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Abstract—3D point cloud data formats are used to express
three-dimensional (3D) information using numerous points in a
3D space. A key challenge is the delivery of high-quality 3D point
cloud for the users under a diverse channel quality and available
bandwidth to share the same 3D space across multiple untethered
extended reality (XR) users. The existing digital-based schemes
suffer from two issues owing to the diversity: cliff and leveling-off
effects. This paper proposes a novel soft multicasting scheme of
point cloud data for untethered XR users. The key ideas of the
proposed scheme are three-fold: 1) integration of graph signal
processing and analog modulation to adaptively improve the 3D
reconstruction quality according to the channel quality for all
individual XR users, 2) integration of Givens rotation and non-
uniform adaptive quantization to reduce metadata overhead for
the graph Fourier transform, and 3) prioritized transmission
of the metadata to realize adaptive quality improvement based
on the bandwidth available for each XR user. This paper
reveals that the proposed scheme prevents cliff and leveling-
off effects even when the XR users experience different channel
qualities. Furthermore, the proposed transmission exhibits better
3D reconstruction quality compared with the state-of-the-art
graph-based delivery scheme in band-limited environments.

Index Terms—Point Cloud Delivery, Graph Fourier Transform,
Givens Rotation, Non-Uniform Quantization, XR Devices

I. INTRODUCTION

Volumetric contents are attractive media to reproduce large
and detailed three-dimensional (3D) environments on extended
reality (XR) and holographic displays. The reproduced 3D
environments may aid in the digitization of the real world for
numerous applications, such as e-learning, virtual tours, and
online meetings and interactions. Point cloud [1] is among the
typical data structures used for the volumetric contents. The
point cloud uses numerous points for the 3D scene reproduc-
tion, and each 3D point is defined by 3D coordinates (X, Y,
Z) and color attributes (R, G, B).

The typical applications of point cloud delivery are multi-
casting delay-sensitive and quality-sensitive contents for un-
tethered XR displays such as live entertainment and collabo-
rative work. In live entertainment, for instance, a server shares
the same 3D point cloud to multiple XR users through wireless
channels, allowing each XR user to observe the received point
cloud from their preferred perspective. In this case, the key
challenge is to send such numerous 3D points via band-
limited and unreliable wireless channels while keeping the
high 3D reconstruction quality on displays, as shown in Fig. 1.
In general, the 3D points will be non-uniformly distributed
in 3D space to reproduce various real-world settings. Such
irregular structure of the signals causes a low efficiency
in the compression because the conventional compression
schemes for the conventional 2D images and videos assume
uniformly sampled pixels. Some compression methods have
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Fig. 1. Exemplification of end-to-end architecture in wireless point cloud
delivery.

recently been proposed for point clouds; e.g., point cloud
library (PCL) [2], [3], Draco [4], and point cloud compres-
sion (PCC) [5], [6] to efficiently compress the non-uniformly
sampled signals. PCL uses octree-based coding and scalar
quantization for the 3D coordinates and color components.
Draco uses Kd-tree data structure and quantization for the
compression of each attribute. However, such solutions have
limited efficiency, especially in color components, because the
conventional solutions do not fully exploit the correlations
between the 3D points. Despite the fact that conventional
transform techniques, such as the discrete cosine transform
(DCT), can still be used for the 3D point cloud, they do not
fully exploit the underlying irregular and non-ordered structure
of the 3D points.

More recently, graph signal processing (GSP) [7] was intro-
duced to exploit the correlations for 3D point cloud compres-
sion. GSP employing the graph Fourier transform (GFT), for
example, was used for the color components in [8] and 3D co-
ordinates in [9] of the graph signals. The GFT-based schemes
obtain a unitary basis matrix from the 3D coordinates and
color components for graph-signal decorrelation. The digital-
based source coding, i.e., quantization and entropy coding, is
then carried out for the GFT coefficients to remove the spatial
redundancy. Another study in [10] designed the graph-domain
prediction before decorrelation for further energy compaction.

Nevertheless, the existing studies on digital-based source
coding resulted in low reconstruction quality, especially in
multi-user environments; it is because the wireless channel
quality at the end of each XR user may unpredictably change
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over time owing to mobility, fading, and interference. Fur-
thermore, the available bandwidth may vary depending on the
user’s device and connected wireless resource. There are three
major issues in multicasting the 3D point cloud with GFT to
multiple XR users via diverse wireless channels.

The first issue is the cliff effect [11]: significant quality
degradation owing to wireless channel fading. Specifically,
several bit errors will occur in the transmitted bits when the
experienced channel quality, i.e., signal-to-noise ratio (SNR),
drops below a certain threshold. The bit errors cause a catas-
trophic impact on the signal restoration; thus, some XR users
having faded channel quality may be unable to reconstruct the
3D point clouds because the entropy decoding in the point
cloud compression has an all-or-nothing feature.

The second issue is the leveling-off effect: the reconstruction
quality will saturate even when the channel quality improves
considerably. This is attributed to the fact that the XR user
cannot restore the quantization errors at the sender’s end.
The quantization level is generally determined based on the
user with the lowest channel quality, i.e., lowest available
data rate, across multiple users. Therefore, other XR users
will experience lower-quality 3D point clouds even when the
wireless channel quality is considerably high.

The third issue is high communication overhead owing
to the GFT basis matrix. The GFT-based solutions need to
send the corresponding basis matrix for the GFT operation
as metadata despite realizing better energy compaction. Some
studies utilized Givens rotation [12], [13], which represents
any basis matrices with fewer angle parameters. However, all
the XR users require an identical bandwidth because all the
angle parameters are required to be transmitted to each XR
user for the basis matrix reconstruction. The quality of the
3D reconstruction would significantly degrade if some XR
users failed to receive a fraction of angle parameters owing
to bandwidth limitations.

Compressing and multicasting the 3D point cloud while
considering the lowest channel quality and bandwidth across
the XR users is the typical solution for preventing a catas-
trophic impact on signal restoration. However, it limits 3D
reconstruction quality for XR users with better channel quality
and sufficient bandwidth. This paper proposes a soft multicast
scheme motivated by soft delivery, namely, HoloCast [14],
to solve the above-mentioned issues of wireless point cloud
delivery for multiple users. For this purpose, the proposed
scheme utilizes GSP for energy compaction, unequal power
allocation across GFT coefficients, near-analog modulation
for the diversity of the channel quality, Givens rotation with
adaptive and non-uniform quantization for the compression
of the GFT basis matrix, and stacked transmission for the
diversity of the bandwidth.

Based on the evaluation results, the proposed scheme grad-
ually improves 3D reconstruction quality against the wire-
less channel quality improvement. The proposed non-uniform
quantization achieves up to a 40% reduction in communica-
tion overhead of the GFT basis matrix compared with the
conventional uniform quantization. Additionally, the proposed
stacked transmission yields adaptive 3D reconstruction quality
according to the available bandwidth for the overhead.

The proposed scheme is an extension of our previous
studies [14]–[16]. Specifically, HoloCast in [14] integrated the
energy compaction using GFT, unequal power allocation, and
near-analog modulation to deliver the point cloud for multiple
users. However, the integration needs a large metadata over-
head for the GFT. Givens rotation and uniform quantization
were adopted in [15] and uniform quantization was extended
to non-uniform quantization [16] for overhead reduction. This
paper proposes stacked transmission of the angle parameters
to yield adaptive 3D reconstruction quality according to the
bandwidth available for each XR user. Furthermore, the pro-
posed scheme realizes adaptive quantization across the angle
parameters to reconstruct high-quality 3D point cloud under
the same amount of overhead.

The major contributions of this study are as follows:
• To the best of our knowledge, this is the first study to con-

sider channel quality and bandwidth heterogeneity across
multiple XR users for wireless point cloud delivery.

• The authors investigate the distribution of the angle
parameters and conclude that the angle parameters follow
the two-phase hyper-exponential distribution.

• Non-uniform quantization based on the two-phase hyper-
exponential distribution with three parameters is adopted
for the efficient compression of the angle parameters.

• The authors discuss the column order of the GFT basis
matrix to deal with the bandwidth diversity across mul-
tiple XR users.

• Adaptive quantization is designed to discuss the effect of
unequal bit allocation across the angle parameters.

II. RELATED WORK

A. GSP-Based Point Cloud Delivery

Many 3D points are non-uniformly sampled in the 3D
space to represent 3D scenes and objects in the point cloud.
One of the key issues in the point cloud delivery is to find
methods to compact the energy of each 3D point signal. Some
studies have proposed GSP-based solutions for this purpose.
For example, GFT is utilized for the energy compaction of 3D
coordinates [9], color components [8], or both [14], [17]. In
these studies, the decorrelated components are compressed and
delivered in digital [8], [9], analog [14], and digital–analog
hybrid [17] manners. In [18], region adaptive GFT (RA-
GFT) has been proposed for a similar purpose on the point
cloud delivery using multiresolution decorrelation based on the
region of interest (ROI). A graph neural network (GNN) [19]
architecture has been designed for point cloud delivery in
recent years. Specifically, the GNNCast in [20] was designed
using an auto-encoder architecture based on the graph convo-
lutional neural network (GCNN) for energy compaction and
then the latent variables were mapped into the transmission
symbols in an analog manner.

B. Soft Delivery

Soft delivery schemes [11], [21]–[23] have been proposed
to solve the cliff and leveling-off effects across wireless and
mobile receivers. Several studies on energy compaction [24],
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Fig. 2. Overview of the proposed end-to-end point cloud delivery scheme.

Fig. 3. Overview of GFT basis matrix transmission.

[25] and power allocation [26]–[30] have been conducted to
enhance the 2D image and video reconstruction quality. For
example, DCast in [25] employed coset coding to remove
inter-frame redundancy, and the proposed scheme in [24]
adopted motion-compensated temporal filtering (MCTF) in
addition to 2D-DCT for energy compaction. Other studies in
[29], [30] designed unequal transmission power assignment
for each analog-modulated symbol to maximize the human-
perceptual quality considering human vision systems [29] and
the ROI and non-ROI parts in each image [30]. Furthermore,
power allocation problems were studied in modern wireless
systems, including multiple-input and multiple-output orthogo-
nal frequency-division multiplexing (MIMO-OFDM) [26], un-
manned aerial vehicle (UAV)-enabled [28], and mmWave lens
MIMO channels [27]. Some soft-delivery studies proposed
energy compaction methods for immersive image and video
signals, such as, free-viewpoint video [31], [32], 360-degree
video [33]–[35], and point cloud [14].

The authors previously proposed HoloCast [14] to solve
the cliff and leveling-off effects for the point cloud deliv-
ery by integrating unequal power allocation and near-analog
modulation with GFT to deal with the irregular structure of
the 3D points. The GFT-based operation can realize better
energy compaction; however, HoloCast will cause a large
communication overhead to exchange the GFT basis matrix.
Overhead reduction methods [15], [16] have been proposed as
a preliminary step to decrease the communication overhead.

C. Contributions over Existing Studies

This study proposes a novel soft multicast scheme for
point cloud delivery by extending our preliminary investiga-
tions [15], [16]. The proposed scheme adopts GFT, unequal
power allocation, and near-analog modulation, motivated by

HoloCast. In contrast to the HoloCast, the proposed scheme
reduces communication overhead and deals with bandwidth
heterogeneity across multiple XR users. Specifically, a signif-
icant overhead reduction can be achieved using the Givens
rotation and non-uniform quantization. Furthermore, the pro-
posed scheme introduces a new rate-adaptive scheme with a
prioritized transmission of angle parameters in Givens rotation
to reconstruct higher-quality point clouds according to the
available bandwidth.

III. OVERVIEW OF PROPOSED SOFT MULTICAST SCHEME

The objectives of the proposed scheme are: 1) to compact
the energy of irregular and non-ordered 3D points, 2) to
prevent cliff and leveling-off effects owing to wireless channel
quality fluctuation in each XR user, 3) to reduce a commu-
nication overhead owing to the GFT basis matrix, and 4) to
prevent quality degradation because of bandwidth differences
between the XR users.

Fig. 2 exhibits the overview of the proposed scheme. The
proposed scheme mainly consists of the GFT coefficient
and basis matrix delivery parts. First, the proposed scheme
takes octree decomposition to decompose the 3D points into
multiple octree blocks as necessary. The proposed scheme
constructs an undirected and weighted graph for each octree
block and obtains the GFT basis matrix from the graph
Laplacian matrix. The proposed scheme takes GFT across the
attributes of the 3D points based on the GFT basis matrix
for decorrelation. The GFT coefficients are then modulated to
a dense constellation—near-analog modulation—for transmis-
sion; this is followed by the unequal power allocation across
the GFT coefficients to protect unequal signals against channel
noises for maximizing the reconstruction quality. The analog-
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modulated GFT coefficients are then transmitted to each XR
user via wireless channels.

Fig. 3 shows an overview of a part of the GFT basis matrix
delivery. The proposed scheme sorts the columns of the GFT
basis matrix in the ascending order of the corresponding graph
frequency. The sorted basis matrix is transformed into the
angle parameters using Givens rotation. Further, based on
the XR user with the highest available bandwidth, the angle
parameters are non-uniformly quantized into adequate bit
depth, and the quantization intervals follow a two-phase hyper-
exponential distribution. In this case, the proposed scheme
can set unequal quantization intervals to the angle parameters
to enhance the reconstruction quality. Specifically, more bits
should be allocated to the angle parameters contributing to the
low frequencies than those contributing to the high frequen-
cies. Further, the quantized angle parameters are progressively
broadcast to multiple XR users using the stacked transmission
technique. Each XR user receives the full or partial angle
parameters based on the available bandwidth.

Next, each XR user reconstructs the partial column vectors
corresponding to the low-frequency GFT coefficients based
on the received angle parameters. The column vectors are
then used to reconstruct the attributes of the 3D coordinates
and color components from the received analog-modulated
GFT coefficients by taking full or partial inverse GFT (IGFT).
Consequently, each XR user can play adequate quality of the
3D point cloud according to its wireless channel quality and
bandwidth.

IV. GFT COEFFICIENT DELIVERY

A. GFT-Based Energy Compaction

1) Graph Construction: The 3D point cloud comprises the
3D coordinates and color components. Both 3D coordinates
and color components can be regarded as a weighted and
undirected graph G = (V ,E,W ). Here, V is the vertex
set and E is the edge set. W is an adjacency matrix rep-
resenting the edge weights. Specifically, Wi,j represents the
edge weight between vertices i and j. The 3D coordinates
p = [x, y, z]T ∈ R3×N and the corresponding color compo-
nents c = [y,u, v]T ∈ R3×N can be regarded as graph signals
that reside on the vertices. Here, N is the number of vertices
in the octree block.

2) Graph Fourier Transform (GFT): Each edge weight
Wi,j of the graph signals can be obtained by Gaussian kernel
as follows:

Wi,j = exp

(
−∥pi − pj∥22

ϵp

)
, (1)

where ϵp is the sample variance of 3D coordinates. The
graph signals are then transformed into frequency-domain
coefficients using GFT. The GFT is defined through the graph
Laplacian operator L based on adjacency matrix W and
degree matrix D as follows: L = D − W , where D is the
diagonal degree matrix which is represented as:

D = diag(D1, . . . , DN ), Di =

N∑
n=1

Wi,n, (2)

In general, the graph Laplacian is a real symmetric ma-
trix with a complete set of orthonormal eigenvectors with
corresponding nonnegative eigenvalues. The eigenvectors and
eigenvalues of the graph Laplacian operator can be obtained
by the eigenvalue decomposition as L = ΦΛΦ−1. Here, Λ
is a diagonal matrix of the eigenvalues arranged in ascending
order and Φ ∈ RN×N is a unitary matrix that comprises the
eigenvectors, i.e., GFT basis matrix. The GFT coefficients of
each attribute f ∈ RN are obtained by multiplying the GFT
basis matrix by the attribute signals s ∈ RN as:

f = s Φ. (3)

Here, each attribute can be reconstructed from GFT coeffi-
cients using the GFT basis matrix as:

s = f Φ−1. (4)

B. Near-Analog Modulation and Demodulation

The proposed scheme performs GFT for the attributes of
each 3D point to obtain the corresponding GFT coefficients.
Unequal transmission power is assigned to each GFT coef-
ficient to minimize the mean-square error (MSE), and the
power-assigned GFT coefficients are then mapped, two by
two, to I (in-phase) and Q (quadrature-phase) components,
i.e., near-analog modulation, for the coefficient transmissions.

Let xi denote the ith transmission symbol, which is the ith
GFT coefficient fi of an attribute scaled by a factor of gi for
noise protection as xi = gi · fi. The optimal scale factor gi is
obtained by minimizing the MSE under the power constraint
with a total power budget of P . The near-optimal solution [21]
is expressed as:

gi = λ
−1/4
i

√
NP∑N
j

√
λj
, (5)

where λi is the power of the ith GFT coefficient.
The transmitted symbols are impaired via wireless links. Let

yi denote the ith received symbol and ni denote an effective
additive white Gaussian noise (AWGN) with a variance of σ2.
Here, the fading attenuation is also considered in the noise
variance. The received symbol yi over wireless links can be
modeled as follows:

yi = xi + ni. (6)

The GFT coefficients are then extracted from the I and Q
components through a minimum MSE (MMSE) filter [21]:

f̂i =
giλi

g2i λi + σ2
· yi. (7)

The decoder finally reconstructs the corresponding graph sig-
nals ŝ by taking IGFT for the filtered GFT coefficients in each
attribute f̂ as: ŝ = f̂ Φ−1.

V. GFT BASIS MATRIX DELIVERY

A. Givens Rotation

The sender needs to send the GFT basis matrix to the
receiver for signal reconstruction in the GSP-based point cloud
delivery schemes. The overhead for this metadata transmission
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Fig. 4. CDF of the angle parameters in GFT basis matrix Φ for the 3D point
cloud of pencil 10 0, whose number of points is N = 2,731.

is generally non-negligible. Specifically, the sender transmits
N2 real elements to the receiver for N points. The proposed
scheme employs the Givens rotation for the GFT basis matrix
to reduce the amount of metadata. The GFT basis matrix is
orthonormal; therefore, it can be decomposed into a product
of N(N −1)/2 Givens rotations, represented by N(N −1)/2
angle parameters, and N(N + 1)/2 binary values in total.
Givens rotation for the sorted GFT basis matrix can be derived
as follows:

Φ =

N∏
i=1

[
Di(ϕi,i, . . . , ϕi,N )

N∏
j=i+1

Gi,j(ψi,j)
]
IN , (8)

Di(ϕi,i, . . . , ϕi,N ) = diag(1i−1, e
ȷϕi,i , . . . , eȷϕi,N ), (9)

where 1i−1 is an all-ones vector of size i− 1, and Gi,j(ψ) is
the Givens rotation matrix for rotating ith and jth components
as follows:

Gi,j(ψ) =


Ii−1

cψ −sψ
Ij−i−1

sψ cψ
IN−j

 , (10)

where Ik is k × k identity matrix, cψ = cos(ψ) and sψ =
sin(ψ). Hence, the GFT basis matrix can be represented with
angle variables of ϕi,j and ψi,j . Here, the angle parameters
ϕi,j are either 0 or π because the GFT basis matrix only
comprises the real elements, and thus 1 bit is enough to be
assigned for each ϕi,j . Thus, it can drastically reduce the
amount of metadata. For example, the 3×3 GFT basis matrix
Φ can be decomposed as follows:

Φ = D1(ϕ1,1, ϕ1,2, ϕ1,3)G1,2(ψ1,2)G1,3(ψ1,3)

D2(ϕ2,2, ϕ2,3)G2,3(ψ2,3)D3(ϕ3,3)I3. (11)

Here, there are 3 angle parameters and 6 binary parameters in
the Givens rotation decomposition, whereas the original GFT
matrix has 9 real values.

B. Non-Uniform Quantization

The angle parameters ψ in the Givens rotation decomposi-
tion are usually quantized uniformly over a range between 0
and π/2. However, such a uniform quantization is inefficient
because the probability distribution of ψ is typically not a
uniform distribution for most 3D point cloud data. Fig. 4
shows the empirical cumulative distribution function (CDF)
of the angle parameters ψ for a sample 3D point cloud data
with 2,731 number of points. In this case, most of the angle
parameters are close to zero. It encourages us to employ a
non-uniform quantization to minimize distortion at a limited
quantization level.

Here, uniform, exponential (one-phase hyper-exponential),
and the two-phase hyper-exponential CDFs are considered
to discuss on the CDFs that agree well with the empirical
CDF. The authors found that the two-phase hyper-exponential
CDF agrees well with the empirical CDF compared with
other CDFs. Specifically, the root mean square error (RMSE)
between the empirical CDF and the uniform, exponential, and
two-phase hyper-exponential CDFs are 0.53, 0.040, and 0.014,
respectively, using the best fitting parameters. The two-phase
hyper-exponential CDF is given as follows:

Fh.exp(ψ) = 1− β1e
−γ1ψ − β2e

−γ2ψ, (12)

where βl and γl are the fitting parameters. Here, the best fitting
parameters can be found with a least-squares method under the
condition of β1 + β2 = 1.

The quantization points ∆n are determined according to a
bit depth b for the quantization of ψ based on the fitted CDF
as follows:

∆n =
1

2
(xn−1 + xn), n = 1, . . . , 2b, (13)

xn =

{
F−1
h.exp

(
n
2b

)
, if n = 0, 1, . . . , 2b − 1,

π/2, if n = 2b,
(14)

where F−1
h.exp(·) is an inverse function of Fh.exp(ψ), which

returns the value between 0 and π/2 from the input value
between 0 and 1 based on the two-phase hyper-exponential
CDF. Given the quantization points ∆ = {∆1,∆2, . . . ,∆2b},
the proposed scheme selects the one in ∆ closest to the angle
parameter ψi,j as the quantized angle parameter:

ψ̂i,j = ∆n, if xn−1 < ψi,j ≤ xn, n = 1, . . . , 2b. (15)

C. Progressive Stacked Transmission

The quantized angle parameters are shared with all XR users
at an adequate bit depth to minimize distortion because of
quantization error. However, some users may not be able to
receive all the GFT coefficients and the angle parameters de-
pending on the available bandwidth of individual XR devices.

For such heterogenous multicasting scenarios, the authors
propose a stacked transmission technique to enable XR users
to progressively reconstruct partial GFT basis vectors corre-
sponding to low-frequency GFT coefficients within the indi-
vidual bandwidth.

Fig. 5 shows an overview of the proposed stacked transmis-
sion for multiple XR users. Let Tn be a set of angle parameters
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Fig. 5. Overview of stacked transmission. The sender progressively sends the
angle parameters corresponding to low-frequency GFT coefficients.

for the nth GFT basis vector, i.e., Tn = {ϕn,∗, ψn,∗}, where ∗
represents an arbitrary index. The proposed scheme progres-
sively broadcasts the angle parameters in priority order from
T1 to TN through wireless channels as the GFT basis vectors
are sorted in the ascending order of the graph frequency. One
of the XR users can reconstruct the first through nth column
vectors using Givens rotations upon receipt of the subsequent
set from T1 to Tn. The XR user then takes the partial IGFT
based on the received GFT coefficients as in Eq. (4). The
GFT coefficients corresponding to the unreconstructed column
vectors, i.e., high-frequency GFT coefficients, are regarded as
0 in the partial IGFT.

For an example of 3 × 3 GFT basis matrix Φ in (11), the
angle parameters can be divided to three sets as follows:

T1 = {ϕ1,1, ϕ1,2, ϕ1,3, ψ1,2, ψ1,3},
T2 = {ϕ2,2, ϕ2,3, ψ2,3},
T3 = {ϕ3,3}.

Consider the case when there are three types of XR devices:
1) low-end XR devices can receive only T1; 2) mid-end XR
devices receive T1 and T2; 3) high-end XR devices can obtain
all the sets. Each type of the XR user can reconstruct its own
GFT basis matrix Φ1 through Φ3 using the received angle
parameters, respectively, as follows:

Φ1 = D1(ϕ1,1, ϕ1,2, ϕ1,3)G1,2(ψ1,2)G1,3(ψ1,3),

Φ2 = Φ1D2(ϕ2,2, ϕ2,3)G2,3(ψ2,3),

Φ3 = Φ2D3(ϕ3,3) = Φ.

The lower-end XR devices reconstruct 3D points using the
partial IGFT, while the highest-end XR users may enjoy the
highest quality of 3D point reconstruction with the full IGFT.

D. Adaptive Bit Allocation

The proposed non-uniform quantization can improve the
reconstruction quality of the 3D points by utilizing the distri-
bution of the angle parameters. The efficiency can be further
improved using unequal bit allocation across angle parameters.
Specifically, higher bit depths are assigned to the angle pa-
rameters corresponding to lower-frequency GFT coefficients;

in general, this will impact the reconstruction quality more
significantly.

To simplify, all the angle parameters ψ are divided into
two sets for bit allocation: 1) higher-priority angle parame-
ters corresponding to lower-frequency GFT coefficients and
2) lower-priority angle parameters corresponding to higher-
frequency GFT coefficients. Here, bit depths of blow and bhigh
are used for high-priority and low-priority angle parameters,
respectively (blow ≥ bhigh).

VI. PERFORMANCE EVALUATION

A. Simulation Settings

1) Performance Metric: This section evaluates the 3D
reconstruction quality for point cloud delivery in terms of the
symmetric MSE based on [36] in the attributes of 3D coor-
dinates p = [x, y, z]T and color components c = [y,u, v]T.
The symmetric MSE of the 3D coordinates, sMSExyz, can be
obtained as follows:

sMSExyz =
1

2

(
d(porg → pdec) + d(pdec → porg)

)
, (16)

where porg is the original 3D coordinates and pdec is the
decoded 3D coordinates. Here, the asymmetric MSE metrics
in the 3D coordinates are defined as follows:

d(porg → pdec) =
1

N

∑
p∈porg

(
min

p′∈pdec

∥∥p− p′∥∥2
2

)
, (17)

d(pdec → porg) =
1

N

∑
p∈pdec

(
min

p′∈porg

∥∥p− p′∥∥2
2

)
. (18)

The symmetric MSE of the color components, sMSEyuv, is
derived as follows:

sMSEyuv =
1

2

(
d(corg → cdec) + d(cdec → corg)

)
, (19)

where corg and cdec are the original and decoded color
components, respectively. Here, the asymmetric MSE metrics
of the color component are defined as follows:

d(corg → cdec) =
1

N

∑
c∈corg

∥∥c− cdec(p
′
dec)

∥∥2
2
,

p′
dec = arg min

p′∈pdec

∥∥porg − p′∥∥2
2
, (20)

d(cdec → corg) =
1

N

∑
c∈cdec

∥∥c− corg(p
′
org)

∥∥2
2
,

p′
org = arg min

p′∈porg

∥∥pdec − p′∥∥2
2
, (21)

where cdec/org(p) represents the color components of the
corresponding 3D coordinate p.

2) Point Cloud Dataset: The following benchmark point
clouds are used in evaluations: pencil 10 0 with 2,731
points and milk color with 13,704 points. The point cloud
of pencil 10 0 is used to clarify the baseline performance.
The point cloud of milk color is used for the discussion on the
visual quality. Octree decomposition is used to decompose the
3D points into multiple octree blocks in this case. Here, the
maximum number of 3D points in each block is set to 5,000.
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Fig. 6. Symmetric MSE of 3D coordinate attributes as a function of wireless
channel SNRs.
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Fig. 7. Symmetric MSE of color attributes as a function of wireless channel
SNRs.

3) Hyper-exponential Fitting: We set the fitting parameters
of pencil 10 0 in (12) to γ1 = 83.62, γ2 = 7.31, β1 = 0.62.

B. Digital vs. Proposed Scheme

This section discusses the baseline quality of the pro-
posed scheme. We consider the baseline digital-based solu-
tions based on PCL 1.12.0 [2] and Draco 1.4.3 [4], and
the proposed scheme, for performance comparison. Each
point cloud is firstly compressed into the bitstream us-
ing the digital encoder of PCL and Draco in the digital-
based solutions. The bitstream is then channel-coded and
modulated for transmissions. A default profile of PCL,
LOW RES OFFLINE COMPRESSION WITH COLOR, is
used for the compression. In Draco, the bit depth for the
3D coordinates is set to 7 bits, and other parameters are set
to default values. The compressed bitstream is then channel
coded by a 1/2-rate convolutional code with a constraint length

6 7 8 9 10 11 12 13 14
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Fig. 8. Symmetric MSE of 3D coordinates as a function of bit depths at the
wireless channel SNR of 20 dB.

of 10 and digitally modulated by Quadrature Phase-Shift Key-
ing (QPSK) and 16-Quadrature Amplitude Modulation (QAM)
formats, respectively.

The proposed scheme directly maps the GFT coefficients
onto the transmission symbols using the near-analog modula-
tion. The proposed scheme takes non-uniform quantization for
angle parameters ψ with the bit depth of 8 bits in terms of the
overhead reduction. We closely fit the number of transmission
symbols for a fair comparison across the digital-based and
proposed schemes. Here, the metadata transmissions of angle
parameters are considered error-free.

Figs. 6 and 7 show the symmetric MSE performance of
3D coordinate and color attributes, respectively, as a function
of wireless channel SNRs. The evaluation results show the
following observations in common with the 3D coordinate and
color attributes.

• The proposed scheme achieves the best 3D reconstruction
quality under the same available bandwidth in low and
high wireless SNR regimes.

• The digital-based schemes using PCL and Draco suffer
from the cliff effect at low channel SNR regimes and the
leveling-off effect at high channel SNR regimes.

• The proposed schemes gradually improve the 3D re-
construction quality with the improvement of wireless
channel quality.

C. Overhead Reduction

This section evaluates the communication overhead asso-
ciated with the GFT basis matrix in the conventional Holo-
Cast [14] and three soft multicast schemes with different
quantization methods. HoloCast adopts the different levels of
N = 1501, 1000, 500 in the octree decomposition to obtain
the overhead and corresponding reconstruction quality. Here,
three schemes are considered to discuss the effects of the
sorting of GFT basis matrix and quantization methods. The
first scheme sorts the GFT basis matrix in descending order
of the graph frequency and takes uniform quantization for
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Fig. 9. Effect of the order of GFT basis matrix on the uniform and non-
uniform quantization at wireless channel SNR of 20 dB.

overhead reduction [15]. The second and third schemes sort the
GFT basis matrix in ascending order of the graph frequency
and take non-uniform quantization based on the exponential
and two-phase hyper-exponential CDFs, respectively. Here, the
third scheme is the proposed scheme.

Fig. 8 shows the reconstruction quality of the 3D coordi-
nates as a function of bit depths for each angle parameter
at a wireless channel SNR of 20 dB. It is observed that the
proposed scheme achieves the best 3D reconstruction quality
under the same communication overhead. In other words, the
proposed scheme achieves the same 3D reconstruction quality
as other methods with a lower bit depth. For example, the pro-
posed scheme with the bit depth of 6 bits reconstructs the point
cloud with the same quality as the scheme with descending
order of the GFT basis matrix and uniform quantization with
the bit depth of 10 bits. Additionally, it is discovered that,
regardless of bit depths, two-phase hyper-exponential CDF-
based quantization realizes lower communication overhead
than exponential CDF-based quantization.

D. Effect of Column Order of GFT Basis Matrix

This section further discusses the effect of the column
order of the GFT basis matrix on the 3D reconstruction
quality and communication overhead. For the comparison, the
proposed scheme adopts the different quantization methods
and column orders: uniform CDF-based [15], exponential
CDF-based, power CDF-based [16], and two-phase hyper-
exponential CDF-based quantization after the GFT basis vec-
tors are sorted in the ascending/descending order of the graph
frequency.

Fig. 9 shows the symmetric MSE performance of the 3D
coordinates for each method at a wireless channel SNR of
20 dB under a bit depth of 6, 8, 10, and 12 bits, respectively.
Here, the parameter of the power CDF is set to 0.50. The
ascending order of the GFT basis vectors performs well, irre-
spective of the bit depths and quantization methods. Especially,
the two-phase hyper-exponential CDF-based quantization for

Frequency Index
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e
 
E
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o
r

Descending

Ascending (=Proposed)

Fig. 10. Quantization error of the proposed scheme in each frequency index
under the different orders of the GFT basis matrix. Here, the bit depth is set
to 8 bits.
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Fig. 11. Symmetric MSE of the 3D coordinates as a function of the rate of
the received angle parameters to all the angle parameters. Here, the bit depth
is 8 bits, and wireless channel SNR is 20 dB.

the ascending order of the GFT basis vectors outperforms our
preliminary method [16].

Fig. 10 shows the quantization error under the ascending and
descending orders of the GFT basis vectors in each frequency
index to discuss the effect of the column order of the GFT
basis matrix in detail. Here, bit depth is 8 bits. The descending
order causes a significant quantization error on column vectors
corresponding to low-frequency GFT coefficients, resulting in
a significant distortion in the reconstructed point cloud.

E. Effect of Bandwidth Heterogeneity

The aforementioned evaluations demonstrate that the pro-
posed scheme performs well when each XR user experiences
diverse channel quality under an identical bandwidth. This
section evaluates the effect of bandwidth heterogeneity across
the XR users on the wireless point cloud delivery performance.
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Fig. 13. Symmetric MSE of the 3D coordinates as a function of the average
bit depth over the entire angle parameters. The bit depth for lower-frequency
blow is 11 bits whereas the bit depth for higher-frequency bhigh is 1 bit.

Fig. 11 shows the 3D reconstruction quality as a function of the
rate of the received angle parameters to all the angle param-
eters. Here, a bit depth is 8 bits, and a wireless channel SNR
is 20 dB. The results show the following key observations:

• The proposed scheme can keep the best 3D reconstruction
quality even though an XR user only receives 19% of the
angle parameters.

• In our preliminary schemes [15], [16], the 3D reconstruc-
tion quality of an XR user is significantly low even when
the XR user receives 99% of the angle parameters due to
the loss of the low-frequency information.

• The uniform quantization can provide an adaptive 3D re-
construction quality according to the available bandwidth
of the XR user. However, the reconstruction quality is
lower than the proposed scheme.

F. Discussion on Bit Adaptation

This section discusses the effect of adaptive bit assignment
for the angle parameters to further improve the 3D recon-
struction quality without sacrificing an extra communication
overhead. Fig. 12 shows the 3D reconstruction quality under
the different bit depths for the angle parameters corresponding
to the lower-frequency GFT coefficients and wireless channel
SNRs. Here, half of the angle parameters correspond to the
lower-frequency GFT coefficients, and an average bit depth is
6 bits over the entire angle parameters. In other words, the
results of 6 represent uniform bit allocation for all the angle
parameters.

The best 3D reconstruction quality is when 11 bits and
1 bit are assigned to the angle parameters corresponding to
low-frequency and high-frequency GFT coefficient for each
wireless SNR of 0 dB, 10 dB, and 20 dB, respectively. For
example, the adaptive bit allocation achieves quality improve-
ment by up to 3.9 dB compared with the uniform bit allocation
at wireless SNR of 0 dB.

Fig. 13 shows the 3D reconstruction quality as a function
of the average bit depths over the entire angle parameters.
Here, 10 % through 100 % of angle parameters are considered
the higher-priority angle parameters to adjust the average bit
depth. The bit depths for higher-priority angle parameters blow
and lower-priority angle parameters bhigh are set to 11 bits and
1 bit, respectively. The quality degradation against the uniform
11-bit allocation across all the angle parameters is only 0.5 dB
irrespective of wireless SNRs, even though the average bit
depth is 2 bits. In this case, the adaptive bit assignment
achieves up to 81.8 % overhead reduction compared with the
uniform bit allocation.

G. Visual Quality

Finally, this section discusses the visual quality of the
proposed scheme to clarify further the effect of the non-
uniform quantization and stacked transmission on the re-
constructed 3D point clouds. We adopt 2D projected point
cloud quality [17] to discuss the visual quality in detail.
Specifically, we project original and decoded 3D point clouds
on the 2D view plane from particular angles and then measure
the performance of peak signal noise-to-ratio (PSNR) and
structural similarity (SSIM) by using the original and decoded
2D images. The 2D projected metrics may be more relevant
to discuss the perceptual distortion for practical holographic
display systems compared with 3D symmetric MSE. PSNR is
defined as follows:

PSNR = 10 log10
(2L − 1)2

ϵMSE
, (22)

where L is the number of bits used to encode pixel luminance
(typically eight bits), and εMSE is the MSE between all pixels
of the decoded and the original 2D images. SSIM can predict
the perceived quality of the original and decoded point cloud
images. Larger values of SSIM close to 1 indicate higher
perceptual similarity between original and decoded images.

Figs. 14 (a)-(e) present the visual quality at a wireless
channel SNR of 25 dB with a different number of received
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Fig. 14. Snapshots at wireless channel SNR of 25 dB under the received ratio for the angle parameters when allocating angle parameter ψ to 8 bits.

angle parameters. Furthermore, Figs. 14 (b) and (c) show the
average PSNR and SSIM performance across the different
2D projected angles. The original and decoded point clouds
are projected onto a 2D plane at different angles horizontally
rotated by 5-degree steps. Our preliminary scheme [15] and the
proposed scheme are used for comparison. Both schemes use
a bit depth b of 8 bits. It is observed that the proposed scheme
may achieve better perceptual quality compared with the
preliminary scheme, irrespective of the 2D projected angles.
In particular, the proposed scheme can keep the structure of
the point clouds when the low-end XR users receive a limited
number of angle parameters, whereas the preliminary scheme
fails to reconstruct the shape.

VII. CONCLUSION

This paper proposed a novel delivery scheme for untethered
XR users to maintain better 3D reconstruction quality. The
proposed scheme integrates GFT with analog modulation to
deal with channel quality diversity. The integration ensures that
the reconstruction quality of the 3D points is monotonically
increased according to the quality of the wireless channel. The
proposed scheme designs the prioritized transmissions of the
quantized angle parameters obtained via Givens rotation and
non-uniform and adaptive quantization to deal with bandwidth
diversity. It yields better quality than existing digital-based and
graph-based schemes, even when the channel quality fluctuates
for each XR user. Furthermore, it achieved a significant
reduction of communication overhead of up to 40% compared
with the existing graph-based scheme.

There are several future directions in our study. The first
direction is the extension for the point cloud video. The inter-
frame redundancy between the point cloud video frames [37]
may cause rate and power losses in wireless point cloud
delivery. Typical solutions are predictive coding in the graph-
domain [37]–[39] and adaptive graph signal processing [40]

to remove the inter-frame redundancy in the graph-domain
signals. The extension of the proposed scheme considering
inter-frame redundancy reduction is left as future work.

The second direction is to realize prioritized operations
based on the perspective of XR users to further enhance the
visual quality. XR users may observe the point cloud from
a certain perspective [41] in point cloud playback. We will
extend the power allocation considering the user’s perspective
to enhance the visual quality as a future work as the unequal
power allocation in the proposed scheme minimized the MSE
between the original and reconstructed point clouds.
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[8] C. Zhang, D. Florêncio, and C. Loop, “Point cloud attribute compression
with graph transform,” in 2014 IEEE International Conference on Image
Processing (ICIP), 2014, pp. 2066–2070.

[9] P. de Oliveira Rente, C. Brites, J. Ascenso, and F. Pereira, “Graph-
based static 3D point clouds geometry coding,” IEEE Transactions on
Multimedia, vol. 21, no. 2, pp. 284–299, 2019.

[10] S. Gu, J. Hou, H. Zeng, and H. Yuan, “3D point cloud attribute
compression via graph prediction,” IEEE Signal Processing Letters,
vol. 27, pp. 176–180, 2020.

[11] T. Fujihashi, T. Koike-Akino, T. Watanabe, and P. V. Orlik, “High-
quality soft video delivery with GMRF-based overhead reduction,” IEEE
Transactions on Multimedia, vol. 20, no. 2, pp. 473–483, Feb. 2018.

[12] M. A. Sadrabadi, A. Khandani, and F. Lahouti, “Channel feedback
quantization for high data rate MIMO systems,” IEEE Transactions on
Wireless Communications, vol. 5, no. 12, pp. 3335–3338, 2006.

[13] J. C. Roh and B. D. Rao, “Efficient feedback methods for MIMO
channels based on parameterization,” IEEE Transactions on Wireless
Communications, vol. 6, no. 1, pp. 282–292, 2007.

[14] T. Fujihashi, T. Koike-Akino, T. Watanabe, and P. Orlik, “HoloCast:
Graph signal processing for graceful point cloud delivery,” in IEEE
International Conference on Communications, 2019, pp. 1–7.

[15] ——, “Overhead reduction in graph-based point cloud delivery,” in IEEE
International Conference on Communications, 2020, pp. 1–7.

[16] S. Ueno, T. Fujihashi, T. Koike-Akino, and T. Watanabe, “Overhead
reduction for graph-based point cloud delivery using non-uniform quan-
tization,” in IEEE International Conference on Consumer Electronics,
2022, pp. 1–6.

[17] T. Fujihashi, T. Koike-Akino, T. Watanabe, and P. V. Orlik, “HoloCast+:
hybrid digital-analog transmission for graceful point cloud delivery with
graph fourier transform,” IEEE Transactions on Multimedia, vol. PP,
no. 99, pp. 1–13, 2021.

[18] E. Pavez, B. Girault, A. Ortega, and P. A. Chou, “Region adaptive graph
Fourier transform for 3D point clouds,” 2020. [Online]. Available:
https://github.com/STAC-USC/RA-GFT.

[19] C. T. Duong, T. D. Hoang, H. H. Dang, Q. V. H. Nguyen, and K. Aberer,
“On node features for graph neural networks,” arXiv e-prints, pp. 1–6,
Nov. 2019.

[20] T. Fujihashi, T. K. Akino, S. Chen, and T. Watanabe, “Wireless 3D point
cloud delivery using deep graph neural networks,” in IEEE International
Conference on Communications, 2021, pp. 1–6.

[21] S. Jakubczak and D. Katabi, “A cross-layer design for scalable mobile
video,” in ACM Annual International Conference on Mobile Computing
and Networking, Las Vegas, NV, sep 2011, pp. 289–300.

[22] J. Wu, J. Wu, H. Cui, C. Luo, X. Sun, and F. Wu, “DAC-Mobi:
Data-assisted communications of mobile images with cloud computing
support,” IEEE Transactions on Multimedia, vol. 18, no. 5, pp. 893–904,
2016.

[23] T. Fujihashi, T. Koike-Akino, and T. Watanabe, “Soft delivery: Survey on
a new paradigm for wireless and mobile multimedia streaming,” arXiv
preprint arXiv:2111.08189, 2021.

[24] H. Cui, R. Xiong, C. Luo, Z. Song, and F. Wu, “Denoising and resource
allocation in uncoded video transmission,” IEEE Journal on Selected
Topics in Signal Processing, vol. 9, no. 1, pp. 102–112, 2015.

[25] X. Fan, F. Wu, D. Zhao, and O. C. Au, “Distributed wireless visual
communication with power distortion optimization,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 23, no. 6, pp. 1040–
1053, 2013.

[26] X. L. Liu, W. Hu, C. Luo, Q. Pu, F. Wu, and Y. Zhang, “ParCast+:
Parallel video unicast in MIMO-OFDM WLANs,” IEEE Transactions
on Multimedia, vol. 16, no. 7, pp. 2038–2051, 2014.

[27] Y. Gui, L. Hancheng, F. Wu, and C. W. Chen, “LensCast: Robust
wireless video transmission over mmWave MIMO with lens antenna
array,” IEEE Transactions on Multimedia, vol. PP, no. 99, pp. 1–16,
2020.

[28] X.-w. Tang, X.-l. Huang, and F. Hu, “QoE-driven UAV-enabled pseudo-
analog wireless video broadcast: A joint optimization of power and
trajectory,” IEEE Transactions on Multimedia, vol. 23, pp. 2398–2412,
2021.

[29] J. Shen, L. Yu, L. Li, and H. Li, “Foveation-based wireless soft image
delivery,” IEEE Transactions on Multimedia, vol. 20, no. 10, pp. 2788–
2800, 2018.

[30] X.-W. Tang, X.-L. Huang, F. Hu, and Q. Shi, “Human-perception-
oriented pseudo analog video transmissions with deep learning,” IEEE
Transactions on Vehicular Technology, pp. 1–14, may 2020.

[31] T. Fujihashi, T. Koike-Akino, T. Watanabe, and P. V. Orlik, “FreeCast:
Graceful free-viewpoint video delivery,” IEEE Transactions on Multi-
media, vol. PP, no. 99, pp. 1–11, 2019.

[32] L. Luo, T. Yang, C. Zhu, Z. Jin, and S. Tang, “Joint texture/depth power
allocation for 3-D video SoftCast,” IEEE Transactions on Multimedia,
vol. 21, no. 12, pp. 2973–2984, dec 2019.

[33] T. Fujihashi, M. Kobavashi, K. Endo, S. Saruwatari, S. Kobayashi, and
T. Watanabe, “Graceful quality improvement in wireless 360-degree
video delivery,” in IEEE Global Communications Conference, 2018, pp.
1–7.

[34] J. Zhao, R. Xiong, and J. Xu, “OmniCast: Wireless pseudo-analog
transmission for omnidirectional video,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 58–70, mar
2019.

[35] Y. Lu, T. Fujihashi, S. Saruwatari, and T. Watanabe, “360Cast:
Foveation-based wireless soft delivery for 360-degree video,” in IEEE
International Conference on Communications, jun 2020, pp. 1–6.

[36] P. A. Chou, E. Pavez, R. L. de Queiroz, and A. Ortega, “Dynamic
polygon clouds: Representation and compression for VR/AR,” Microsoft
Research Technical Report, Tech. Rep., 2017.

[37] A. L. Souto and R. L. de Queiroz, “On predictive RAHT for dynamic
point cloud coding,” in IEEE International Conference on Image Pro-
cessing (ICIP), 2020, pp. 2701–2705.

[38] Y. Xu, W. Hu, S. Wang, X. Zhang, S. Wang, S. Ma, Z. Guo, and W. Gao,
“Predictive generalized graph fourier transform for attribute compression
of dynamic point clouds,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 31, no. 5, pp. 1968–1982, 2021.

[39] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based compression
of dynamic 3D point cloud sequences,” IEEE Transactions on Image
Processing, vol. 25, no. 4, pp. 1765–1778, 2016.

[40] P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa, and G. Leus, “Adaptive
graph signal processing: Algorithms and optimal sampling strategies,”
IEEE Transactions on Signal Processing, vol. 66, no. 13, pp. 3584–3598,
2018.

[41] B. Han, Y. Liu, and F. Qian, “ViVo: visibility-aware mobile volumetric
video streaming,” in Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, 2020, pp. 1–13.

Soushi Ueno received his Bachelor of Engineering
from Osaka University in 2020 and M.S. degree
in information science and technology in 2022. He
joined Daikin Industries, Ltd., Japan. His research
interests include point cloud compression and deliv-
ery.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3218172

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL, VOL. X, NO. X, AUGUST 20XX 12

Takuya Fujihashi (M’16) received the B.E. degree
in 2012 and the M.S. degree in 2013 from Shizuoka
University, Japan. In 2016, he received Ph.D. degree
from the Graduate School of Information Science
and Technology, Osaka University, Japan. He was
an assistant professor at the Graduate School of
Science and Engineering, Ehime University between
Jan. 2017 and Mar. 2019. He is currently an assistant
professor at the Graduate School of Information
Science and Technology, Osaka University, Japan
since Apr. 2019. He was research fellow (PD) of

Japan Society for the Promotion of Science in 2016. From 2014 to 2016, he
was research fellow (DC1) of Japan Society for the Promotion of Science.
From 2014 to 2015, he was an intern at Mitsubishi Electric Research
Labs. (MERL) working with the Electronics and Communications group.
He selected one of the Best Paper candidates in IEEE ICME (International
Conference on Multimedia and Expo) 2012. He received Young Professional
Award from IEEE Kansai Chapter in 2021. His research interests are in the
area of video compression and communications, with a focus on multi-view
video coding and streaming over high and low quality networks.

Toshiaki Koike-Akino (M’05–SM’11) received the B.S. degree in electrical
and electronics engineering, M.S. and Ph.D. degrees in communications and
computer engineering from Kyoto University, Kyoto, Japan, in 2002, 2003,
and 2005, respectively. During 2006–2010 he was a Postdoctoral Researcher
at Harvard University, and is currently a Distinguished Research Scientist at
Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA.
He received the YRP Encouragement Award 2005, the 21st TELECOM Sys-
tem Technology Award, the 2008 Ericsson Young Scientist Award, the IEEE
GLOBECOM’08 Best Paper Award in Wireless Communications Symposium,
the 24th TELECOM System Technology Encouragement Award, and the IEEE
GLOBECOM’09 Best Paper Award in Wireless Communications Symposium.
He is a Fellow of Optica.

Takashi Watanabe (S’83–M’87) is a Professor of
Graduate School of Information Science and Tech-
nology, Osaka University, Japan since 2013. He re-
ceived his B.E. M.E. and Ph.D. degrees from Osaka
University, Japan, in 1982, 1984 and 1987, respec-
tively. He joined Faculty of Engineering, Tokushima
University in 1987 and moved to Faculty of En-
gineering, Shizuoka University in 1990. He was a
visiting researcher at University of California, Irvine
from 1995 through 1996. He has served on many
program committees for networking conferences,

IEEE, ACM, IPSJ, IEICE. His research interests include mobile networking,
ad hoc sensor networks, IoT/M2M networks, intelligent transport systems,
specially MAC and routing. He is a member of IEEE, IPSJ and IEICE.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3218172

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


