
1

Non-aligned Multi-view Multi-label Classification
via Learning View-specific Labels

Dawei Zhao, Qingwei Gao, Yixiang Lu, and Dong Sun

Abstract—In the multi-view multi-label (MVML) classification
problem , multiple views are simultaneously associated with
multiple semantic representations. Multi-view multi-label learn-
ing inevitably has the problems of consistency, diversity, and
non-alignment among views and the correlation among labels.
Most of the existing multi-view multi-label methods for non-
aligned views assume that each view has a common or shared
label set, but because a single view cannot contain the entire
label information, they often learn suboptimal results. Based
on this, this paper proposes a non-aligned multi-view multi-
label classification method that learns view-specific labels (LVSL),
aiming to explicitly mine the information of view-specific labels
and low-rank label structures in non-aligned views in a unified
model framework. Furthermore, to alleviate insufficient available
label information, we thoroughly explored the global and local
structural information among labels. Specifically, first, we assume
that there is structural consistency between the view and the label
space and then construct the view-specific label model in turn.
Second, to enrich the original label space information, we mine
the consistent information of multiple views and the low-rank
correlation information hidden among multiple labels. Finally,
the contribution weight of each view is combined with learning
the complementary information among the views in the decision-
making stage, and extend the model to handle nonlinear data.
The results of the proposed method compared with existing state-
of-the-art algorithms on several datasets validate its effectiveness.

Index Terms—Multi-view multi-label learning, Non-aligned
view, View-specific labels learning, Low-rank label correlations,
Manifold regularization learning, Kernel extension

I. INTRODUCTION

MVML is used to describe multi-semantic problems of
multi-source heterogeneous data objects[1], [2], [3].

In Fig.1, given a natural scene image, it can be represented
by multiple view structures (LBP, HOG, HSV) with multiple
labels (blue sky, white clouds, desert). Multi-view multi-label
is a learning framework for handling high-dimensional het-
erogeneous multi-semantic data classification problems. Multi-
view learning[4], [5], [6], [7] can describe data objects more
comprehensively and accurately than single-view learning.
For example, video labeled as “Sports”, “National Basketball
Association”, and “ Basketball Stars” is represented simul-
taneously by diverse data forms, such as text, image, and
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audio. In addition, there are learning paradigms with different
perspectives under the same modality. For example, we can use
various feature forms to describe image data (texture descrip-
tion, shape description, color, etc.). With the emergence of big
data and the rapid development of data collection technology,
people are bound to face data classification problems in more
complex and changeable real-world scenarios. In the past few

Fig. 1. An example of the multi-view multi-label learning object. (a) LBP
features. (b) HSV features. (c) HOG features.

decades, multi-view and multi-label learning[8], [9], [10] have
been extensively studied as two separate research fields. A
fundamental assumption of conventional single-label learning
is that the relationships among labels are mutually exclusive.
In multi-label learning, the semantic information of the labels
is rich, and there is mutual dependence among the labels,
which is a theoretical conflict with single-label learning. To
solve more complex data classification problems in real-world
scenarios, the MVML framework has emerged.

The existing methods have the following problems in the
existing methods that urgently need to be solved:

1) There are two major principles in multi-view learning:
consistency and diversity in multi-source heterogeneous
data[11], [12]. The principle of consistency asserts that
it is necessary to keep the consistent information of mul-
tiple views as much as possible in multi-view learning.
The diversity principle advocates that each view should
learn complementary information among views while
completing its specific knowledge discovery task.

2) Label correlation learning problem [13], [14]. The corre-
lation among labels in multi-view learning is one of the
critical factors for improving multi-label classification
performance.
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3) The non-aligned multi-view learning problem[15]. In
most multi-view learning methods, it is often explic-
itly or implicitly assumed that the view samples are
uniformly aligned, but in reality, it is often difficult
to obtain fully consistent multi-view information. For
example: in video recommendations, label data are ob-
tained from different video software, but due to the
privacy protection principle of users, we cannot match
and align these data with the same user consistently[16].
In the field of face recognition, due to the failure of
face landmark detection, multi-view faces cannot be
aligned, which harms facial expression recognition[17].
In general, there are many non-aligned multi-view data
in the real world, and a single view cannot contain all the
label information. Otherwise, multi-view learning will
lose its meaning.

Therefore, we naturally face the following challenges: one
is how to solve these three problems simultaneously, and
the other is to solve the linear inseparability problem of the
given data. According to the different solutions, we divide
the existing strategies into two types: feature fusion and
classification fusion[18], [19]:

The feature fusion strategy usually considers transforming
the problem into a multi-view shared subspace information
extraction problem and degenerates the multi-view heteroge-
neous feature information into a multi-label learning problem
after fusion[20], [21], [22], [23]. The matrix factorization
method[24] is often used to obtain the shared subspace in-
formation of the multi-view data and then uses the shared
information among the views and the label information of the
labeled samples to learn the discriminant predictor. The effec-
tiveness of subspace learning relies on the accurate acquisition
of consensus representations, but low-dimensional consensus
representation learning becomes more difficult as the number
of views increases.

The classification fusion strategy divides the problem into
multiple multi-label learning problems and then predicts the
unknown example label set by assigning a weight to each
view classifier[18], [19], [25], [26]. Because a unified predictor
needs to be learned for each view, the classification fusion
strategy forces each view to learn common sample label
information to learn multiple views and consistent information
across multiple labels and assigns different views to each view
weight to learn complementary information for this view. Such
methods can effectively learn view diversity information, and
these individual modes can also improve the robustness of
the predictor. Clearly, individual models rely heavily on the
performance of each individual classifier. Since it is impossible
to label each view separately in reality, the label information
learned by this type of method is often the general label
information.

Most of the existing methods focus on the first two chal-
lenges. For the third problem, the literature [15] gives a
mitigation scheme: although the samples among views are not
aligned, they can still be implicitly connected through common
or shared labels to be learned complementarily. However, this
strategy is suboptimal because it assumes that all views have
a uniform set of labels. In practice, there is a problem of

inconsistent views with their corresponding labels[27]. The
intuitive explanation is that each view only observes a part of
the corresponding label information, so different views have
specific label sets. For example, in Fig. 1, we observe that
in subgraphs (a), (b), and (c), all three different views can
only obtain a part of the complete label information. Subspace
learning can avoid the effect of inconsistent labels for views,
it does not focus on the problem of non-aligned multi-views.

With our existing knowledge, it is impossible to learn view-
specific features and multi-label structures jointly. Addition-
ally, the data of each view have a complex nonlinear structure,
so linear models are no longer sufficient for current needs.
This paper proposes an MVML method for jointly learning
view-specific labels and multi-label structural information.
Specifically, first, a view-specific label matrix is learned based
on the structural assumption of similarity between multi-view
features and labels. Then, the global label structure and local
structure correlation are introduced to enrich view-specific
label information. Finally, the joint learning model is extended
to nonlinear models.

We designed the model to establish the final optimization
goal to study the above problems jointly. Fig.2 illustrates the
model framework of the proposed method. The most signif-
icant difference between our method and the existing multi-
view learning method is that the latter ignores the misalign-
ment of multi-source heterogeneous features and label space.
Our experiments prove that this view-specific label learning
structure plays an indispensable role. Our main contributions
in this paper are as follows:

1) We propose a novel MVML method, that combines
view-specific labels and label structure learning.

2) Our method mines view-specific label information for
multi-view consistency and complementary information
learning.

3) We extend the linear model to the nonlinear model to
solve scenarios where the given data are not be linearly
separable.

The rest of this article is organized as follows. In Section
II, we briefly summarize the related work of multi-view multi-
label learning. Section III proposes our method, and Section IV
proposes an effective alternative iterative optimization solution
method to solve it. A large number of experimental results and
analyses are reported in Section V. Section VI summarizes the
research directions of this article.

II. RELATED WORK

The previous section divided existing approaches into two
different strategies, depending on the solution. In this section,
we outline the latest research that is closely related to our
approach based on the above taxonomy.

A. Multi-view Multi-label learning

Direct feature fusion is a method that connects the features
of all views in series for classification. For example, RLM-
MCML[26] merges multi-view features through a simple
concatenation strategy. Meanwhile, the structural relationship
among labels is learned based on low-rank labels and sample
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Fig. 2. The framework of the proposed LVSL method. High-order label correlation information is used to augment and complete the shared label set. View
inconsistency is guided by view-specific label learning, and label consistency is guided by view-label alignment learning. LVSL combines multi-view feature
data with the consistent alignment of views and labels for non-aligned multi-view multi-label classification tasks.

local smoothness assumptions. This degenerate method of
merging ignores the unique physical meaning of the view it-
self. Simultaneously, the high-dimensional heterogeneous fea-
tures obtained by the merging strategy may lead to the curse of
dimensionality and overfitting. The subspace learning method
considers that all views have a latent common representation
to build a classification model, a feature fusion strategy. For
example: in lrMMC[28], the first stage captures the low-
dimensional common representation of all views, limits it
to a low-rank matrix, and then assigns specific weights to
each view to explore the complementarity between different
views. In the second stage, the consensus matrix is embedded
in the matrix completion for classification. The difference
between TMV-LE[22] and lrMMC is that tensor factorization
technology is added to learn the high-order relationship be-
tween different views when using subspace learning to mine
public representations. In addition, the label enhancement
method is used when performing multi-label classification.
GLMVML[29] learns a consensus multi-view representation
through matrix factorization and encodes complementary in-
formation from different views. In addition, it also learns
global and local label structural information. iMvWL[20]
attempts to capture a distinguishable shared subspace from
incomplete views through nonnegative matrix factorization and
local label structure learning, thereby constructing a robust
weak label classifier. LSA-MML[23] uses subspace learning
to force the alignment of undiscovered latent patterns to
obtain a public representation, revealing the latent semantic
patterns in the data. ICM2L[21] utilizes nonnegative matrix
factorization to learn the individual and common information
of different views, thereby improving the recognition ability

of the classifier on rare labels. MLMVL-MM[30] uses multi-
label correlation information to merge multiple feature views
and maximum margin classification simultaneously. However,
with the subspace method, as the number of views increases,
it becomes more challenging to learn an effective latent
low-dimensional consistency representation, which leads to
decrease in the performance of the algorithm.

Classification fusion: Multiple views are fused to perform
multi-label classification in the prediction stage. For example,
VLSF[31] leverages pairwise label correlations and views
contributions to learn view label-specific features in multi-
view multi-label learning, addressing the issues of view con-
sistency and complementarity. GRADIS[32] adopts a two-
stage label disambiguation method to solve the multi-view
partial multi-label problem. First, the candidate labels are
disambiguated based on the fusion similarity graph, and the
ground-truth labels of the training samples are estimated;
then, the disambiguation-guided clustering analysis is used to
generate a prediction model for learning label-specific features.
NAIM3L[15] uses a classification fusion strategy to describe
the global and local structures among labels as high-rank and
low-rank, respectively, to alleviate the problem of insufficient
available labels, which simultaneously solves the learning
problems of missing labels, incomplete views, and non-aligned
views. F2L21F[33] proposes a sparse framework for image
classification. MLSO[3] builds an SVM classifier based on
each data view and jointly learns multi-source multi-label
learning tasks under a unified optimization framework. Multi-
label classification results are obtained by a weighted combi-
nation of decisions from multiple sources. The classification
fusion methods generally consider that although the various
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views are not explicitly aligned, they can still be implicitly
connected through public or shared labels[15]. Nevertheless,
intuitively, each view has only a subset of the corresponding
labels, meaning each view can only catch a subset of common
or shared label data. Therefore, there are obvious shortcomings
in the premises of the methods mentioned above based on
classification fusion.

In addition, the existing multi-view multi-label learning
methods have achieved certain results, but most of them are
based on linear models. When a given dataset is linearly
inseparable, we may not achieve the expected classification
effect. For this reason, scholars add nonlinear mapping to
the model. For example, TM3L[18] is a two-step learning
strategy. The first step is to learn a common representation of
multiple views with complementarity and consistency through
subspaces, and the second step combines label correlation
to build a nonlinear multi-label classifier model. MVLE[34]
utilizes the low-dimensional latent semantic space to con-
nect the labels and features of different views and further
uses the Hilbert-Schmidt independence criterion (HSIC)[35]
to mine the consistency information among different views.
SIMM[36] proposes a neural network MVML method, which
uses the shared subspace learning and view-specific informa-
tion identification. On this basis, MML-DAN[37] adopts a self-
attention mechanism to model the interaction information of
label-specific views to explore consistent label correlations.
CDMM[19] utilizes multiple multi-label models to learn view
consistency information jointly and introduces HSIC theory to
extract the different information among views.

B. Label correlation learning

Different from traditional single-label learning tasks, multi-
label learning aims to assign multiple category labels to a
sample, which has gained increasing attention in different
machine learning tasks. From an intuitive point of view,
samples with similar labels are more likely to have strong
correlations[38]. Therefore, the existing multi-label methods
are divided into three categories according to the different label
correlations used[9]. First-order strategies: consider that there
is no inherent correlation among labels and that labels are
independent of each other[39], [40]. Second-order strategies:
consider that the label correlation exists in pairs, and use
the distance measurement method to evaluate the correlation
of the label pairs[31], [41]. High-order strategies: consider
that label correlation in complex scenarios is multifaceted and
semantically related [42], [43]. Theoretical research on label
propagation dependencies shows that label correlations can
reconstruct and enrich original label information[44].

In addition, most of the previous label correlation studies
considered the global structural information of labels, but
more studies confirmed that the correlation among labels
might only be shared with a subset of samples[38]. Therefore,
there is a weak correlation or irrelevance among samples
with different labels, reflecting the local structural relation-
ship within multiple labels[45]. ML-LRC[46] uses a low-rank
structure to capture the complex associations among labels
and jointly learns label correlation and multi-label classifiers;

GLOCAL[47] builds the global sum of labels by combining
multiple regularizers of labels in a multi-label classifier of
local structural relationships.

As mentioned above, most of the existing MVML methods
consider that all views share a set of labels, but in practical
applications, there is a problem of inconsistent view-label in-
formation. Moreover, this problem caused by non-aligned view
learning has not been directly investigated in previous studies.
We propose an MVML method for learning view-specific
labels based on the aforementioned issue. First, view-specific
label learning addresses the view-label inconsistency of non-
aligned views. Then, effective global and local structural
regularizers for label correlations are introduced into view-
specific label learning. Finally, the complementary information
among views is learned by a weighted combination of each
view, and the model is extended nonlinearly. The effectiveness
of our method is verified on multiple benchmark multi-view
multi-label data sets.

III. THE PROPOSED METHOD

A. Problem settings

Let X = {xv}mv=1 denote multi-view multi-label data sets
with m views, where Xv = [x1, · · · ,xN ]

T ∈ RN×dv is the
complete feature space of the v-th view, N represents the
number of training samples. Y = [y1,y2, · · · ,yN ] ∈ RN×l

represents the label space corresponding to the feature set,
where yi ∈ {0, 1}N×l is the label vector of xi, and l
represents the number of labels.

B. Problem Formulation

In the initial prediction model of multi-view multi-label
classification, label classification learning is a typical regres-
sion model problem. The base model advocates different views
to predict the same label result to use consistent information
between different views. Furthermore, the different contribu-
tion weights of each view are considered in the base model
to learn the complementary information among views. The
objective function can be formally defined as follows:

min
W v,θv

1

2

m∑
v=1

θv
{
∥XvW v − Y ∥2F

}
+

λ1

2
∥W v∥2F +

λ2

2
∥θ∥22

s.t. θ ⩾ 0,

m∑
v=1

θv = 1

(1)
The variable θv is used to measure the contribution of each
view.

There are two main problems currently faced:
1) We need to learn non-aligned views in a common label

space.
2) The introduction of multi-label structural learning in

multi-label learning helps to improve the classification
performance of the algorithm.

Therefore, how to combine these two attributes more effec-
tively and make our model more discriminative is the main
issue to be considered below.
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Eq.1 assumes that the samples among views share a com-
mon label set, which is an implicit solution to view alignment
consistency. However, there is no such explicit or implicit
alignment view sample in a large amount of data in reality
because the labels that each view in the real world can observe
may only be part of the entire information, so it is necessary to
learn a particular non-aligned multi-view method that solves
the inconsistency of observable information in each view. For
the first question, we propose a display view non-alignment
method, introducing the concept of view-specific labels. Then,
we have the following equation:

min
W v,P v,θv

1

2

m∑
v=1

{
F (W v) + λ1 ∥W v∥2F + λ4 ∥P v − Y ∥2F

}
+
λ2

2
∥θ∥22

s.t. θ ⩾ 0,

m∑
v=1

θv = 1

(2)

F (W v) = θv
(
∥XvW v − P v∥2F + λ3Tr

(
(P v)

T
LvP v

))
(3)

Where P v represents the view-specific label matrix, the sec-
ond term of Eq.3 represents the introduction of the topological
structure of each view in the feature space, which ensures that
the local geometric structure between the feature space and
the semantic matrix of different views is consistent. Lv =
Dv − Sv is the graph Laplacian matrix. Sij measures the
similarity between instances Xi and Xj . The local geometric
structure is constructed from the nearest neighbor graph on
the feature space Xv in our work. In addition, the calculation
of the similarity between the two instances of the v-th view
is as follows:

Sv
i,j =

 e−
∥xv

i −xv
j∥2

2σ2 , if xv
j ∈ Np (x

v
i ) or xv

i ∈ Np

(
xv
j

)
0, otherwise

(4)
where Np (x) is the set of p nearest neighbors of instance Xv .

For the second problem, we introduce a structural learning
method of label correlation. We know that most existing multi-
label label correlation learning methods have two limitations:

1) Label correlation is usually regarded as prior knowledge
and cannot correctly describe the true dependency rela-
tionship among labels;

2) The consideration of the local structure of the label
relationship in the label space is ignored.

For the first limitation, we use the idea of label propagation
to build a joint learning model of view-specific labels and
label correlations to solve them. Specifically, we believe that
in addition to keeping the structure consistent with different
view features, the view-specific labels should also consider
the impact of label correlation on the information supplement
of the original label space. Therefore, we introduce label

correlation to supplement the original label matrix:

min
W v,P v,C,θv

1

2

m∑
v=1

{
F (W v) + λ1 ∥W v∥2F + λ4 ∥P v − Y C∥2F

}
+
λ2

2
∥θ∥22

s.t. θ ⩾ 0,

m∑
v=1

θv = 1

(5)
Regarding the second limitation, we believe that in addition

to focusing on the global features of multi-labels, we also need
to capture some local structural information. For example,
there is usually a group of labels so that the labels in a group
have a strong correlation with each other and are independent
of different labels. Therefore, we use ∥·∥∗ to represent the
nuclear norm to limit the label correlation matrix C to a low-
rank structure. Finally, obtain the objective function as follows:

min
W v,P v,C,θv

1

2

m∑
v=1

{
F (W v) + λ1 ∥W v∥2F + λ4 ∥P v − Y C∥2F

}
+
λ5

2
∥C∥∗ +

λ2

2
∥θ∥22

s.t. θ ⩾ 0,

m∑
v=1

θv = 1

(6)
Based on the above problems, we jointly learn non-aligned

multi-view and multi-label semantic structures. Furthermore,
because Eq.6 is a linear model, it cannot solve the inseparable
linearity of given data. At present, some existing multi-label
learning algorithms (such as [14], [34], and [48]) use nonlinear
models to achieve good performance. We use the feature map
ϕ (·) to map the feature space X to a higher-dimensional
(possibly infinite-dimensional) Hilbert space ϕ (·). According
to the expression theorem, we rerepresent the linear combi-
nation of input variables W as W = ϕ(x)

T
A, according to

the expression theorem [40]. Suppose K is the kernel matrix
Kij = κ (xi,xj) = ϕ (x)ϕ(x)

T, where κ (·, ·) is the kernel
function used (the Gaussian kernel is used in this paper). Then,
Eq.3 and Eq.6 can be rewritten as:

F (Av) = θv
(
∥KvAv − P v∥2F + λ3Tr

(
(P v)

T
LvP v

))
(7)

min
Av,P v,C,θ

1

2

m∑
v=1

{
F (Av) + λ1Tr

(
(Av)TKvAv

)
+ λ4 ∥P v − Y C∥2F

}
+
λ5

2
∥C∥∗ +

λ2

2
∥θ∥22

s.t. θ ⩾ 0,

m∑
v=1

θv = 1

(8)
In the next section, we will solve problem 8 with alternate
iterative optimization.

IV. OPTIMIZATION

A. Model optimization

The optimization problem in Eq.8 is convex, and the
resulting problem can be solved by following the alternate
optimization procedure.
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Fix P v , C and θ, Optimize Av .

L (Av) =
m∑

v=1

{
θv

(
1

2
∥KvAv − P v∥2F

)
+

λ1

2
Tr
(
(Av)

T
KvAv

)}
(9)

Taking the derivative of L (Av) w.r.t Av and setting the
derivative to 0 can obtain a closed solution w.r.t. Av:

Av = (θvKv + λ1I)
−1

(θvP v) (10)

Fix Av , C and θ, Optimize P v .

L (P v) = min
P v

m∑
v=1

{
θvT v +

λ4

2
∥P v − Y C∥2F

}
T v =

(
1

2
∥KvAv − P v∥2F +

λ3

2
Tr
(
(P v)

T
LvP v

)) (11)

Taking the derivative of L (P v) w.r.t. L (P v) and setting
the derivative to 0 can obtain a closed solution w.r.t. L (P v).

P v = (λ3θ
vLv + (θv + λ4) I)

−1
(θvKvAv + λ4Y C)

(12)
Fix Av , P v and θ, Optimize C.

Compared with variables Av and P v that can directly obtain
closed solutions, it is difficult to directly optimize C because
of the nonsmooth regularization term in Eq.8. To make the
objective function Eq.8 separable, we introduced the auxiliary
variable Z to replace C, and then an equivalent objective
function can be expressed as:

min
C,Z

m∑
v=1

{
λ4

2
∥P v − Y C∥2F

}
+

λ5

2
∥Z∥∗

s.t. C = Z

(13)

We use augmented Lagrangian multipliers (ALMs) to solve
this problem and reformulate the objective function 13 as:

min
C,Z,Λ

m∑
v=1

{
λ4

2
∥P v − Y C∥2F

}
+

λ5

2
∥Z∥∗+

µ

2

∥∥∥∥C −Z +
Λ

µ

∥∥∥∥2
F

− 1

2µ
∥Λ∥2F

(14)

Then, the inexact ALM (IALM) method is used to iteratively
solve each variable in 14 by the block coordinate descent
method. µ and Λ are expressed as nonnegative penalty factors
and Lagrangian multipliers, respectively. According to the
optimization strategy of IALM[49], we divide Eq.14 into the
following subproblems:
C-subproblem.

C =

(
m∑

v=1

Y TY +
µ

λ4
I

)−1( m∑
v=1

(P v)
T
Y +

µ

λ4
Z − Λ

λ4

)
(15)

Z-subproblem.

Z∗ = arg min
Z

λ5

µ
∥Z∥∗ +

∥∥∥∥Z −C − Λ

µ

∥∥∥∥2
F

(16)

Update multiplier Λ.

Λ = Λ+ µ (C −Z) (17)

The subproblems of Z can be solved by the singular value
threshold [50] method.
Fix Av , P v and C, Optimize θ.

min
θv

m∑
v=1

{θvT v}+ λ2

2
∥θ∥22

s.t. θ ⩾ 0,

m∑
v=1

θv = 1

(18)

In summary, we introduce a kernel model to generate the
predicted label vector Y t:

Y t= sign (P t − η) (19)

where P t =
m∑

v=1
θvKv

testA
v∗, and η is the given threshold

obtained by cross-validation.

Algorithm 1 Non-aligned Multi-view Multi-label Classifica-
tion via Learning View-Specific Labels (LVSL).
Require:

The training data set: {Xv}mv=1 ∈ RN×d;
The label dataset: Y ∈ RN×l;
The trade-off parameters: λ1, λ2, λ3, λ4, λ5, µ = 10−1,
ρ = 1.5, maxµ = 106;
Randomly initialize P v , Av , C and θv;

Ensure:
Final prediction objective function: Y t;

1: Let iter = 0
2: for Train Data v = 1 to m do
3: iter = iter + 1;
4: Update variables Av , P v , C, and Z by Eq.10, Eq.12,

Eq.15, and Eq.16, respectively;
5: Update multipliers Λ by Eq.17;
6: Update the penalty parameter µ by µ =

min (ρµ,maxµ);
7: Update weight θv by Eq.18;
8: end for
9: Calculate the prediction function of the test set by Eq.19

10: return Y t.

B. Complexity analysis

In this section, we mainly analyze the complexity of the
optimization parts listed in Algorithm 1. The time complexity
of LVSL is mainly controlled by step 4. The complexity
of updating Av in each iteration is O

(
N3 +N2l

)
, and the

complexity of updating P v is O
(
N3 +N2l +Nl2

)
. The

update of C costs O
(
mNl2 + l3

)
. The update of Z costs

O
(
l3
)
. The time complexity of constructing Lv for each

iteration is O
(
N2dmax

)
. In summary, the total time complexity

of LVSL is O
(
t
(
N3 +N2l +Nl2 +N2dmax + l3

))
, where

t is the number of iterations. Typically, the model reaches its
optimum after ten iterations converge quickly.
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V. EVALUATION AND DISCUSSION

A. Experimental settings
We performed experiments on 7 benchmark multi-view

multi-label data sets, which can be downloaded from
Mulan[51]1. Pascal07, Corel5k, ESPgame, Iaprtc12, and Mir-
flickr are the five widely used image datasets2 from [52], [53].
The details of the datasets are summarized in Table I.

To verify the effectiveness of the proposed method, we
compare our method with the following seven competing
methods. Two of these methods use a concatenation strategy,
which builds a multi-label learning model based on each data
view and combines the weights of the output results to make
the final prediction. Other methods are multi-view multi-label
learning methods.

• MLkNN[40]: A lazy learning algorithm for multi-label
learning. The k-nearest neighbor parameter is set to 10.

• LSML[54]: Multi-label classification method for joint
learning of missing labels and label features. The pa-
rameters are set according to the given recommendations
λ1 = 102, λ2 = 10−2, λ3 = 10−2, λ4 = 10−3, and
λ5 = 10−5.

• ICM2L[21]: Individual-view and commonality-view min-
ing MVML classification method. Parameter configura-
tions are implemented according to the suggestions given
in the paper.

• iMvWL[20]: Incomplete multi-view weak label learn-
ing. In the experiment, the complete view information
is available. Parameter configurations are implemented
according to the suggestions given in the paper.

• TM3L[18]: Two-step multi-view multi-label classification
method with missing labels. Specific parameters are se-
lected according to the given optimal configuration.

• CDMM[19]: A neural network multi-view multi-label
classification learning method based on view consistency
and diversity. Specific parameters are selected according
to the given optimal configuration.

• SIMM[36]: The multi-view multi-label classification
method for subspace learning based on view-specific
information mining. Specific parameters are selected ac-
cording to the given optimal configuration.

• LVSL3: The non-aligned multi-view multi-label method
by learning view-specific labels. The parameters
λ1, λ3, and λ5 are searched in the range of{
10−5, 10−4, · · · , 10−1

}
, the parameter λ2 is searched

in
{
103, 104, · · · , 106

}
, and the parameter λ4 is searched

in
{
10−3, 10−4, · · · , 103

}
.

For all the above methods, the parameters are tuned to
achieve the best performance by grid search.

B. Evaluation metrics
We use five evaluation metrics that are widely used in multi-

label learning to measure the performance of each algorithm.

1datasets: http://mulan.sourceforge.net/datasets-mlc.html.
2datasets: http://lear.inrialpes.fr/people/guillaumin/data.php
3code: https://github.com/zhaodwahu/LVSL.

The specific evaluation metrics are average precision (AP),
coverage (CV), Hamming loss (HL), one error (OE), and
ranking loss (RL). The larger the value of AP is, the better.
The smaller the other evaluation metrics values are, the better.
The detailed metric definitions can be found in[9], [10].

C. Experimental results

We performed fivefold cross-validation on each dataset, and
each algorithm repeated the experiment 5 times. The average
and standard deviation of each metric value under each dataset
are reported in Tables II to VI. We show the best results in
red and the second-best results in blue.

The Friedman test[55], as a common strategy for compar-
ing whether multiple algorithms have the same performance.
Table VII summarizes the Friedman statistical FF value of
each evaluation metric and the critical value at the 0.05
significance level. Observing Table VII, we know that the FF

statistics of all metrics are greater than the critical value. Obvi-
ously, all metrics negate the null hypothesis, so we need to use
a post-hoc test method to illustrate the significant differences
among the approaches. In this article, we choose the Nemenyi
test[39], [56], [57] as the post-hoc test method. In Fig.3, the
algorithm performance is sorted from left to right, and the best
algorithm is ranked on the far right.Specifically, if the average
ranking difference among the comparison algorithms is within
a CD value, they are connected with a red solid line. From
the reports in Tables II to VI and Figures 3(a) to 3(e), the
following conclusions can be drawn:

• Among 35 configurations (7 datasets and 5 evaluation
metrics), ours ranked first and second at 71.4% and
14.3%, respectively.

• Fig. 3 shows that LVSL is significantly better than other
methods in 40% of cases, followed by CDMM and SIMM
in 20% of cases. It is worth noting that our method is
always better than CDMM.

• Encouragingly, by observing Tables II to VI, we find that
our method achieves better performance on all metrics
of Emotions and Y east. The overall CV metric perfor-
mance of LVSL is not as good as SIMM, but it is not
much different from the better results.

The analysis in addition to the experimental results is as
follows:

• Compared with LSML and MLkNN, it can be seen that
the performance of the traditional multi-label method
connected to the multi-view multi-label learning ap-
proaches is flawed, mainly because they ignore the con-
sistency and complementary information mining of multi-
view and the physical interpretation of the characteristics
of different views.

• The comparison among LVSL and iMvWL, ICM2L, and
TM3L shows that our view-specific label learning method
has better performance in mining the information among
non-aligned multi-view labels and features. iMvWL ig-
nores the diversity of views and has limitations in view
information extraction.

• LVSL, SIMM, TM3L, and CDMM use nonlinear map-
ping to solve the linear inseparability problem. In general,
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TABLE I
MULTI-VIEW MULTI-LABEL DATA SETS

Views Emotions Yeast Pascal07 Corel5k ESPgame Iaprtc12 Mirflickr

1 rhythmic attributes
(8)

Genetic Expression
(79)

DenseSift
(1000)

DenseHue
(100)

DenseHue
(100)

DenseHue
(100)

DenseHue
(100)

2 timbre attributes
(64)

phylogenetic profile
(24)

HarrisSift
(1000)

DenseSift
(1000)

DenseSift
(1000)

DenseSift
(1000)

DenseSift
(1000)

3 - - Gist(512) Gist(512) Gist(512) Gist(512) Gist(512)
4 - - HSV(4096) HSV(4096) HSV(4096) HSV(4096) HSV(4096)
5 - - RGB(4096) Lab(4096) Lab(4096) Lab(4096) Lab(4096)
6 - - Tags(804) RGB(4096) RGB(4096) RGB(4096) RGB(4096)

Domain music biology image image image image image
The number of labels 6 14 20 260 268 291 457

The number of samples 593 2417 9963 4999 20770 19627 25000

TABLE II
EXPERIMENTAL RESULTS (MEAN ± STD) ON AVERAGE PRECISION (↑).

AP(↑)Dataset MLkNN LSML ICM2L iMvWL CDMM TM3L SIMM LVSL
Emotions 0.718±0.021 0.785±0.011 0.578±0.022 0.584±0.015 0.790±0.019 0.781±0.016 0.780±0.027 0.801±0.028

Yeast 0.762±0.009 0.610±0.008 0.708±0.014 0.704±0.011 0.781±0.009 0.772±0.010 0.765±0.016 0.785±0.006
Pascal07 0.464±0.007 0.663±0.009 0.460±0.025 0.660±0.013 0.759±0.006 0.781±0.005 0.786±0.005 0.769±0.005
Corel5k 0.349±0.008 0.418±0.008 0.258±0.004 0.274±0.003 0.545±0.007 0.516±0.008 0.534±0.006 0.546±0.007

ESPgame 0.259±0.003 0.319±0.002 0.219±0.013 0.237±0.002 0.400±0.003 0.383±0.002 0.378±0.013 0.402±0.003
Iaprtc12 0.340±0.004 0.328±0.007 0.204±0.000 0.242±0.001 0.432±0.004 0.421±0.004 0.401±0.017 0.434±0.003
Mirflickr 0.076±0.001 0.096±0.002 0.093±0.001 0.094±0.005 0.102±0.002 0.099±0.000 0.142±0.009 0.128±0.002

TABLE III
EXPERIMENTAL RESULTS (MEAN ± STD) ON COVERAGE (↓).

CV(↓)Dataset MLkNN LSML ICM2L iMvWL CDMM TM3L SIMM LVSL
Emotions 0.376±0.020 0.307±0.017 0.530±0.036 0.506±0.014 0.304±0.018 0.309±0.030 0.307±0.014 0.298±0.014

Yeast 0.452±0.006 0.623±0.013 0.503±0.006 0.494±0.009 0.426±0.008 0.446±0.010 0.450±0.004 0.424±0.008
Pascal07 0.319±0.003 0.124±0.003 0.308±0.048 0.189±0.015 0.111±0.003 0.109±0.002 0.106±0.002 0.110±0.002
Corel5k 0.290±0.004 0.184±0.006 0.334±0.000 0.286±0.004 0.179±0.011 0.187±0.009 0.148±0.006 0.175±0.003

ESPgame 0.437±0.003 0.342±0.002 0.479±0.001 0.447±0.004 0.337±0.005 0.367±0.004 0.308±0.012 0.320±0.003
Iaprtc12 0.376±0.005 0.307±0.003 0.497±0.001 0.435±0.003 0.284±0.006 0.335±0.003 0.270±0.019 0.266±0.006
Mirflickr 0.386±0.004 0.329±0.005 0.499±0.002 0.492±0.007 0.332±0.002 0.307±0.001 0.306±0.016 0.316±0.004

TABLE IV
EXPERIMENTAL RESULTS (MEAN ± STD) ON HAMMING LOSS (↓).

HL(↓)Dataset MLkNN LSML ICML iMvWL CDMM TM3L SIMM LVSL
Emotions 0.262±0.010 0.224±0.012 0.375±0.015 0.395±0.011 0.207±0.014 0.218±0.014 0.246±0.008 0.205±0.011

Yeast 0.196±0.005 0.261±0.008 0.278±0.008 0.269±0.005 0.189±0.006 0.196±0.006 0.207±0.005 0.182±0.009
Pascal07 0.072±0.001 0.066±0.002 0.115±0.003 0.086±0.002 0.049±0.001 0.050±0.000 0.046±0.001 0.046±0.001
Corel5k 0.013±0.000 0.013±0.000 0.022±0.000 0.022±0.000 0.011±0.000 0.012±0.000 0.011±0.000 0.011±0.000

ESPgame 0.017±0.000 0.017±0.000 0.029±0.000 0.028±0.000 0.018±0.000 0.017±0.000 0.017±0.000 0.017±0.000
Iaprtc12 0.019±0.000 0.019±0.000 0.032±0.000 0.031±0.000 0.019±0.000 0.019±0.000 0.019±0.000 0.018±0.000
Mirflickr 0.006±0.000 0.006±0.000 0.013±0.000 0.013±0.000 0.006±0.000 0.006±0.000 0.006±0.000 0.006±0.000

TABLE V
EXPERIMENTAL RESULTS (MEAN ± STD) ON ONE ERROR (↓).

OE(↓)Dataset MLkNN LSML ICML iMvWL CDMM TM3L SIMM LVSL
Emotions 0.359±0.041 0.295±0.016 0.530±0.030 0.521±0.021 0.304±0.034 0.314±0.019 0.310±0.056 0.268±0.039

Yeast 0.233±0.017 0.358±0.019 0.235±0.024 0.292±0.020 0.211±0.013 0.217±0.022 0.225±0.028 0.210±0.015
Pascal07 0.585±0.012 0.474±0.016 0.589±0.002 0.397±0.021 0.308±0.011 0.267±0.007 0.255±0.008 0.284±0.009
Corel5k 0.602±0.017 0.522±0.012 0.697±0.007 0.687±0.003 0.362±0.006 0.395±0.008 0.363±0.011 0.356±0.008

ESPgame 0.650±0.008 0.559±0.005 0.713±0.030 0.674±0.000 0.465±0.009 0.482±0.007 0.476±0.022 0.465±0.009
Iaprtc12 0.535±0.006 0.541±0.007 0.720±0.005 0.624±0.002 0.439±0.007 0.443±0.008 0.447±0.021 0.444±0.005
Mirflickr 0.905±0.003 0.877±0.004 0.908±0.004 0.887±0.003 0.869±0.004 0.878±0.003 0.865±0.006 0.841±0.003
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TABLE VI
EXPERIMENTAL RESULTS (MEAN ± STD) ON RANKING LOSS (↓).

RL(↓)Dataset MLkNN LSML ICML iMvWL CDMM TM3L SIMM LVSL
Emotions 0.255±0.020 0.177±0.012 0.443±0.013 0.414±0.012 0.174±0.013 0.184±0.025 0.178±0.024 0.165±0.024

Yeast 0.170±0.006 0.346±0.012 0.215±0.011 0.214±0.008 0.151±0.008 0.161±0.012 0.165±0.008 0.150±0.006
Pascal07 0.256±0.004 0.084±0.003 0.241±0.040 0.138±0.011 0.070±0.002 0.068±0.002 0.066±0.002 0.066±0.002
Corel5k 0.127±0.003 0.076±0.002 0.149±0.002 0.130±0.003 0.069±0.005 0.072±0.003 0.059±0.002 0.069±0.002

ESPgame 0.181±0.002 0.134±0.001 0.203±0.002 0.190±0.002 0.124±0.002 0.135±0.002 0.120±0.006 0.118±0.002
Iaprtc12 0.135±0.002 0.105±0.001 0.189±0.001 0.165±0.002 0.089±0.002 0.106±0.002 0.089±0.007 0.085±0.001
Mirflickr 0.224±0.003 0.183±0.004 0.288±0.001 0.285±0.009 0.184±0.003 0.169±0.000 0.222±0.013 0.179±0.003

TABLE VII
THE CORRESPONDING STATISTICAL FF VALUE OF EACH EVALUATION METRIC AND CRITICAL VALUE UNDER THE Friedman TEST.

Metric FF Critical Value(α = 0.05)

AP 27.273

2.2371
CV 25.825
HL 9.760
OE 22.484
RL 24.007

LVSL is always better than the other three methods.
View-specific labels and multi-label structural learning
can effectively improve classification performance. In ad-
dition, SIMM also ignores the impact of label correlation,
which leads to its poor overall performance.

• LVSL performs worse than SIMM on the AP and CV
metrics on the Pascal07 and Mirflickr datasets for two
main reasons. (1) LVSL uses a single kernel function for
kernel mapping of multiple views, but it is undeniable that
the performance of the kernel method often depends on
the choice of the kernel function. Because the nonlinear
relationship among the data of each view may be differ-
ent, the optimal kernel function for one view may not
be suitable for another view[58], which provides a new
direction for our future research work. SIMM does not
need to consider this problem. (2) SIMM develops the
shared subspace based on the information among each
view. In our work, considering the problem of the non-
aligned view, the information among views cannot be
directly communicated, which affects the performance of
the LVSL to a certain extent.

Additionally, there are two main reasons for the advantage
of our method over deep learning methods:

• The current multi-view multi-label learning tasks can-
not directly perform end-to-end training through deep
learning and require solutions that benefit from some
traditional feature extraction techniques. Therefore, the
feature representation capability of deep learning is lim-
ited in this task, and due to its powerful nonlinear data
processing capability, our method using kernel tricks can
also achieve this purpose[48].

• The training data in this paper are relatively limited, and
deep learning may overfit the training data, resulting in

insufficient model generalization ability. The traditional
method has good generalization ability, interpretability,
sufficient transparency, and universality[59]. Therefore,
to some extent, traditional methods are more suitable for
solving the complex tasks proposed in this paper.

D. Ablation Analysis

In this section, to further verify the effectiveness of each
component in LVSL, we conducted additional ablation analy-
sis experiments and reported the values on the five evaluation
metrics in Table VIII. LVSL-I, LVSL-II, and LVSL-III are
variants of LVSL, which exclude the influence of view-specific
labels, label correlations, and view contributions, respectively.
Comparing the results of LVSL-I and LVSL on Table VIII,
it can be found that the overall performance is significantly
improved after adding view-specific labels, which confirmed
our clear motivation to use view-specific label learning to
solve the problem of the non-aligned view. Comparing LVSL-
II and LVSL, it is found that LVSL is better than LVSL-II
in most cases, which proves the necessity of capturing label
structure information and verifies the effectiveness of using
the label association matrix C to complement the original
label matrix Y . In some cases, LVSL-III and LVSL have the
same performance, showing that our contribution measurement
method has room for further improvement.

E. Sensitivity Analysis

LVSL has five important hyperparameters λ1, λ2, λ3, λ4

and λ5. We separately tested the sensitivity of LVSL to five
hyperparameters on the corel5k dataset, and we fixed four of
the parameters as the best (for example, λ1 = 10−1, λ2 = 105,
λ3 = 10−1, λ4 = 102 and λ5 = 10−1) and then changed the
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(e) Ranking Loss.

Fig. 3. The performance comparison results of LVSL and other comparison methods using the Nemenyi test (CD = 3.9685 at the 0.05 significance level)
under five evaluation metrics.

value of one of the parameters within the given range. Fig.
4 shows the changes in LVSL on the AP and RL evaluation
metrics.

The hyperparameter λ1 controls the complexity of the model
coefficients and adjusts the balance between overfitting and
underfitting. When λ1 is too small, it will cause overfitting
problems in the model, and underfitting problems will oc-
cur when λ1 is too large. The hyperparameter λ2 controls
the contribution of different views. The hyperparameter λ3

controls the structural diversity among different views. The
hyperparameter λ4 controls the global consistency of infor-
mation between the view-specific label and the real label. The
hyperparameter λ5 controls the effect of local label correlation.

Fig. 4 shows that the parameter λ1 has a better effect in
taking the intermediate value, and intuitively, the intermediate
value ensures the balance of the model fitting. When the
parameter λ2 achieves 105, the effect is better. A larger
value means that the influence of the contribution weight
of each view is ignored, and a smaller value will be too

sensitive to the contribution of view parameters and ignore the
complementary information between views. The parameter λ3

and λ5 values tend to take smaller values, but values that are
too small will ignore the contribution of the corresponding
regularization term, so we generally choose the median value.
The performance is better when the parameter λ4 takes a larger
value. A larger value can fully learn the view consistency
information of multiple views, but an excessively large value
will also lead to insufficient complementary learning of view-
specific labels. Our parameter sensitivity analysis results on
other datasets are similar, and similar conclusions can be
drawn.

F. Further Analysis

We report the algorithm efficiency analysis of LVSL in this
section. Fig. 5 shows the iterative trend of our method on
two datasets. Fig. 5 shows that the value of the objective
function is significantly reduced during the initial iteration, and
as the optimization process proceeds, the value of the objective
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TABLE VIII
COMPARISON RESULTS OF LVSL-I, LVSL-III, LVSL-III AND LVSL. LVSL-I WITHOUT VIEW-SPECIFIC LABEL STRUCTURE, LVSL-III WITHOUT LABEL

CORRELATION, AND LVSL-III WITH THE SAME CONTRIBUTION WEIGHT FOR ALL VIEWS.

Datasets Methods
Evaluation Metrics

AP CV HL OE RL

Emotions

LVSL-I 0.794± 0.021 0.304±0.014 0.213±0.018 0.282±0.047 0.171±0.018

LVSL-II 0.789± 0.026 0.304±0.016 0.208±0.016 0.297±0.054 0.172±0.028

LVSL-III 0.798± 0.018 0.300±0.010 0.212±0.011 0.277±0.041 0.166±0.013

LVSL 0.801± 0.028 0.298±0.014 0.205±0.011 0.268±0.039 0.165±0.024

Yeast

LVSL-I 0.777± 0.030 0.435±0.008 0.185±0.002 0.224±0.008 0.158±0.003

LVSL-II 0.779± 0.009 0.432±0.015 0.184±0.004 0.220±0.012 0.155±0.006

LVSL-III 0.785± 0.006 0.426±0.003 0.185±0.004 0.211±0.015 0.151±0.005

LVSL 0.785± 0.006 0.424±0.008 0.182±0.009 0.210±0.015 0.150±0.006

Pascal07

LVSL-I 0.747± 0.009 0.112±0.004 0.049±0.001 0.326±0.013 0.071±0.003

LVSL-II 0.762± 0.004 0.112±0.002 0.049±0.001 0.301±0.009 0.070±0.002

LVSL-III 0.759± 0.004 0.110±0.002 0.048±0.001 0.310±0.002 0.074±0.003

LVSL 0.769± 0.005 0.110±0.002 0.046±0.001 0.284±0.009 0.066±0.002

Corel5k

LVSL-I 0.543± 0.007 0.171±0.002 0.012±0.000 0.361±0.009 0.070±0.002

LVSL-II 0.542± 0.008 0.186±0.011 0.011±0.000 0.367±0.014 0.071±0.005

LVSL-III 0.546± 0.008 0.178±0.006 0.011±0.000 0.364±0.008 0.068±0.002

LVSL 0.546± 0.007 0.175±0.003 0.011±0.000 0.356±0.008 0.069±0.002

ESPgame

LVSL-I 0.403± 0.005 0.322±0.005 0.017±0.000 0.466±0.006 0.119±0.001

LVSL-II 0.404± 0.006 0.321±0.002 0.017±0.000 0.467±0.006 0.119±0.001

LVSL-III 0.403± 0.001 0.323±0.002 0.017±0.000 0.466±0.005 0.119±0.001

LVSL 0.402± 0.003 0.320±0.003 0.017±0.000 0.465±0.009 0.118±0.002

Iaprtc12

LVSL-I 0.424± 0.006 0.277±0.004 0.019±0.000 0.470±0.006 0.089±0.001

LVSL-II 0.425± 0.005 0.275±0.003 0.019±0.000 0.472±0.007 0.089±0.001

LVSL-III 0.420± 0.002 0.276±0.003 0.019±0.000 0.478±0.003 0.089±0.001

LVSL 0.434±0.003 0.266±0.005 0.018±0.000 0.444±0.005 0.085±0.001

Mirflickr

LVSL-I 0.116±0.002 0.321±0.004 0.006±0.000 0.895±0.006 0.242±0.002

LVSL-II 0.118±0.002 0.320±0.003 0.006±0.000 0.864±0.002 0.180±0.002

LVSL-III 0.120±0.002 0.319±0.002 0.006±0.000 0.867±0.002 0.180±0.001

LVSL 0.128±0.002 0.316±0.004 0.006±0.000 0.841±0.003 0.179±0.003

function gradually converges. LVSL tends to converge for 10
iterations on both datasets, proving that it can converge faster.
Our convergence results on other datasets are similar.

VI. CONCLUSION

This paper proposes a novel multi-view multi-label classifi-
cation method that jointly learns view-specific labels and label
structures. LVSL differs from existing work on multi-view
multi-label classification by implicitly concatenating common
or shared labels in that it assigns a specific label to each
view to solve the problem of inconsistent labels for views
in non-aligned views. When constructing view-specific labels,
the consistency and diversity information among the views
in multi-view learning are learned, and the label correlation
information in multi-label learning is also combined. A large
number of experiments show that the proposed non-aligned
view learning method is a promising solution for multi-view
multi-label classification based on view-specific labels.

This method is of great significance for future research on
the feasibility of the multi-view multi-label classification of

non-aligned views. Future work will be devoted to propos-
ing more new methods to study view-specific label learning
problems via multi-kernel learning.
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Fig. 4. Parameter sensitivity analysis of the LVSL algorithm on the Corel5k
dataset. (a) Effect of λ1 with other fixed parameters. (b) Effect of λ2 with
other fixed parameters. (c) Effect of λ3 with other fixed parameters. (d) Effect
of λ4 with other fixed parameters. (e) Effect of λ5 with other fixed parameters.
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Fig. 5. Convergence analysis of LVSL on Yeast and Corel5k. (a) Convergence
trend on Yeast. (b) Convergence trend on Corel5k.
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