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Subjective Functionality and Comfort Prediction for
Apartment Floor Plans and Its Application to

Intuitive Online Property Search
Taro Narahara, Member, IEEE, and Toshihiko Yamasaki, Member, IEEE,

Abstract—This paper presents a new user experience for
online apartment search using functionality and comfort as query
items. Specifically, it has three technical contributions. First, we
present a new dataset on the perceived functionality and comfort
scores of residential floor plans using nine question statements
about the level of comfort, openness, privacy, etc. Second, we
propose an algorithm to predict the scores from the floor plan
images. Lastly, we implement a new apartment search system and
conduct a large-scale usability study using crowdsourcing. The
experimental results show that our apartment search system can
provide a better user experience. To the best of our knowledge,
this is the first work to propose a highly accurate machine
learning model for predicting the subjective functionality and
comfort of apartments.

Index Terms—Real estate floor plans, crowdsourcing, graph
analysis, attractiveness prediction

I. INTRODUCTION

IN recent years, the real estate industry has been showing
increasing interest in applying machine learning-assisted

solutions such as price prediction [1]–[4] and apartment-
searching [5] tools. Some online platforms can help users
search for properties by specifying metadata, such as the type
of apartment and room size. However, many users inspect
floor plans based on more intuitive sensory impressions,
such as living comfort, openness, and privacy. This makes
it difficult to estimate the perceptive values of apartments
through any currently available retrieval system, as there are no
quantifiable data that represent such subjective characteristics
of apartments. Moreover, apartment properties listed with the
same size and type in their metadata (e.g., two-bedroom
apartments) could feature different room arrangements, which
will have a significant impact on their functionality and overall
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livability. Therefore, further understanding the relationships
between floor plan images and structured data, including the
connectivity of rooms and metadata, could improve the user
experience on real estate search platforms.

Information on floor plans has been widely adopted by users
to evaluate the values of properties over the years, as can be
seen in many real estate portal sites today. A floor plan image
of an apartment includes various room types, room sizes, and
connections and spatial layouts of the rooms. Following a
customer survey conducted in Japan1, a floor plan was found
to be among the top five priorities for customers during their
apartment search. Moreover, it was found that customers are
very reluctant to compromise on their preferred floor plans and
are often willing to invest more for their pursuits. Essential
elements that largely influence functional, environmental, and
some perceptive characteristics of apartments, such as loca-
tions of walls, columns, windows, and wet areas, are already
set in the floor plans, and cannot be changed no matter the
finish materials or furniture used. Although we can estimate
the subjective quality of apartments, such as living comfort,
simply by looking at the floor plan images, no related work
nor dataset has been reported for such a task.

In this study, therefore, we first constructed a new dataset
that contains 1, 000 floor plan images (hereafter, “dataset A”).
Each image has a subjective score from nine perspectives re-
lating to perceived quality and functionality of the apartments.
Examples of the generated dataset are shown in Fig. 1. Based
on this dataset, we developed a multimodal neural network-
based framework to predict subjective apartment scores via
their floor plan images, graph representations, and various
metadata. The experimental results showed that we can predict
the scores with a correlation coefficient of 0.701 on average.
This is relatively high, considering that they are all subjective
scores. Our study shows that the baseline model, which uses
features based on images alone, has a much lower average
correlation coefficient of 0.491, even using ResNet50, the
state-of-the-art network for image recognition tasks.

The contributions of this paper can be summarized as
follows.

• We created and analyzed a large-scale dataset of subjec-
tive evaluations of both perceived quality and functional-
ity of real estate floor plan images using crowdsourcing.

1https://suumo.jp/article/oyakudachi/oyaku/chintai/fr data/
hikkoshi-sumikae2017/, accessed 09/16/2020
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Total = 1.0  Total_Rank =  0
Impression = 1.0 2_LDK
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Fig. 1. Examples of our generated functionality evaluation dataset using real estate floor plan images. Each example shows a floor plan image, a bar graph
for nine evaluation measures, and a graph from left to right. (a) Highest scoring floor plan; (b) lowest scoring floor plan; (c) floor plan that scored high on
modernity; (d) floor plan that scored low on modernity.

(i.e., 3,128 participants rated 1,000 floor plans based on
nine subjective criteria.)

• Our proposed prediction model, which extracts features
from floor plan images and their graph structures, proved
to be effective and highly accurate with average correla-
tion coefficient of 0.701. We also developed a workflow to
extract semantically segmented floor plan images, graphs,
and graph-related features for our multimodal deep neural
network model.

• Upon using a new set of floor plan images (with pre-
dicted scores by our model as a dataset), our proposed
apartment search tool was found to provide a significantly
better user experience than the baseline tool without the
proposed feature.

This paper is organized as follows. In Section 2, we report
the results of our literature survey. Section 3 explains dataset
creation. Section 4 describes the methodology utilized in the
study. Section 5 explains the experiments and their results.
Section 6 describes the usability study of our proposed apart-
ment search tool. Section 7 discusses the limitations of our
approach, with concluding remarks included in Section 8.

II. RELATED WORKS

A. Real Estate Tasks using Property Images

Several researchers have worked on tasks related to real es-
tate using property images. In [2], the authors tried to improve
the accuracy of real estate price prediction by predicting the
luxury levels of the rooms using the appearance and interior
images of properties. Law et al. [6] showed that street view and
satellite images are also helpful when predicting house prices.
In [7], the researchers attempted to predict the construction age
of the property by combining the predictions for each of its
salient image patch, resulting in greater accuracy than human
prediction.

Moreover, deep learning has been applied to real estate
property images, and some studies have analyzed real estate
images themselves. In [8], real estate images were classified
into different types (e.g., bedroom, kitchen, living, and garden)
by employing contrast-limited adaptive histogram equalization
(CLAHE) and applying long short-term memory (LSTM) in
both vertical and horizontal directions.

Wang et al. [9] predicted which among two images of the
same property is more attractive using a pairwise comparison
network.

These works demonstrated the use of images in specific
tasks that are related to the appearance of the property. In
our task, to comprehensively represent the user experience in
term of the perceived quality and functionality, we assumed
that floor plan information with related metadata can provide
more structure and detailed information on the property.

B. Real Estate Tasks using Floor Plan

Several related works have been conducted on floor plan
image analysis. Before the development of deep learning,
some researchers manually and graphically analyzed floor
plans using adjacency graphs (with rooms, corridors, and other
features as labeled nodes) and used them to classify apartments
into different types [10]. Takizawa et al. [11] analyzed the
relationships among adjacency graph structures of apartment
floor plans and their rental fees. They extracted subgraphs from
the adjacency graphs and effectively estimated the rent from
the presence and absence of common subgraphs. However, the
cost of creating adjacency graphs by hand was very high.

Floor plan images have also proved to be useful for rent
price prediction [12]–[14]. In [12], [13], it was demonstrated
that conventional bag-of-features (BoFs) [15] has the poten-
tial to achieve lower-error prediction with smaller variance,
although the contribution of BoFs was smaller than that of
other apartment attribute information. In [14], image features
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Fig. 2. A screenshot of the crowdsourcing page.

were applied to hedonic price models [16] to predict the apart-
ment rent price after controlling for locational and structural
characteristics of an apartment.

Recently, machine learning has been applied to the analysis
of floor plan images. Yamasaki et al. [5] used deep neural net-
works (DNNs) to conduct semantic segmentation of floor plan
images. They further developed a method to systematically
generate adjacency graphs of floor plans from the semantically
segmented images. Takada et al. [17] utilized multi-task learn-
ing for floor plan images and retrieved similar floor plans to the
query. The floor plan recognition was then applied to property
recommendation [18], [19] and retrieval [20]. Additionally, a
toolbox for converting floor plan images to a vector format was
developed in [21]. Furthermore, generating floor plans using
graphs [22], [23], panoramic images [24], or 3D scans [25]–
[30] is emerging. Generating furniture layouts using graphs
was also discussed in [31].

To the best of our knowledge, this study is the first to
propose an accurate prediction model for subjective scores of
apartments using machine learning.

C. Prediction of Subjective Scores of Multimedia Content

There are extensive surveys in the literature introducing
quality assessment studies and methods using images [32] and
videos [33], [34].

Assessing the perceived low-level quality of images [35]–
[38] and videos [39]–[42] has been an important topic in
multimedia. These works tried to predict the perceived quality
when the quality of the multimedia content is somewhat
degraded by low-level factors such as compression and noise.

Predicting higher-level subjective scores has also been an
active research area. For instance, analysis of image aesthetics
relates more to color usage, composition, etc., and not to low-
level noise in the content [43]–[48].

Sentiment and emotion classification and affective analysis
constitute another direction of research for analyzing subjec-
tive evaluation of multimedia content. In this regard, many
related works can be found in the literature for texts [49]–
[51], images [52]–[59], speech [60], music [61], videos [53],
[62]–[65], and their combinations [66]–[68].

Fig. 3. Histograms of the responses (5-point Likert scale) for several examples
of randomly selected floor plan images.

Skills and creativeness have also been research targets, in-
cluding skill assessment [69], creativity [70], click through rate
prediction for online advertisements [71], [72], presentation
slide assessment [73], [74], and so on.

To the best of our knowledge, this is the first work on
subjective evaluation of apartment floor plans. In the paper, we
show that predicting the subjective functionality and comfort
is possible, and we also demonstrate possible applications of
such predictions.

III. DATASET CREATION

A. Subjective Scores

In this study, we used crowdsourcing to create a new
dataset based on subjective evaluation of real estate floor plan
images through a set of statements that question their levels
of comfort, openness, privacy, and other characteristics.

In total, 3, 128 workers participated in this evaluation. We
recruited 400 participants separately from 10 groups: two
genders over five age ranges (20-29, 30-39, 40-49, 50-59, and
60+) using a crowdsourcing service.

We used floor plan images of Japanese rental apartments
from the “Home’s dataset” released by LIFULL Co., Ltd.
with the cooperation of National Institute of Informatics2,
which has been widely used as a general floor plan image
dataset in the international research community [22], [75]–
[77]. We randomly selected 1, 000 floor plan images that
included apartments with one, two, three, and four or more
bedrooms in balanced proportions and prepared the following
nine question statements for each image (questions Q1 to Q3
are about impressions, Q4 to Q6 are about functionality, and
Q7 to Q9 are about environmental criteria):
• Q1 (Spaciousness): It is a spacious and open floor plan.
• Q2 (Modernity): The impression of the room layout is

modern and contemporary.
• Q3 (Luxuriance): It is a luxurious apartment, and the rent

might be expensive.

2National Institute of Informatics (NII), https://www.nii.ac.jp/dsc/idr/lifull/
homes.html (accessed: 05.05.2020)
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Fig. 4. Overview of our framework.

Fig. 5. Examples of input images (first column on the left), inferred
semantically segmented images (second column), extracted graphs (third
column), and grand truth segmented images (forth column).

• Q4 (Connectivity): Connectivity, adjacency, and layout of
rooms and circulation are efficient and look comfortable.

• Q5 (Wet Areas): The traffic paths for the kitchen, bathroom,
and restroom are good.

• Q6 (Storage): Locations and sizes of storage are good.
• Q7 (Airflow): Airflow inside the floor plan is good overall.
• Q8 (Solar Exp.): Solar exposure of the floor plan is good.
• Q9 (Privacy): The arrangement and adjacency of rooms

fully consider the privacy of each family member.
In Q9, participants were provided a family size to evaluate

the privacy of the image. Each floor plan was evaluated based
on a five-grade score on a scale of 1 (strongly disagree) to
5 (strongly agree) by participants. Only the floor plan images
were shown to participants for the evaluation (Fig. 2). Each
participant was asked to evaluate 25 floor plan images. A
task completion control was implemented, and the participants
were required to answer all the assigned questions in order
to complete the task; otherwise, their responses were not
included in the study. After removing those from whom we

did not receive all responses and also those who chose the
same rating for all (i.e., “straight-lining”), we obtained 3,128
valid participants’ results out of the 4,000 participants that
were recruited. The remaining 871 include those who either
dropped out or were not included for the reasons stated above.
Thus, each floor plan was evaluated by 78 to 80 individuals
(i.e., 2 genders × 5 age ranges × 400 participants × 25
images / 1,000 total images = 100 participants per image; with
approximately 20% drop outs, this coincides with 3128/4000
= 0.782). We verified that the histograms of responses by
participants were approximately normally distributed from
random selections of over 200 floor plans and that no iso-
lated peaks with unusual values were found. Figure 3 shows
some examples of histograms from our randomly selected
floor plans. Each participant would have different mean and
standard deviation in their evaluation scores, and therefore the
scores were standardized before taking the average among the
participants. We used the value obtained by subtracting the
mean value from each raw score and dividing it by the standard
deviation. The resulting scores were normalized between -1
and 1 for each question. Figure 1 shows selected examples of
floor plans with the corresponding results of the nine scores
of subjective measure. The error bar represents the standard
deviation. Next, for each floor plan, we averaged the scores
from the nine questions. Since we averaged nine scores that
originally came from different populations of scores with
different distributions, we standardized the mean values from
all floor plans and normalized them between -1 and 1; we
called this value the “Total Score” of the floor plan. The Total
Score represents the overall performance of each floor plan
across all nine questions.

B. Segmentation and Graph Extraction

A floor plan can also be viewed as a graph with nodes
representing rooms and with edges representing connections
between them [5], [20], [22], [23]. Therefore, we extracted
graphs from floor plan images and used them as features to
predict the nine subjective scores defined above. This is a
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reasonable assumption because floor plan images are inspected
for the connections among rooms and their adjacency.

In order to extract corresponding graphs automatically from
floor plan images, we used the following two steps (Fig. 4
top left). First, we prepared 3, 800 new floor plan images
(no overlap with dataset A), which we call dataset B, with
their manually annotated segmented images using an online
annotation tool (please see Fig. 4). They were consistently
color-coded and semantically segmented into the following 15
classes of elements: wall, western bedroom (wbed), Japanese
bedroom (jbed), dining kitchen (dk), restroom (wc), bathroom
(bath), washroom (wash), balcony (balc), entrance (ent), cor-
ridor (corri), stairs, closet (cl), door, window, and unknown
elements that do not belong to any category (abbreviations
in parentheses are used in figures representing graph nodes).
Then, we prepared a segmentation prediction network based
on the method introduced in [5] using an improved network
architecture, DeepLab v3+ [78], [79], instead of fully convo-
lutional networks. Using 3, 040 images for training, 380 for
validation, and 380 for testing, we trained the network using
the segmented images as ground truth data. We automatically
obtained 1, 000 segmented images with subjective scores for
our dataset by feeding dataset A into this pre-trained network
using DeepLab v3+.

Second, we used the rule-based method to extract 1, 000
graphs from the inferred segmented images using images in
dataset A following the same procedure in [20]. Figure 5
shows examples of floor plan images, inferred segmented
images, extracted graphs, and ground truth (GT) segmented
images, which were manually annotated using an online an-
notation tool. We used 11 elements for nodes of the graphs,
excluding the wall, door, window, and unknown elements from
the above 15 elements. We added edges between two rooms
only if they are directly accessible through a physical opening
or door. Nodes were created by extracting regions representing
rooms with a certain area in the inferred segmented images.
The resulting dataset was used to determine whether the
differences in graph structures influence the impression and
functionality of apartments from subjective evaluations.

In Figure 5, it is noticeable that the inferred segmented
images using the segmentation prediction network are noisy
and slightly degraded compared to the GT segmented images.
As a result, the extracted graphs from the inferred images
are not as accurate as the grand truth graphs extracted from
the GT segmented images. In Section V-B, we discuss how
the imperfections in the use of inferred images and extracted
graphs affects the prediction accuracy of our proposed model
compared to the best-case using GT segmented images and
GT graphs as input features as the upper bound performance.
In fact, the average performance drop in Pearson correlation
coefficient (PCC) is only 0.046 between two cases, which
is statistically insignificant (see Section V-B). It is thus ac-
ceptable to use the inferred segmented images instead of GT
segmented images, which allows us to automatically generate
all required features only from floor plan images without
preparing manually annotated floor plan images for new data
inputs.

C. Overview of Our Datasets

Figure 4 shows an overview of our framework. To predict
subjective scores only from the real-estate floor plan images,
we prepared three sets of floor plan images without any
overlaps to avoid bias for network models’ training.

The first set of 1,000 images (dataset A) was used for the
dataset with subjective scores and to train our prediction model
in Section IV.

The second set with 3,800 images (dataset B) was used
to obtain the network that outputs segmented images from the
floor plan images as input, which as explained in Section III-B.
We also used dataset B to train an ImageNet-pretrained feature
extractor network using color-coded semantically segmented
images, as shown in bottom left of Fig. 4. We additionally
developed this network since our proposed network in Figure 8
explained in Section IV-C shows improved performance using
the new weights fine-tuned by this network for ResNet50 [80]
instead of using the weights only pre-trained on ImageNet
on segmented images. The network was based on ResNet50
and used the segmented image as input. It was pre-trained
first using ImageNet and then fine-tuned for the multi-task
classification task to predict the number of rooms of the 13
room types, excluding the wall and unknown elements, from
the 15 types defined in Section III-B.

Finally, we predicted subjective scores using our model
from a separate set of 1, 535 floor plan images (hereafter,
“dataset C”; please see Fig. 4), and it was also used for our
proposed apartment search tool in Section VI.

IV. PROPOSED METHODS

In this section, we introduce our prediction model. We
propose to use two types of inputs for the model: floor plan
images and structured data features. For the images, we used
both floor plan images and semantically segmented images
from Section III. In Section IV-A, we explain our method to
extract four features from the structured data based on graphs
and metadata of floor plans. The image features are described
in Section IV-B. In Section IV-C, we introduce our prediction
model in detail.

A. Features

1) Emerging Subgraphs: To extract frequently appearing
common subgraphs that are very important and contribute
to either higher or lower evaluation scores for each question
regarding the floor plans, we first performed frequent subgraph
mining on a total of 1, 000 graphs in dataset A using graph-
based substructure pattern mining (gSpan) [81]. For the con-
dition to evaluate subgraph isomorphism, we considered node
attributes that represent the room types for graph matching.
The edge attributes that represent door and window types were
not considered. As a result, 162, 470 subgraphs were extracted
by setting the minimum support threshold to 5 (i.e., the
condition for extracting the common subgraph corresponding
to at least 5 out of 1, 000). The following three steps were
further performed to extract subgraphs that are more relevant
to each subjective score.
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Fig. 6. Examples of emerging subgraphs frequently found in floor plans
having a high Q2 (modernity) score (top row). The top left also appears
in Fig. 1a (circled in red). Examples found in floor plans having a low Q4
(connectivity) (bottom left & middle) and a Q9 (privacy) score (bottom right).

Step 1: For each question from Q1 to Q9 and the “To-
tal Score” from Section III-A (10 items in total), common
subgraphs that were included in the floor plan graphs with
evaluation scores of the top and bottom 10% were extracted
and separated into a total of 20 classes. We further narrowed
down the selection of subgraphs by setting the following three
thresholding strategies. First, the minimum support threshold
was set to 10. Second, the average score of the apartments that
contain the target subgraph should be 0.25 or larger for those
in the top 10% classes and −0.25 or lower for those in the
bottom 10% classes. Third, we also used the growth rate (GR),
which is widely used for discovering discriminative patterns
in emerging pattern mining [82]. The ratio between GR for
the top 10% and that for the bottom 10% should be larger
than 4 or smaller than 1/4. These thresholds were set by our
empirical study. Step 2: To further extract relevant common
subgraphs in the above 20 classes, we considered identification
numbers of extracted subgraphs as “words” in 20 different
“documents.” Then, we performed term frequency - inverse
document frequency (TF-IDF), which evaluates how relevant
a word (subgraph) is to a document (class) in a collection of
documents (classes that represent each question). Based on the
obtained TF-IDF weights, we sorted important subgraphs that
are relevant to the top or bottom 10% of floor plans evaluated
based on a specific question in each class. The use of TF-
IDF helped eliminate frequently appearing subgraphs found
in multiple classes that are not yet relevant to any specific
class.

For any subgraph that included other subgraphs (i.e., in-
clusion dependency) within the same class, subgraphs with a
minimum number of nodes were always kept. If the larger-size
subgraph in the top 10% class has a larger mean evaluation
score than those of the minimum-size subgraphs defined
above, it is also kept (and vice-versa for the bottom 10%
classes).

Step 3: We sorted all the extracted subgraphs from the
previous steps based on the mean evaluation score in each
class and obtained the top 20 subgraphs for each of the 20

Fig. 7. The main five types of subgraphs for wet areas that make up 76% of
all floor plans. Two subgraphs that include the linkage (wc)–(wash)–(bath),
circled in red, have lower mean scores for Q5 (wet areas) than the others.

classes. By eliminating duplicates that appeared in multiple
classes from a total of 400 extracted emerging subgraphs, we
obtained 230 unique emerging subgraphs. For each floor plan
in the dataset, a 230-dimensional feature vector that contained
0 or 1 based on the absence or presence of 230 emerging
subgraphs, respectively, were extracted.

Figure 6 shows examples of the emerging subgraphs that
were extracted using the above three steps. The subgraph
on the top left is a triangle graph connecting (wbed)-(dk)-
(balc) as a subgraph that appears in the top 10% of the
Q2 (modernity) class. For example, the floor plan in Fig. 1a
includes this subgraph and has a very high evaluation score
for Q2. It represents the wide balcony space that is open
to both the bedroom and kitchen and is often considered a
contemporary layout among Japanese apartments (advertised
as a “wide-span balcony”). The subgraph with two nodes,
(dk)–(bath), was in the class representing the bottom 10%
of the Q4 (adjacency and connectivity) class (bottom left in
Fig. 6). This has a bathroom door that immediately opens to
a living room, allowing anyone to enter a communal space
directly after taking a bath, which is not considered desirable.
Adding a washing room between the two nodes is a common
practice in Japan, as it provides a room to change clothes
before entering the bathroom. This subgraph was also included
in the class for the bottom 10% for the Q9 (privacy) class. Our
method was able to extract emerging subgraphs representing
such characteristics of floor plans in 20 classes.

2) Subgraphs for Wet Areas: Wet areas are particularly
important because they are more personal spaces. Therefore,
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special attention was paid to them. For each floor plan in
dataset A, a connected subgraph containing rooms related to
the usage of water, including dining kitchen (dk), washroom
(wash), bathroom (bath), and restroom (wc), was extracted.
Any nodes bridging the above four nodes such as a corridor
(corri) that were necessary to form a single connected sub-
graph that contained all four of the above nodes were also
included depending on the floor plan layouts. If there were
more than two such bridging nodes and only one node was
sufficient to form a connected subgraph, the node that served a
communal use or as circulation, such as corridor, was selected
over a node use for a private purpose, such as a bedroom. In
total, 162 unique subgraph types for water-related rooms were
extracted. Out of all the floor plans, 76% belonged to the five
types. 120 types of subgraph appeared only once and therefore
they were discarded. As a result, 42 subgraph types were used
in this study.

Two out of the five remaining types of subgraphs included
three nodes that were directly linked: (wc)–(wash)–(bath).
However, this is not a desirable layout, as its circulation paths
for (wc) and (bath) crisscross at the washing room (Fig. 7). It
forces one to enter (wash) while someone else is still present
after using either room. The mean evaluation scores for Q5
(wet areas) for those two types were lower (0.171 and 0.208)
than the mean scores from the other three types (0.330, 0.296,
and 0.249). As a result, we extracted a 42-dimensional one-
hot feature vector based on the presence of the 42 types of
subgraphs for wet areas.

3) Feature Based on MCS Graph Similarity: The similarity
between graphs of all 800 floor plans in the training set
of dataset A was calculated based on the method described
in [17], [83], [84] using the maximum common subgraph
(MCS) as a graph similarity measure. The similarity was 1
when the two graphs perfectly matched, and 0 when there
were no common parts. Any input graph could be expressed
by an 800-dimensional vector that represents distances from
each of the 800 graphs in the training set of the dataset A.
We used this vector based on the MCS similarity to extract
a feature that represented an entire (global) characteristic of
each apartment, as opposed to a local sub-structure from a
subgraph.

4) Feature Based on Metadata: In addition to the above
three features extracted from graph structures, we listed areas
and numbers of room types using the metadata for each
floor plan. This resulted in 30-dimensional feature vectors that
represented the areas and numbers of room types.

From the above, we obtained four feature vectors that repre-
sented structured data based on emergent subgraphs, subgraphs
for wet areas, MCS graph similarity, and metadata. All feature
vectors were standardized before using them for machine
learning (see the next section) such that their distributions had
a mean value of 0 and a standard deviation of 1.

B. Image Features

We also fed the network two types of images: floor plan
images and consistently color-coded semantically segmented
images (prepared for the automated graph generation in Sec-
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Fig. 8. Proposed network architecture.

tion III). The inputs to the network were two sets of RGB
images of resolution 224 × 224.

First, for the floor plan images, using ResNet50 [80] pre-
trained on ImageNet [85], a 2,048-dimensional vector of the
pool5 layer was extracted from deep features of the images.
Then, a new fully connected (FC) layer was added in place of
the original one.

Second, for the segmented images, we used the same net-
work architecture, but the network was pre-trained first using
ImageNet and then fine-tuned for the multi-task classification
task to predict the number of rooms of the 13 room types,
excluding walls and unknown elements, from the 15 types
defined in Section III-B. Similarly, a 2,048-dimensional vector
of the pool5 layer was extracted.

Two features extracted from the two sets of images de-
scribed above were also added in the same manner as above,
followed by the FC, batch normalization (BN) [86], and
dropout [87] layers. Finally, these two added features from
the structured data and images were added again, followed by
the FC and dropout layers. The final FC layer generated a
value predicting the score (see Fig. 8 for details). For the FC
layers, we used Leaky ReLu as an activation function.

C. Prediction Model

Figure 8 shows our proposed network architecture to predict
the evaluation scores from Q1 to Q9 and the “Total Score” (ten
separate models in total).

Two features based on emergent subgraphs (IV-A1) and
subgraphs for wet areas (IV-A2) were concatenated into one
272-dimensional vector, which was reduced to 256 dimensions
using a FC layer. The 800-dimensional feature vector from the
MCS graph similarity (IV-A3) and the 30-dimensional feature
based on metadata, such as areas and numbers of room types
(IV-A4), were also reduced to 256 dimensions using FC layers.
Then, the above three input features were added, followed by
the FC, BN, and dropout layers. The latter two layers were
added to improve generalization and to reduce overfitting.
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V. EXPERIMENTS

We used the dataset created in Section III and divided it into
800 floor plans for training, 100 for validation, and 100 for
testing. We trained 10 separate models for predicting 10 scores
using the network in Section IV-C because it is better than
multi-task learning using a single model in our preliminary
experiment. Regression models were created for each using
the mean squared error (MSE) as a loss function, and we
trained these networks using 800 training images. We applied
the Momentum Stochastic Gradient Descent (SGD) algorithm
to train models with a batch size of 20, a learning rate of 10−3,
a decay rate of 2.86× 10−5, and a momentum of 0.9 for the
35 epochs. The system was implemented using Keras 3. We
applied PCC to measure the correlation between the predicted
values and the evaluation scores from the dataset as ground
truths for 100 floor plans in the test data. We repeated the
above process five times using a different randomly selected
set of 800 training, 100 validation, and 100 test floor plans
each time, and used the mean values of all five results as
the final PCCs for the proposed as well as the following
comparative baseline models, which were prepared to compare
and verify the prediction results.

A. Baseline Methods

As baseline methods, we prepared the following seven
models, of which five models use DNNs by subtracting one
of five input features from the proposed network in Fig. 8:
• Images Only: The model with only two input features based

on floor plans and color-coded semantically segmented
images.

• w/o SubG: The model without the input features based on
subgraphs for emergent (IV-A1) and for wet areas (IV-A2).

• w/o MCS: The model without the input features based on
MCS graph similarity (IV-A3).

• w/o Meta: The model without the input features based on
metadata such as area and number of room types (IV-A4).

• w/o Img: The model without the features for floor plan
images.

• w/o Segm: The model without the input features based on
consistently color-coded semantically segmented images.

• Upper Bound: The model’s network architecture is identical
to the proposed model. However, the dataset based on GT
segmented images and GT graphs was used for training
and testing of the model as the best case, instead of using
inferred segmented images and extracted graphs used in our
proposed model explained in Sec. III-B)

B. Results

1) Segmentation Performance: First, we discuss the accu-
racy of the semantic segmentation using dataset B introduced
in III-B. The number of train/validation/test data were set to
3040/380/380, respectively, and we trained the segmentation
prediction network model to learn the correspondence between
the floor plan images and the ground truth (GT) label masks
using the training and validation data. After the training,

3https://keras.io

the test data was used for evaluation with a metric mean
intersection over union (IoU) [88] defined by (1), where nc

is the number of classes, ti is the total number of pixels
belonging to class i, and nj is the total number of predicted
as class j belonging to class i.

mean IoU =
1

nc

nc∑
i=1

nii

ti +
∑nc

i′=1 ni′i − nii
. (1)

The mean IoU for the test data was 82.1%, and the average
mean accuracy was 89.0% for the test set. Although the seg-
mentation accuracy is not perfect, it is acceptable considering
the prediction accuracy of functionality and comfort prediction
as discussed below.

2) Performance Comparison: To evaluate the performance
of each model, we used two metrics, namely Pearson Cor-
relation Coefficient (PCC) and Root-Mean-Squared Error
(RMSE). Table I shows the PCC results of both the proposed
and baseline models using the test set of dataset A, and Table II
shows the RMSE values. Note that a higher PCC and a lower
RMSE mean better prediction performance. Our proposed
model, which uses all features extracted from the structured
data, floor plan images, and segmented images, outperformed
all the comparative baseline models in terms of the mean
value of PCCs from all 10 criteria (0.701) and recorded the
highest PCC for 9 out of 10 criteria (Table I). While we
used ResNet50, which is known for its high performance in
a wide range of image-recognition tasks, the naive approach
only using two sets of images, Images Only model, has
a lower mean value of PCCS, 0.491. Therefore, it can be
inferred that the network compensates for the weakness of
each feature by combining them. The PCC values for our
proposed model were over 0.7 for five criteria (Q1=0.721,
Q2=0.793, Q3=0.776, Q6=0.751, and Total Score=0.794), and
over 0.8 for the “privacy” criteria (Q9=0.816). Table II also
shows that our proposed model outperforms baseline models
with the lowest mean value of RMSEs from all 10 criteria.

We carried out the statistical significance tests to determine
whether PCCs and RMSEs between the proposed and baseline
models are statistically significant or not. Following the recom-
mended procedure in Section 7.6.1 of ITU-T Rec. P.1401 [89],
the statistical significance tests for PCC use statistics derived
from Fisher’s z-transformed correlation coefficients in each
comparison, compared with the 95% two-tailed Student’s t-test
critical value. In Table I, we have used an asterisk to denote the
case when 0.05 significance level of difference compared to
the proposed model’s PCC is found. Table III shows p-values
from Images Only and Upper Bound models. Our multimodal
network model outperformed the Images Only model with p-
values>0.05 in 8 out of 10 criteria (all criteria except for Q5
and Q8) (Table III).

The statistical significance tests for the differences in RM-
SEs were also performed, following the recommended proce-
dure in Section 7.6.4 of ITU-T Rec. P.1401 [89]. In Table II,
we have used an asterisk to the RMSE values to denote
the case when significant differences between the proposed
model’s RMSEs are found. The RMSEs from our proposed
model and the Images Only model were significantly different
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TABLE I
PREDICTION ACCURACY COMPARISON. VALUES ARE IN TERMS OF PEARSON CORRELATION COEFFICIENTS (PCC). BLACK CELLS REPRESENT PCC>0.7

AND GRAY CELLS INDICATE PCC<0.7. STATISTICAL SIGNIFICANCE BETWEEN PROPOSED AND BASELINE MODELS WERE DETERMINED BY A T-TEST
(* DENOTES P-VALUE<0.05).

Model Images Only w/o SubG w/o Meta w/o MCS w/o Img w/o Segm Proposed Upper Bound
Q1.Spaciousness 0.490* 0.669 0.707 0.730 0.637 0.648 0.721 0.794
Q2.Modernity 0.600* 0.782 0.772 0.787 0.771 0.765 0.793 0.838
Q3.Luxuriance 0.549* 0.762 0.751 0.753 0.749 0.747 0.776 0.805
Q4.Connectivity 0.432* 0.542 0.592 0.620 0.546 0.571 0.637 0.698
Q5.Wet Areas 0.392 0.477 0.422 0.452 0.439 0.499 0.525 0.585
Q6.Storage 0.518* 0.715 0.728 0.751 0.713 0.733 0.751 0.778
Q7.Airflow 0.363* 0.494 0.573 0.514 0.446 0.592 0.607 0.657
Q8.Solar Exp. 0.402 0.520 0.531 0.571 0.525 0.564 0.591 0.680
Q9.Privacy 0.567* 0.764 0.786 0.780 0.791 0.748 0.816 0.822
Total Score 0.553* 0.727 0.763 0.740 0.712 0.755 0.794 0.809
Average 0.491 0.645 0.662 0.670 0.633 0.662 0.701 0.747

TABLE II
ROOT-MEAN-SQUARED ERROR (RMSE) COMPARISON.

(* DENOTES 0.05 SIGNIFICANCE LEVEL OF DIFFERENCE COMPARED TO THE PROPOSED MODEL’S RMSE)

Model Images Only w/o SubG w/o Meta w/o MCS w/o Img w/o Segm Proposed Upper Bound
Q1.Spaciousness 0.338* 0.266 0.254 0.242 0.285* 0.259 0.236 0.218
Q2.Modernity 0.357* 0.257 0.266 0.255 0.272 0.267 0.253 0.202
Q3.Luxuriance 0.281* 0.213 0.217 0.205 0.235* 0.209 0.198 0.192
Q4.Connectivity 0.342* 0.252 0.235 0.227 0.307 0.259 0.245 0.251
Q5.Wet Areas 0.253 0.215 0.225 0.209 0.276* 0.203 0.216 0.238
Q6.Storage 0.344* 0.282 0.274 0.259 0.265 0.282 0.249 0.228
Q7.Airflow 0.332* 0.272 0.255 0.257 0.318* 0.265 0.233 0.267
Q8.Solar Exp. 0.303* 0.255* 0.253* 0.247 0.255* 0.239 0.211 0.227
Q9.Privacy 0.374* 0.242 0.242 0.248 0.235 0.265 0.239 0.218
Total Score 0.257 0.253 0.234 0.244 0.253 0.240 0.218 0.243
Average 0.318 0.251 0.246 0.239 0.270 0.249 0.230 0.228

TABLE III
SIGNIFICANCE OF THE DIFFERENCE IN PCCS COMPARED TO THE

PROPOSED MODEL’S PCCS. VALUES ARE IN TERMS OF P-VALUES.
(* DENOTES P-VALUE<0.05)

Model Images Only Upper Bound
Q1.Spaciousness 0.009* 0.230
Q2.Modernity 0.007* 0.350
Q3.Luxuriance 0.004* 0.589
Q4.Connectivity 0.042* 0.446
Q5.Wet Areas 0.240 0.544
Q6.Storage 0.005* 0.647
Q7.Airflow 0.024* 0.560
Q8.Solar Exp. 0.079 0.294
Q9.Privacy 0.001* 0.895
Total Score 0.001* 0.768

in 8 out of 10 criteria (all criteria except for Q5 and Total
Score), indicating that the improvements using our multimodal
network are statistically significant. Only Q5 (Wet Areas) does
not show significant improvement using our model suggested
by the differences in both PCC and RMSE values. As stated
in Section IV-A2, subgraphs for wet areas have fewer pattern
variations than other features, which may make prediction
of the Q5 (Wet Areas) score more difficult. The test also
suggests that our model is statistically significantly better than
the model without the features for floor plan images, w/o Img,
in 5 out of 10 criteria, including Q1, Q3, Q5, Q7, and Q8. The
results indicate that the use of both features based on images
and structured data extracted from graphs contributes to the
improvement in prediction accuracy.

The differences in PCC and RMSE values between the
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Fig. 9. Success and failure cases from our model’s prediction results. While
both floor plans in the top row have high ground-truth scores for Q2 Modernity
in our dataset, the prediction error for the top-left was lower than the prediction
error for the top-right, indicating a more successful prediction result.

proposed and Upper Bound models are not significant, indi-
cating that the performance drops caused by the use of graphs
extracted from inferred segmented images, instead of the GT
graphs described in Section III-B, are not significant (average
difference in PCCs from nine questions is 0.046). The inferred
segmented images have some noise; therefore, the extracted
graphs are slightly degraded from the best case using the
grand truth segmented images. However, the performance drop
is not significant. Our model can automatically generate all
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input features from floor plan images alone as inputs using
the processes in Section III-B to extract segmented images
and graphs, allowing us to develop the search tool described
in Section VI without the time-consuming and labor-intensive
manual annotation process for segmented images. We also
tested the prediction accuracy of our proposed network archi-
tecture trained and tested using a dataset based on raw values
rated by the participants as evaluation scores, instead of using
standardized evaluation scores in our dataset explained in
Section III-A. We found no statistically significant difference
in PCC and RMSE values between the two datasets (i.e.,
average PCC was 0.699 using raw score values and 0.701
using ours).

3) Success and Failure: Figure 9 depicts some success
and failure examples from our prediction results for Q2
Modernity scores. Here, “success” means that the prediction
error between the predicted score and the ground-truth score
from the dataset is lower. It is inferred that if similar floor
layouts are included in the proposed network’s training data,
prediction errors would likely be reduced. If the floor plans are
rare or uncommon examples that do not exist in the training
set, prediction errors could increase.

In conclusion, although the measurement of the functional-
ity of floor plans is a very subjective problem, our proposed
prediction models are able to achieve a very strong correlation
with human evaluation.

VI. USABILITY STUDY

A. Implementation

We introduce a new interface for an apartment search tool
that implements functionality and comfort as query items. In
addition to a common search interface based on user selection
of the number of bedrooms and a range of areas, our tool offers
importance sliders with adjustable weights for importance
in three levels: 0 (none); ×1 (important); and ×2 (very
important), for nine subjective criteria (see Fig. 10). After a
user presses the search button, the tool calculates the scores
for all floor plans based on the weighted sum of the predicted
subjective values using the information from the sliders, and
displays the scores in ranked order. This feature allows a user
to search apartments based on a controlled weighted priority
for qualitative criteria (i.e., extremely spacious apartments with
sufficient privacy and storage spaces).

For our proposed search tool’s floor plan database, we
prepared a new set of 1, 535 floor plan images that in-
clude apartments with one, two, three, and four or more
bedrooms in balanced proportions (dataset C). These images
were completely unbiased and were not previously used in
this study. Using the pre-trained network using DeepLab v3+
and the rule-based method in Section III-B, we obtained the
1, 535 corresponding segmented images and graphs. Next, we
executed the procedures outlined in Sections IV-A and IV-B to
extract the five features from these images, which were then
used to obtain the predicted attractiveness scores for the nine
criteria for each of the 1, 535 floor plans using the best model
(i.e., the one with the highest PCC) from the proposed network
introduced in Section IV-C.

Fig. 10. The proposed apartment search tool.

B. Procedure

We evaluated our method through a large-scale user study.
Among the 200 participants recruited through a crowdsourcing
service, we removed three who chose the same rating for all
questions (i.e., “straight-lining”) and another six who did not
complete the survey to obtain a final count of 191 participants
with a wide variety of attributes. Out of the 191 participants,
81 identified themselves as male and 109 as female. The
numbers of participants in their 20s, 30s, 40s, 50s, and
over 60 were 30, 78, 53, 20, and 4, respectively. Of the
total, 38 lived alone at the time of the experiment, while 81
participants were married. While 115 lived in urban areas, 60
lived in suburban areas, and 11 in rural areas. Participants
were required to answer all questions to complete the task.
Incomplete responses were not included in the study. We
verified that all histograms of responses for 5-point Likert
scale questions were approximately normally distributed, and
that no isolated peaks with unusual values were found.

To make the study task realistic and provide internal mo-
tivation, we prepared hypothetical scenarios with different
demands from five unique families and asked participants to
search five apartments for each scenario. We set the scenarios
based on five completely different family structures to avoid
demographic background bias of the participants.

• “You are a married couple, and your two children need their
own rooms soon. You want a functional floor plan layout and
don’t want to pay extra for unnecessarily large spaces.”

• “You are a family of five, living with one child and your
spouse’s parents. A well-functioning home with large stor-
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age spaces, kitchen, and wet areas are your top priority
since you have a big family.”

• “Due to the COVID-19 pandemic, you have been working
from home and would like to have your own study room.
You and your spouse want to have separate rooms to respect
each other’s privacy.”

• “You live with your significant other before marriage and
would like to share a large spacious room with your partner
and stay together as much as possible.”

• “You and your partner are a young couple and hope to have
at least one child in the future. You prefer to have a large
balcony for your family to spend the weekend together.”

We assigned these tasks using both our proposed tool and
another baseline tool. The baseline tool represented commonly
available real estate portal sites without our proposed features,
featuring a search interface for a user to select the number of
bedrooms and a range of areas. We studied major real estate
portal sites 4567, and found the above two items as com-
mon search features. The differences between the proposed
and baseline tool are that the baseline tool has an identi-
cal interface except that it does not have functionality- and
comfort-related options. As we wanted participants to focus
on analyzing information only readable from floor plans to
enable a fair comparison with our proposed tool, we excluded
other common search features based on the location and cost
of properties. The study employed a within-participant design
in which participants used both tools (counterbalanced across
participants) and provided feedback on them.

Participants were asked to search five apartments that met
needs of each of the five scenarios using one tool, and then
switch to the other tool for the same search (with the order
of tool counterbalanced across participants). After completing
both search tasks, participants completed a post-experiment
survey. The survey asked participants to directly compare their
experience with the proposed tool to the baseline tool in five
Likert-scale questions (shown in Table IV). We also asked
them to rate 50 selected floor plans (i.e., five plans × five
scenarios × two tools) in a five-grade score on a scale of
1 (very unsatisfied) to 5 (very satisfied) (i.e., each participant
gave a score of 1 to 5 for each retrieved floor plan image.).

C. Results

Overall, it can be observed that the participants showed a
significant preference for our proposed tool in response to
all five direct comparison questions in Table IV. For each
question, 95% confident intervals of mean scores are indicated.
In addition, a one-sample one-tailed t-test (p<0.05) was used
to evaluate whether the mean responses are greater than 3 (i.e.,
a score of 3 indicates no preference) at the significance level.
Participants appreciated the proposed tool as well. Compared
to the baseline tool, it helped them find significantly more
desirable floor plans (M = 4.03, 95% CI[3.90, 4.17], p=4.9×
10−34 <0.001), and gave them a significantly more enjoyable

4https://lifull.com
5https://www.livable.co.jp
6https://suumo.jp
7https://www.redfin.com

TABLE IV
THE DIRECT COMPARISON QUESTIONS WERE ASKED ON A 5-POINT

LIKERT SCALE. A HIGHER SCORE INDICATED A PREFERENCE FOR OUR
PROPOSED TOOL, WHILE A LOWER SCORE INDICATED A PREFERENCE FOR

THE BASELINE TOOL. A SCORE OF 3 INDICATED NO PREFERENCE.

Question Mean CI p-value
Which tool helped you find more
desirable floor plans?

4.03* [3.90, 4.17] 4.9×10−34

< 0.001
Which tool did you enjoy better
while searching?

3.97* [3.83, 4.11] 1.6×10−30

< 0.001
Which tool was faster for you to
search floor plans?

3.84* [3.67, 4.01] 1.1×10−18

< 0.001
Which tool was easier to search
apartments?

3.76* [3.60, 3.93] 2.5×10−16

< 0.001
Which tool was more intuitive for
you to search floor plans?

3.43* [3.25, 3.62] 7.0×10−6

< 0.001

* Significantly different based on 95% confidence interval.

TABLE V
THE 5-GRADE RATINGS OF ALL FLOOR PLANS SELECTED BY

PARTICIPANTS USING TWO METHODS.

Baseline Proposed p-value
Mean scores of the 5-grade rat-
ings of all floor plans selected

3.75 4.01 1.67×10−40

< 0.001

An independent two-sample one-tailed t-test was used on two samples of
scores of floor plans using our tool and the baseline tool.

experience (M = 3.97, 95% CI[3.83, 4.11], p=1.92 × 10−30

<0.001).

Even though the participants spent a longer average time to
complete a search task using the proposed tool (M = 158.0s,
median = 131s, SD = 105.7s) than the baseline tool (M =
129.0s, median = 105s, SD = 97.4s), the result from the
direct comparison question shows that participants felt that
they found the desired floor plans faster using the proposed
tool (M = 3.84, 95% CI[3.67, 4.01], p=1.1× 10−18 <0.001).
The number of clicks on buttons per search increased using
the proposed tool (M = 18.3, median = 17, SD=7.6) compared
to the baseline tool (M = 13.2, median = 12, SD = 5.9).
These results show that our proposed tool required more time
and mouse clicks for users due to additional features that are
not included in the baseline tool (e.g., importance sliders).
However, these additional features did not lead them to believe
that the proposed system is harder to use. Participants felt that
the proposed tool made the task significantly easier (M = 3.76,
95% CI[3.60, 3.93], p=2.5×10−16 <0.001) and more intuitive
(M = 3.43, 95% CI[3.25, 3.62], p=7.0 × 10−6 <0.001). The
longer search time and additional operations did not make
them feel burdened with tasks, and they preferred the proposed
tool over the baseline one.

In Table V, the 5-grade ratings of all floor plans selected by
participants also indicated that they were significantly more
satisfied with their selections using the proposed tool than
the baseline one (M(proposed) = 4.01, M(baseline) = 3.75,
p=1.67×10−40 <0.001). To compute the p-value, we used an
independent two-sample one-tailed t-test, and the mean score
for selected floor plans by participants using our proposed tool
was found to be significantly higher than the mean score for
selected floor plans using the baseline tool.
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VII. LIMITATIONS

One limitation of our work is that predicted functionality
and comfort scores do not come with explanations. People
may have different opinions and viewpoints on such subjective
scores, and visualizing how the system evaluates floor plan
images would be preferred.

Our proposed method has been applied only to apartment
floor plans in Japan. As can be seen in the figures, the
drawing styles employed in the floor plan images are very
diverse; however, the style employed in other counties may be
more distinct. Therefore, the prediction model will need to be
trained for each country. We expect that our segmentation and
functionality and comfort prediction models can be used as
pre-trained models for fine-tuning, but this is left as a future
work.

VIII. CONCLUSIONS

We created and analyzed a large-scale dataset based on
subjective evaluation of real estate floor plan images using
crowdsourcing. Our proposed methods for extracting features
from graph structures and images of floor plans proved to be
effective, as we obtained functionality and comfort prediction
models with relatively high accuracy (PCC=0.701) for very
subjective scores, which is essentially different from conven-
tional image recognition tasks where the answer is apparent
to all the evaluators. This study is the first work to propose
a highly accurate prediction model for dwelling functionality
and comfort using machine learning. We applied the results of
the prediction model to our new apartment search tool using
functionality and comfort as query items, and our user study
showed that our tool could provide a better user experience.
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