. Besides the error metric for
images, some methods also proposed a blind quality evaluator
for UGC videos [64], [65]. Recently, more methodshave been
introduced to evaluate the quality of audio-visual signal [66].
More detailed surveys can be found in the following pa-
pers [58], [59].

III. DATASET COLLECTION

Since we use a data-driven approach to solve this problem,
an appropriate dataset becomes necessary to learn the purify-
ing process. Previous low-light image enhancement methods
proposed to capture an image set with the low-light image
I and its corresponding ground truth R under low/normal-
light conditions (e.g., LOL dataset [8]), respectively. This is
a reasonable way to obtain pairs of normal/low-light images
by adjusting the light amount received by camera sensors.
However, since the ground truth image with normal light is
not available for training in our problem, the low/normal-light
image pair (I,R) is not applicable for our purpose.

We instead introduce the low-light image set (I,N) and the
non-paired reference image set (If ,Nf ) for training, where I
and If denote low-light images to be enhanced, and the non-
paired reference images, respectively, and N and Nf denote
the corresponding NIRE images. We use a two-step setting to
capture images. The low-light image I is first captured under
the low-light conditions similar to the previous dataset [8].
Then, its NIRE image N is captured by turning on the
near-infrared light emitter and switching the shooting mode
to night-vision mode. This two-stage process can be easily
implemented for the cameras with the internal or external
near-infrared emitter. For the unpaired reference image sets
(If ,Nf ), we first capture If in the normal-light conditions
using visible mode and then capture Nf using the same mode
for N.

We capture images using the off-the-shelf surveillance cam-
eras (Wyze cam V2 and Anker Eufy Indoor Cam 2K) in
the wild. Then, to investigate the performances in a more
controlled scenario, we use a digital camera with the night
vision function (Ordro V12) to capture images in different
scenarios. We do not find specific details about NIR wave-
length of the three cameras, while most IR illuminators employ
850nm for their settings [4]. Based on our experiments, the
NIR wavelength of Wyze cam V2, Anker Eufy Indoor Cam
2K, Ordro V2 is less than 900nm. In general, the spectral
sensitivity of the three surveillance cameras with silicon senors
used in our experiments is from 300nm to 950nm [5].

The images captured by the two devices are with distinct
properties. As shown in Figure 4, the images captured by
digital cameras are mainly corrupted by the thermal noise,
and the structure information is relatively better preserved.
However, since surveillance cameras usually compress images
before transferring images to the cloud and their aperture size
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Figure 3: Examples of the low-light images, the NIRE images, and the reference image only used for evaluation.
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Figure 4: (Left) The low-light images captured by the digital camera
(DC) and the surveillance camera (SC). For visualization purposes,
we multiply the images in the left column by 5 in the right column.
The green box labels the regions with compress artifacts. (Right)
Examples of the reference image, and the NIRE image with structure
vanishing problem labeled by the green and red boxes.

is limited, compression artifacts corrupt the images captured
by surveillance cameras, and the structure information are
usually lost during the transmission process. Such differences
increase the diversity and pose unique challenges for our
dataset. We manually make the near-infrared light distribution
uniformly to avoid the bright-spot phenomenon.

A. Training dataset

The images captured by the two devices are with distinct
properties. As shown in Figure 4, the images captured by digi-
tal cameras are mainly corrupted by the thermal noise, and the
structure information is relatively better preserved. However,
since surveillance cameras usually compress images before
transferring images to the cloud and their aperture size is
limited, compression artifacts corrupt the images captured by
surveillance cameras, and the structure information is usually
lost during the transmission process. By flipping, rotating, and
cropping these images, our training dataset contains 1200 low-
light image sets (I,N) and 1200 reference image sets (If ,Nf )
all from the real world.

B. Evaluation dataset

To evaluate the performances of the proposed method,
besides the two steps used to capture the training dataset, as
shown in the rightmost part of Figure 3, we further increase

the light intensity (e.g., by turning on the light) to obtain
the corresponding reference image with normal light for the
evaluation. Our evaluation dataset contains 100 image triplets
with 300 images in total. Among the evaluation dataset, 60
triplets are from the controlled scenes, and 40 triplets are
from the surveillance scenes. The surveillance cameras are
all controlled remotely as in their real working conditions,
which also avoids the potential misalignment between low-
light images and NIRE images.

C. Structure vanishing problem

Since some real-world materials exhibit slightly different
reflective properties under NIR and visible bands [41], the
NIRE images may face the structure vanishing problem [6],
where some materials become invisible under the NIR band.
Since some visible light remains being captured by the camera
for our NIRE images, the structure vanishing problem is not
widely observed in our dataset. However, as shown in Figure 4,
if the NIR light dominates the spectrum received by the
camera under highly dark situations, the structure vanishing
problem may affect our NIRE images. We also propose a self-
compensation loss to address this issue in Section IV-B.

IV. PROPOSED METHOD

In this section, we describe the design methodology of the
proposed method and the implementation details. As shown
in Figure 2, under the guidance of the NIRE image, we
first extract the color information by correcting the image
illumination in an unsupervised way and then employ a
disentanglement framework with the self-compensation loss
for image purification.

A. Color extraction

Due to to setting of our approach, we directly leverage
advantages from previous unsupervised methods [1], [7] to
build the color extraction module by correcting the image
illumination. A classical way to correct the image illumination
without the ground truth is to solve the following formula-
tion [7]:

min
L

∥L̂− L∥2F + P (L), (1)

where L denotes the corrected illumination map, L̂ denotes
the illumination map initially extracted from the low-light
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image I, and P (L) denotes the regularization prior on L. In
general, Equation 1 can be solved in an iterative manner [42],
[43] and the initial estimation of the illumination map can be
approximated by the following equation [7]:

L̂(x) = max
c∈{R,G,B}

Ic(x). (2)

Inspired by the formulation in Equation 1, Equation 2
and the iterative scheme used in [1], we train an extraction
module F to learn the mapping from the input image to its
corresponding illumination map. Then, similar to the iterative
optimization strategy for Equation 1, by unfolding F for T
times, the illumination map can be iteratively updated as
Lt = F(It−1), where It−1 denotes color-extracted image
obtained at (t−1)-th iteration and Lt denotes the illumination
map obtained in the t-th iteration.

As shown in Figure 2, the extraction module can be divided
into three layers: 1) the feature estimation layer fest to initially
extract the illumination related features; 2) an illumination
output layer fout to generate the corrected illumination map; 3)
an extraction layer fextract to extract the color information based
on the corrected illumination map, which can be calculated as
follows:

zt = fest(I
t−1),

Lt = fout(z
t),

It = fextract(I
t−1,Lt).

(3)

In Equation 3, zt denotes the illumination features extracted at
the t-th iteration, and Lt denotes the illumination map obtained
at the t-th iteration. As shown in Figure 2, the parameters
of fest and fout are shared across each stage. We employ
U-Net [44] with BatchNorm [46] as the backbone for the
illumination output layer fout. For fextract in Equation 3, we
directly employ the pointwise multiplication used in [47] to
get the color-extracted image as

fextract(I
t−1,Lt) = It−1 ◦ Lt. (4)

Specifically, from Equation 2, since the illumination features
are more related to pixels with larger values [24], instead of the
ReLU activation layer used by many methods [30], we embed
the maxout network into the feature estimation layer fest for
non-linear mapping as F i(x) = maxj∈[1,k] g

i,j(x), where
g(x) denotes affine feature transformation, F i(x) denotes
features after the maxout mapping, i and j denotes feature
positions. F i(x) generates a new feature map by taking a
pixel-wise maximization operation over k affine feature maps.
The maxout unit maps each of kN -dimensional vectors into
N -dimensianl one by extracting the vectors with maximum
values related to the illumination components. In this place,
we empirically set k = 4.

For the estimated illumination map at each iteration, we
employ the total variation loss to preserve the monotonicity
relations between neighboring pixel as follows:

Ltv =
∑
i,j

|∇Li+1,j −∇Li,j |+ |∇Li,j+1 −∇Li,j |, (5)

where i and j denote the pixel positions and ∇ represents the
gradient operations.

We further adopt the color constancy loss proposed in [1]
to correct the potential color deviations in the estimated image
and build the relations among the three corrected channels as
follows:

Lcol =
∑

∀(p,q)∈ε

(Ip − Iq)
2
, ε = {(R,G), (R,B), (G,B)},

(6)
where Ip denotes the average intensity value of p channel in
the corrected image, (p, q) represents a pair of channels.

By combining the terms in Equation 5 and Equation 6,
the loss functions for the illumination correction stage can
be concluded as follows:

Lextraction = αcLtv + βcLcol, (7)

where αc and βc are the weighting coefficients to balance the
two terms. An example of the color-extracted image is shown
in Figure 5, where the color information has been extracted
from low-light conditions.

B. Artifact purification

As shown in Figure 5, the color-extracted image generated
at the first stage is still with noise and artifacts. Due to the
lack of ground truth for training, we utilize the NIRE image
as guidance to purify image artifacts. Because of the light
compensation from the near-infrared band, the monochrome
NIRE image is with fewer artifacts and better preserves the
information related to structure and shape [41]. Instead of
separating the visible and NIR information mixed in the
NIRE image like previous methods [35], we only extract
the artifact-free information related to structure and shape.
If the structure information can be well extracted from the
NIRE image, it may contribute to the artifact purification
process by combining it with the color information from the
color-extracted image. Based on this assumption, we propose
using the disentanglement framework to obtain the artifact-
free image by disentangling the color and structure compo-
nents from the color-extracted image and its NIRE image,
respectively. For simplicity, the color-extracted image obtained
in Section IV-A is denoted as the artifact-remained image Id
in this section.

As shown in Figure 2 and Figure 6, the branch for
the artifact-remained images Id contains a pair of artifact-
remained image encoder as

{
EC : Id → zCd , EA : Id → zAd

}
to encode the artifact-remained image Id into color space C
and artifact space A, respectively, and its corresponding struc-
ture encoder

{
ES : Nd → nS

d

}
to disentangle the structure

information from the NIRE image. If the disentanglement is
well addressed, the encoded color components should contain
no information related to the artifact while preserving the
color information and the encoded structure space should
also only contain the structure information of the image.
Then, the decoder GF can reconstruct a clean image Iu
conditioned only on the color and structure components as{
GF : zCd × nS

d → Iu
}

.
Correspondingly, as shown in Figure 2 and Figure 6, the

branch for the reference image If contains a pair of artifact-
free image encoder {EC : If → zCf }, its NIRE image encoder

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3232206

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

Low-light image NIRE image Reference image Color-extracted image  Final result

ostcard2\20

Figure 5: Examples of the low-light image, the NIRE image, the reference image, the color-extracted image from the first stage, and the
final result estimated by the second stage.
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Figure 6: The branch for {Id,Nd} and {If ,Nf}. Iu is the target clean image. Îd and Îf is the reconstructed Id and If for the cycle
consistency, respectively.

{ES : Nf → nS
f }, and the corresponding decoder {GA :

zCf ×zAd ×nS
f → Iv} to generate an artifact-remained image Iv

conditioned on the color, structure, and artifacts components.
1) Forward translation: Given two unpaired image sets

from the artifact-remained image and reference image domains
as: {Id ∈ Id,Nd ∈ Nd} and {If ∈ If ,Nf ∈ Nf}, we encode
them into {zCd , zAd , nS

d } and {zCf , nS
f }, respectively. We then

perform the first translation by encoding each representation
to generate {Iu, Iv} as follows:

Iu = GF
(
zCd , n

S
d

)
, Iv = GA

(
zCf , n

S
f , z

A
d

)
, (8)

where Iu ∈ If denotes the target clean image and Iv ∈ Id
denotes the estimated artifact-remained image.

2) Backward translation: We then encode Iu and Iv into
{zCu} and {zCv }, and perform the second translation as follows:

Îf = GF
(
zCv , n

S
f

)
, Îd = GA

(
zCu , n

S
d , z

A
d

)
, (9)

where Îf and Îd denote the reconstructed If and Id, respec-
tively. Specifically, the artifact component zAd is disentangled
from the artifact-remained image and shared among the for-
ward and backward translation to ensure that the generated
artifact-remained images Iv and Îd are with consistent arti-
facts.

After the two translation stages, the cycle-consistency loss
for this stage can be represented as follows:

Lcycle = ∥Îf − If∥1 + ∥Îd − Id∥1. (10)

As shown in Figure 6, the color encoder and the structure
encoder share the similar network architecture just with dif-
ferent skip connections to the decoder network, which helps
the decoder network better preserve the color and structure
information.

Reference image Low-light image NIRE image

EM of reference image EM of low-light image EM of NIRE image

Figure 7: Examples of the reference image, low-light image, NIRE
image, and their corresponding Edge Maps (EM). The red boxes label
the regions with the structure vanishing problem and all images are
from the evaluation dataset.

3) Self-compensation loss: Though the NIRE image pro-
vides more reliable guidance for the whole enhancement pro-
cess, it may cause a negative influence on the final estimated
results. The first problem is the color shift problem caused
by NIRE images. Since the latent factors related to structure,
color, and artifact information are highly entangled in some
cases, the residual grayscale information from the NIRE image
may interfere with the color information from the artifact-
remained image, leading to the color shift problem for final
estimated results. Besides, some essential structures may also
not be preserved in the NIRE image due to the structure
vanishing problem, which degrades the structure consistency
of the final result.

We propose a self-compensation loss for color to comple-
ment the disentanglement framework by considering the color
and structure consistency. Our self-compensation loss for color
penalizes the errors between the target image Iu and the color-
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extracted image Id as follows:

Lccl(Iu, Id) =
∑
i

ρ (|Iu(i)− Id(i)|) . (11)

Equation 11 requires the estimated result Iu not to wildly
deviate from the color extracted image Id [16] and also
stabilizes the consistency in the color space. In Equation 11,
Iu(i) and Id(i) denote their pixel values in position i. ρ is the
robust function used to eject part of the noise from Id [16]
and it is defined as

ρ(x) = |x|α, 0 < α < 1. (12)

We set α = 0.8 empirically in our experiments.
We introduce a self-compensation loss for the structure

to handle the structure vanishing problem by measuring the
salient edge differences between the estimated artifact-free
image Iu and its corresponding low-light image I. As shown
in Figure 7, though the low-light image I is corrupted by
artifacts, its salient edges are still consistent with its cor-
responding artifact-free version. Since the image gradient
may be enlarged during the purification process, instead of
measuring their pixel-wise difference, we propose to maximize
their correlation by minimizing the following loss:

Lscl(Iu, I) = −
N∑

n=1

∥∥tanh (λu|∇Iu|↓n
)
⊙ tanh

(
λI|∇I|↓n

)∥∥
F
,

(13)
where λu and λI are normalization factors, ∥·∥F is the Frobe-
nius norm, ⊙ denotes element-wise multiplication, and n is the
image downsampling factor. Since the gradient information
present different properties under different scales [22], we
set n = 3 to downsample the gradient map for 3 times.
Similar to the settings in [19], we set λu =

√
∥∇I∥F

∥∇Iu∥F
and

λI =
√

∥∇Iu∥F

∥∇I∥F
.

Besides, we also impose the adversarial loss Ladv [51] for
the estimated clean image Iu and artifact-remained image Iv
to make them similar to the real images. Our discriminator
network takes an input image with a size of 224×288 and has 6
strided convolutional layers followed by the ReLU activation
function. In the last layer, we use the sigmoid function to
generate the final result.

By combining the loss functions in Equation 10, Equa-
tion 13, and the adversarial loss, the loss functions for the
second stage can be concluded as follows:

Lpurp = αeLcycle + ωeLccl + γeLscl + δeLadv, (14)

where αe, ωe, γe, and δe are the weighting coefficients and
Ladv denotes the adversarial losses for Iv and Iu.

C. Implementation details

We have implemented our method by using PyTorch. The
whole training process of our network can be divided into
two stages. In the first stage, we first train the illumination
correction network for five epochs. In the second stage, we
connect the illumination correction network with the suppres-
sion network. We then train the whole network to convergence.

Low-light image Iteration = 1 Iteration = 4 Iteration = 7 Reference

Figure 8: The progressive refinement stage with iteration number T
equals to 1, 4 (our setting), and 7, respectively.

The learning rate for the first and second stages is all set to
1× 10−2. The weighting coefficient in Equation 7 and Equa-
tion 14 are empirically set as: αc = 2, βc = 1, λc = 0.005,
αe = 10, δe = 1, ωe = 1, and γe = 0.5. At the first stage, the
iteration time T is set to 4. From the results shown in Figure
8, since our first stage is a progressive refinement progress,
this iteration time T is empirically set to guarantee effective
color extraction.

V. EXPERIMENTS

Due to the lack of ground truth for training, we choose
several weakly-supervised methods for low-light image en-
hancement as the baseline for comparisons: LIME [7], En-
lightenGAN [31], and ZeroDCE++ [23]. Besides, we also
compare with RetinexNet [8], KinD++ [21], and DRPB [52],
three supervised methods. For the supervised method, we
employ the training samples with degradations and artifacts
from VE-LoL [45] to finetune them, which can improve
their capability to handle artifacts in our dataset. We also
compare with CycleGAN [30] to investigate the performances.
CycleGAN [30], EnlightenGAN [31], and ZeroDCE++ [23]
are all trained on our dataset by only using the low-light
images as the input. We also compare with ScaleMap [16],
a method specified designed for NIR/RGB fusion tasks, to
evaluate the effectiveness of our proposed method. Besides, to
better evaluate the effectiveness of NIRE images in a relatively
simple framework, we train an additional CycleGAN model
by considering the NIRE image as another guidance. Since
CycleGAN [30] does not have any branches for the NIR
feature extraction or embedding, we directly concatenate the
NIRE image and the low-light image as 4-channel tensor as
the input for CyleGAN [30]. The input channel number of
CyleGAN [30] is also changed to 4. The comparison related
to this part can be found in Table I and Section V-B.

Besides the low-light image enhancement methods, we also
compare with grayscale/infrared image colorization methods,
including CIC16 [54], and IDC17 [60]. Based on their settings,
we directly use the NIRE images as their input. Some image
restoration methods [40], [39], [35], [34] based on the near-
infrared information are not involved in the comparisons, since
they have different settings or do not release their codes.

In addition to the classical PSNR and SSIM error metrics,
we adopt LPIPS [62] as the error metric. The lower LPIPS
values indicate better performances. It measures perceptual
image similarity using a pre-trained deep network. We also
employ a newly proposed error metric NLIEE [57] to evaluate
the performance. By directly comparing the enhanced results
against its low-light counterparts, this method proposes a
reasonable and convenient way to evaluate the performance.
Besides, the recently proposed LIEQA [56] also makes a
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Input image EnlightenGANGround truth Our result

CycleGAN KinD++ ZeroDCE++

Input image Ground truth Our result EnlightenGAN

KinD++CycleGAN ZeroDCE++

NIRE image

DRPB

DRPB

NIRE image

ScaleMap

ScaleMap

PSNR: 24.62 SSIM: 0.883 PSNR: 19.88 SSIM: 0.678

PSNR: 23.75 SSIM: 0.879 PSNR: 4.201 SSIM: 0.185PSNR: 15.20 SSIM: 0.642PSNR: 20.67 SSIM: 0.741PSNR: 15.26 SSIM: 0.543

PSNR: 22.81 SSIM: 0.876 PSNR: 14.67 SSIM: 0.592

PSNR: 13.73 SSIM: 0.799 PSNR: 8.12 SSIM: 0.257 PSNR: 15.44 SSIM: 0.617PSNR: 20.86 SSIM: 0.801PSNR: 18.18 SSIM: 0.694

Input image Ground truth Our result

CycleGAN

EnlightenGAN

KinD++ ZeroDCE++ DRPB ScaleMap
PSNR: 27.77 SSIM: 0.870 PSNR: 12.41 SSIM: 0.747

PSNR: 22.53 SSIM: 0.845 PSNR: 8.51 SSIM: 0.219PSNR: 17.230SSIM: 0.814PSNR: 15.24 SSIM: 0.796PSNR: 16.46 SSIM: 0.677

NIRE image

Figure 9: Three examples captured by the digital cameras with result obtained by our method, EnlightenGAN [31], CycleGAN [30],
KinD++ [21], ZeroDCE++ [23], DRPB [52], and ScaleMap [16]. The SSIM and PSNR values are shown below each image. The red and
blue boxes denote the regions with over-smooth effects and other artifacts.

substantial progress in evaluating the performance of low-light
image enhancement, which sets a standard for the follow-up
IQA methods. Though LIEQA [56] is not publicly available,
the model used in NLIEE [57] is trained on the database used

in LIEQA [56]. We, therefore, directly use NLIEE [57] for
our evaluation.
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Input image Reference image Our result

CycleGAN KinD++ ZeroDCE++

EnlightenGANNIRE image

ScaleMap

DRPBCycleGAN KinD++ ZeroDCE++ ScaleMap

Input image Reference image Our result EnlightenGANNIRE image

DRPB
PSNR: 21.85 SSIM: 0.945 PSNR: 15.58 SSIM: 0.757

PSNR: 16.74 SSIM: 0.798 PSNR: 8.31 SSIM: 0.653 PSNR: 14.80 SSIM: 0.759 PSNR: 11.57 SSIM: 0.576PSNR: 16.10 SSIM: 0.634

PSNR: 27.61 SSIM: 0.964 PSNR: 19.63 SSIM: 0.735

PSNR: 16.33 SSIM: 0.767 PSNR: 20.31 SSIM: 0.787 PSNR: 16.266 SSIM:0.778 PSNR: 5.11 SSIM: 0.144PSNR:19.06 SSIM:0.636

DRPBCycleGAN KinD++ ZeroDCE++ ScaleMap

Input image Reference image Our result EnlightenGANNIRE image

PSNR: 25.543 SSIM: 0.901 PSNR: 15.011 SSIM: 0.849

PSNR:15.902 SSIM: 0.871 PSNR:19.604 SSIM: 0.882 PSNR: 19.369 SSIM:0.854 PSNR: 7.31 SSIM: 0.177PSNR: 16.056 SSIM:0.768

Figure 10: Three examples recorded by the surveillance cameras with results obtained by our method, EnlightenGAN [31], CycleGAN [30],
KinD++ [29], ZeroDCE++ [23], DRPB [52], and ScaleMap [16]. The SSIM and PSNR values are shown below each image.

A. Qualitative evaluations

The qualitative comparisons are shown in Figure 9 and
more examples can be found in our supplementary material.
Our proposed method not only enhances the visibility of

the low-light images but also better suppresses the artifacts
and preserves the image details. Though KinD++ [21] and
DRPB [52] also suppress artifacts effectively, it introduces
new artifacts to some results or causes over-smooth effects (the
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Table I: Quantitative evaluation results using three error metrics, com-
pared with CycleGAN [30], CycleGAN with NIRE, RetinexNet [8],
KinD++ [21], ZeroDCE++ [23], EnlightenGAN [31], LIME [7],
DRPB [52], ScaleMap [16], CIC16 [54], and IDC17 [60]. The lower
LPIPS value indicates better performances (↓). The higher values
indicate better performance for other three error metrics (↑).

SSIM↑ PSNR↑ LPIPS↓ NLIEE↑
Ours 0.867 19.630 0.131 12.614

CycleGAN [30] 0.605 13.405 0.370 2.972
CycleGAN with NIRE 0.793 16.731 0.253 3.112

RetinexNet [8] 0.573 13.924 0.357 2.145
KinD++ [21] 0.809 16.331 0.167 4.475

ZeroDCE++ [23] 0.708 15.640 0.261 3.301
EnlightenGAN [31] 0.784 15.270 0.318 1.116

LIME [7] 0.641 16.116 0.291 1.654
DRPB [52] 0.842 18.224 0.233 5.913

ScaleMap [16] 0.272 6.347 0.258 3.168
CIC16 [54] 0.832 16.774 0.191 6.354
IDC17 [60] 0.822 15.773 0.172 6.185

regions labeled by the red box in Figure 9), which also leads
to the lower quantitative values. The other low-light image
enahancement methods (e.g., LIME [7], EnlightenGAN [31],
and ZeroDCE++ [23]) can correct the illumination, but less
capable of the artifacts suppression, which influences the
visual quality of the final results.

We further show the results on surveillance images in Fig-
ure 10. Since the surveillance camera cannot accurately record
the color information under low-light conditions, it becomes
difficult to faithfully recover the color information. Even the
results of our method still show color bias (the first example
in Figure 10). Besides, in contrast to the images captured by
the digital camera, the surveillance images are mainly cor-
rupted by the compression artifacts and blurring effects. Our
method still shows better ability in preserving the structure and
color consistency. The results estimated by previous methods
(e.g., CycleGAN [30] and DRPB [52]) are still with noticeable
compression artifacts. Though ScaleMap [16] is proposed for
RGB/NIR fusion, it cannot extract the color information like
our methods. From the results shown in Figure 9 and Fig-
ure 10, the results obtained by ScaleMap [16] are still with
dark appearance.

Since the grayscale/infrared image colorization methods
(CIC16 [54] and IDC17 [60]) can well preserve the structure
consistency by utilizing the NIRE image, they all achieve
acceptable SSIM values for the examples in Figure 9 and Fig-
ure 10. However, without the color representations disentan-
gled from the color-extracted image, their estimated results
show obvious color bias and lower PSNR values.

B. Quantitative evaluation

The quantitative results in Table I reconfirm the observations
in Figure 9. Our method achieves the best scores among
all other methods. The higher SSIM values indicate that
our method recovers images with better quality. The smaller
LPIPS values indicate that our proposed method indeed gen-
erates images with a better perceptual similarity. KinD++ [21]

Table II: Quantitative evaluations for the model without the color
extraction module (CEM), the model without the self-compensation
loss for color (CCL) and the self-compensation loss for structure
(SCL).

SSIM↑ PSNR↑ LPIPS↓ NLIEE↑
Complete model 0.867 19.630 0.131 12.614

W/o CEM 0.739 13.936 0.223 5.664
W/o CCL 0.829 15.282 0.215 7.064
W/o SCL 0.843 18.891 0.146 7.510

achieves the second-best results. However, due to the new
artifacts in the final estimated image, KinD++ [21] still cannot
outperform our proposed method. Since the other low-light
image enhancement methods cannot suppress the artifacts
effectively, their error metric values cannot outperform our
methods and KinD++ [21].

The SSIM values of CIC16 [54] and IDC17 [60] are better
than other low-light image enhancement methods. However, as
discussed before, this is mainly because SSIM only calculates
the structural similarity (SSIM) index for grayscale images.
It cannot fairly reflect the color bias problem of the final
result. The lower PSNR and LPIPS values indicate that the
image colorization methods cannot accurately estimate the
final results.

The results obtained by CycleGAN with NIRE also show
the NIRE image’s effectiveness, which improves the perfor-
mance of original CycleGAN. From results shown in Table II,
NIRE images help CycleGAN [30] achieve better results.
Besides, from the examples shown in Figure 13, the result of
CycleGAN with NIRE image (the third column of Figure 13)
can better suppress the artifacts that its counterpart shown in
the second column of Figure 13.

At last, the better NLIEE [56], [57] error metrics values
also confirm that our method achieves better results than other
methods. By directly comparing the enhanced results against
its low-light counterparts, it provides another reasonable and
convenient way to evaluate the performance.

C. Ablation study

1) Two-stage vs. One-stage: By directly utilizing the low-
light image and NIRE image as the input, the one-stage frame-
work only with artifact purification module is also a solution
to this problem. However, since our method relies on self-
compensation loss to compensate for the color and structure
information, the second stage alone cannot effectively correct
the image illumination. As shown in Figure 11, the results
without the first stage appear darker than the result obtained
by the full model. The quantitative values in Figure 11 also
prove the effectiveness of the two-stage framework.

If we further remove the self-compensation loss, the illu-
mination information can be better recovered. However, the
color consistency cannot be accurately preserved without self-
compensation constraints. More details about the effectiveness
of the self-compensation loss can be found in Section V-C3.

2) Effectiveness of NIRE: We then remove the structure
encoder for the NIRE image. From Figure 11, without the
NIRE encoder, the artifacts cannot be well suppressed in the
final results. The quantitative values in Table II also become
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Input image NIRE image Reference image W/o CCL Complete modelW/o CEM EnlightenGANW/o

Figure 11: Examples from our model without the color extraction module (CEM), our model without the color compensation loss (CCL),
our model without the structure encoder (ES ) for the NIRE image, our complete model, and EnlightenGAN [31].

Mixture image NIRE image Reference image W/o SCL With SCL

Figure 12: Examples from our model without the structure compensation loss (SCL) and the complete model with SCL. The blue box
denotes the regions with the structure vanishing problem in NIRE image, reference images, and results obtained without SCL and with SCL,
respectively.

Low-light image CycleGAN CycleGAN with NIRF Reference image

(a) (b) (c) (d)

Figure 13: From left to right: (a) low-light image, (b) result of
CycleGAN [30] without NIRE image, (c) result of CycleGAN with
NIRE image, and (d) the reference image.

Table III: The quantitative comparisons for results obtain under
different iteration number. We set T = 1, 3, 4, 7, respectively.

SSIM↑ PSNR↑ LPIPS↓ NLIEE↑
T = 1 0.739 13.936 0.223 5.664
T = 3 0.857 17.530 0.139 10.504
T = 4 0.867 19.630 0.131 12.614
T = 7 0.847 16.567 0.155 9.650

(a) (b) (c) (d)

Figure 14: Examples of (a) low-light images, (b) their corresponding
color-extracted image, and (c) the gradient response of the structure
encoder EC and (d) the color encoder ES .

similar to the values obtained by EnlightenGAN [31]. How-
ever, this experiments show that our method still has the ability
to improve the illumination of low-light images even without
the guidance of NIRE images. When the guidance from NIRE
images are removed, our method can be regarded as regular
low-light image enhancement methods. If incorporating NIRE
images, our method is assumed to have better results.

3) Effectiveness of self-compensation loss: We then remove
the self-compensation loss to evaluate its effectiveness. We
first remove the structure compensation loss in Equation 13
and then the color compensation loss in Equation 11. The
examples in Figure 12 show that some regions without struc-
ture compensation loss become invisible in the final estimated
results since these details do not exist in the NIRE images.
However, since such texture vanishing problem only occupies
a small amount in our near-infrared images, the improvement
brought by the loss functions is also not very significant.

From the results shown in Figure 12, the color compensation
loss plays a vital role during the purifying process. Without the
color compensation loss, the color information cannot be well
embedded into the final estimated results and also degrades
the performances of the final results.

D. Analysis to the structure and color encoders

We provide further analysis for the structure (ES ) and
color (EC) encoders. From the gradient response of the two
encoders in Figure 14, they indeed play different roles during
the enhancement process. The gradient response of ES mainly
focuses on the edge regions with more meaningful structure
information, while the gradient response of EC focuses on the
global regions.

E. Analysis to the iteration numbers

Our method relies on a color extraction module with pro-
gressive refinement to extract color information from low-
light images. The iteration number for such progressive re-
finement is currently set to 4. We further perform quantitative
evaluations to validate the effectiveness of such settings. As
evidenced by the corresponding results displayed in Table III,
when T is set to 4, our method can achieve the highest error
metric values about other settings, which supports its rationale.
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Low-light image NIRE image Reference image Our result

Figure 15: An example with the nonuniform near-infrared light
intensity.

VI. CONCLUSION

We propose to purify the low-light images via the disen-
tanglement of NIRE image. Taking the low-light image as
the input, the color extraction module first extracts the color
information. Then, the artifact purifying module disentangles
the color and structure information from the color-extracted
and NIRE images to suppress the artifacts. The results show
that our method achieves promising results.

A. Limitations

In spite of the promising results, our method still has several
limitations that need to be addressed. First, due to the energy
attenuation of the near-infrared light, some areas covered by
the near-infrared light may cast nonuniform light intensity,
which also influences the results of our proposed method
(e.g., the example shown in Figure 15). A more powerful
near-infrared light emitter with more uniform illumination
distribution can partially address this problem. Then, since
the color gamut of the low-light images acquired under ex-
tremely dark situations may be distorted, the extracted color
information may not be accurate enough for the next stage,
which finally deteriorate the color consistency between our
result and the reference image. We will address these issues in
our future work by employing more sophisticated experimental
devices and considering a more effective restoration model.
Furthermore, due to the difficulty of capturing the data in
the proposed capturing setup, our dataset does not represent
the entire truth of the real world. We will explore different
techniques in the future to expand our dataset, such as up-
dating the capturing setup or synthesizing images with better
consideration of physical properties.
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