
HoloSync: Frame Synchronisation for Multi-Source
Holographic Teleportation Applications

Sweta Anmulwar∗, Ning Wang∗, Vu San Ha Huynh∗, Stewart Bryant∗, Jinze Yang† , Rahim Tafazolli∗
∗Institute for Communication Systems 6G/5GIC, University of Surrey, Guildford, United Kingdom

{s.anmulwar, n.wang, v.huynh, s.bryant, r.tafazolli}@surrey.ac.uk
†Huawei Technologies Co., Ltd.
{yangjinze}@huawei.com

Abstract—Live holographic teleportation is an emerging media
application that allows Internet users to communicate in a
fully immersive environment. One distinguishing feature of such
an application is the ability to teleport multiple objects from
different network locations into the receiver’s field of view at the
same time, mimicking the effect of group-based communications
in a common physical space. In this case, live teleportation frames
originated from different sources must be precisely synchronised
at the receiver side to ensure user experiences with eliminated
perception of motion misalignment effect. For the very first
time in the literature, we quantify the motion misalignment
between remote sources with different network contexts in order
to justify the necessity of such frame synchronisation operations.
Based on this motivation, we propose HoloSync, a novel edge-
computing-based scheme capable of achieving controllable frame
synchronisation performances for multi-source holographic tele-
portation applications. We carry out systematic experiments on
a real system with the HoloSync scheme in terms of frame
synchronisation performances in specific network scenarios, and
their sensitivity to different control parameters.

Index Terms—Extended Reality (XR), Frame synchronisation,
Multi-Source, Teleportation, Holographic-type Communication,
Edge-computing

I. INTRODUCTION

Holographic teleportation is a new type of extended reality
(XR) application that allows humans or objects to be teleported
live into the view space of remote receivers [1] [2]. This
technology supports six-degree of freedom (6DoF) of object
viewing (including three dimensions of head movement – yaw,
pitch, and roll, as well as three dimensions of body movement
– left-right, forward-backwards, and up-down), creating fully
immersive experiences during a teleportation session [3]–
[7]. In comparison to traditional video applications, today’s
holographic teleportation applications are still in their infancy,
in the sense that large-scale communications over the global
public Internet are difficult to support due to both the appli-
cation’s requirement for high data rates and the lack of agility
in dealing with complex and uncertain network conditions
during content transmissions [8]–[10]. It is a unique feature
of holographic teleportation to simultaneously teleport people
from multiple remote Internet locations to the same view space
in an immersive fashion, mimicking the effect of group-based
interactions in a common physical space. It is possible that

The authors would like to acknowledge the support of University of Surrey’s
5G/6GIC (http://www.surrey.ac.uk/5gic) members for this work.

such a feature will enable more advanced application scenarios
in the future, such as distributed theatre/music performances
at an Internet scale, where individual players simultaneously
play at different network locations, and their holograms are
transmitted in real-time to the audience, giving the perception
that they are physically playing together in the common space
in front of the audience [11]. In addition to the traditional
network requirements for supporting holographic teleportation
applications, such as high bandwidth, data synchronisation
will be critical in supporting multi-source-based teleporta-
tion operations for ensuring user Quality-of-Experience (QoE)
[12]. To avoid perceived motion misalignment between source
objects, teleportation content frames originated from each
source object with the same frame creation time must arrive at
the receiver side within a stringent time window [13] [14]. It is
expected that human tolerance to such motion misalignment
varies depending on the application scenario. For example,
in the case of casual chatting with minimal body movement,
frame synchronisation error may not be a significant issue.
However, in other scenarios with a greater degree of body
movement, motion misalignment is more likely to be detected
by human eyes on the viewer’s side. There are multiple factors
in the operational environment which may contribute to the
motion misalignment, such as network distance/latency, path
load conditions, frame production conditions, and end-to-end
transport layer mechanisms applied [15] [16]. Extended from
our recent work [17], we propose the HoloSync scheme for
achieving frame synchronisation in live holographic teleporta-
tion applications. We systematically carry out our evaluation
study on the frame synchronisation performances based on
a real-life teleportation platform called LiveScan3D [18]. We
emulate a wide range of Internet path condition scenarios and
quantify the resulting misalignment of frame arrival time at
the viewer side. In addition, we propose the HoloSync scheme
for achieving frame synchronisation in live holographic tele-
portation applications. Specifically, we propose a 5G edge-
computing [19] based frame synchronisation scheme in order
to achieve bounded frame synchronisation errors, and such an
error bound can be flexibly configured according to specific
holographic teleportation application scenarios. In the context
of such a scheme, we propose three different frame handling
policies depending on the actual arrival time, namely simple
forwarding, pairing with cached frame, and frame dropping.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 1: Handshake through real-life holographic teleportation
platform

We perform systematic performance evaluations based on
distinct network scenarios with regard to the frame statistics
according to these three scenarios.
One real-life example of multi-source holographic teleporta-

tion is demonstrated in Figure 1. It shows two remote people
performing virtual handshake actions with each other to be
viewed by the audience wearing head-mounted devices such as
Microsoft Hololens [20]. In such a simple application, motion
misalignment introduced by different network distances from
the two sources may lead to receiver-perceivable misalignment
in the movement of their arms. The experiment was conducted
at the Institute for Communication Systems, University of
Surrey, UK.

It is worth mentioning that the purpose of this example is
to indicate the importance of frame synchronisation in live-
streaming of holographic teleportation content from multiple
sources to common receivers. In addition to this, it is also
necessary to achieve peering synchronisation between the two
persons performing virtual handshake, even including haptics,
but this is outside the scope of this paper. We highlight the
major technical contributions from this paper as follows:

• For the very first time in the literature, we demonstrate
the necessity of frame synchronisation operations when
such an application is to be operated across the global
Internet. We quantify the motion misalignment effect
with different network contexts and prove that, without
frame synchronisation operations, it can be in the order
of seconds, leading to significantly suboptimal user ex-
periences.

• We propose HoloSync, a sophisticated edge computing-
based frame synchronisation scheme to eliminate user-
perceived motion misalignment effects with different net-
work scenarios. To the best of our knowledge, this is the
first solution proposed to address the issue of motion
misalignment in holographic teleportation applications.
While we developed the HoloSync approach based on the
representative application platform called LiveScan3D,

the proposed synchronisation algorithm can certainly be
applied to similar holographic teleportation applications
based on live frame streaming mechanisms.

• We carry out comprehensive performance studies on
HoloSync, including the evaluation of a wide range of
performance metrics such as frame freshness statistics,
playback latency and pairing error. We also analyse
the performance sensitivity to the key control parame-
ters used in the synchronisation scheme, namely frame
waiting window size, and frame pairing approximation
threshold. Through such evaluations, we show that the
proposed HoloSync scheme is able to achieve assured
user experiences by eliminating perceived motion mis-
alignment effects.

• Based on an in-depth analysis of the results of the exper-
iments, we further derive useful guidelines and policies
for appropriately setting the system control parameters,
including the synchronisation window and the timestamp
approximation threshold, so that the overall teleportation
performance can be tailored to specific use case scenarios
and contexts.

The remainder of the paper is structured as follows. We
discuss the related work in section II. In section III, we provide
an overview of the holographic system and show the necessity
for synchronisation. In section IV, we specify the proposed
frame synchronisation scheme in detail. Section V focuses on
the system-level description of the holographic teleportation
platform using LiveScan3D as an example, followed by exten-
sive real-world experiment results with full and reduced frames
per second (FPS) performances at the source with a wide range
of testing scenarios with different network contexts. It also
discusses guidelines for setting synchronisation parameters.
Finally, in section VI, we conclude the paper.

II. RELATED WORK

In the research community, there is a huge interest in
holographic-type communication. The latest work in holo-
graphic communication can be found in [21]–[29].

The authors of [21], discuss the technical networking chal-
lenges of enabling Holographic-Type Communication (HTC).
A novel network architecture for dynamically establishing
new flows with very low latency is presented by the authors.
Experimentation is carried out on a Mininet-based emulated
client-server network setup. According to the results, the fully
distributed control plane has the lowest latencies in terms of
flow setup, first segment download, and average per segment
download.

In our recent work [22], we describe a novel Holographic
Type Communication (HTC)-based teleportation platform. It
demonstrates the advantage of locating the production server
function close to the viewer side, as the risk of user experience
degradation caused by long-distance paths between the local
clients on the source side and the production server function
on the receiver side can be mitigated by an intelligent frame
buffering mechanism executed by the production server side.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

The authors of [23] propose PCC-DASH (Point Cloud
Compression – Dynamic Adaptive Streaming over HTTP), a
standards-compliant method for HTTP adaptive streaming of
scenes composed of multiple, dynamic point cloud objects.
The authors’ experiments with various rate adaptation meth-
ods, and the results show that buffer size is critical. A smaller
buffer size improves accuracy and video quality while being
affected by playout freezes.

Another paper [24], examines the impact of point cloud
compression (PCC) and HTTP Adaptive Streaming (HAS) on
the perceived quality of a scene. Subjects are shown volumetric
test videos, and they rated volumetric videos lower in terms
of perceived quality when compared to traditional HD or
4K videos. The experiment also discovers that subjective and
objective metrics are highly correlated in the case of adaptive
point cloud streaming. Nabin Kumar Karn et al. [25] propose a
new quality-aware adaption mechanism for 3D MVD (Multi-
view plus depth) over the Internet. It significantly improves the
perceived video quality of 3D even in poor network conditions.
Most of the 2D video conferencing applications use Real-time
Transport Protocol (RTP) and Web Real-Time Communication
(WebRTC) protocol [26] [27]. RTP protocol uses RTCP Sender
Reports (SR) to synchronise the RTP flows from different users
and it is not based on the concept of frame. SR contains sample
clock i.e. RTP timestamp and NTP timestamp of the RTP
packets. These two timestamps are paired to get the absolute
time of the sample in a stream. The receiver needs to wait
for the RTCP SR and Source Description (SDES) packets
which contain a canonical end-point identifier (CNAME) to
identify the user interface (sender/source) and then based on
the SR reports synchronisation/mapping of flows is carried
out. WebRTC also uses the RTCP SR reports to synchronise
the flows [28]. Moving Picture Experts Group - Dynamic
Adaptive Streaming over HTTP (MPEG-DASH) is another
protocol used mainly for one-way streaming of video, but it
is not used for interactive applications [29].

III. HOLOSYNC SYSTEM OVERVIEW

A. Basic Background System

A basic single-source teleportation scenario is depicted in
Figure 2, which includes all necessary system components,
based on the LiveScan3D platform as an example. Multiple
sensor cameras surrounding the person being teleported are
responsible for capturing this person in a 3D hologram (for
simplicity, only one camera is shown in Figure 2). The 3D
hologram is captured as a point cloud, which is a collection
of all the captured points. Each point represents the (X, Y,
Z) co-ordinates, and the RGB (0-255) information associated
with that point. We used Microsoft RGB-D Kinect v2 for
experimentation, and each frame, which captures the whole
scene contains approximately 144000 points, resulting in 17.38
Mb (or 2.16 MB) per frame. For transmitting a single point, 15
Bytes are needed; 3 Bytes for colour information (1 Byte each
for R, G and B), and 4 Bytes each for X, Y and Z co-ordinates
(float) i.e. 12 Bytes in total for the co-ordinates. Frames
are produced at a rate of 30 Frames Per Second (FPS). In

Livescan3D, there are two types of settings for the holographic
experience; first to only teleport human bodies and second
to teleport the whole scene. This paper specifically focuses
on teleporting human bodies, in which case the data rate is
less than 100Mbps for each teleported object. Additionally,
less than 200kbps is required for the joints and skeleton, that
can be neglected because its size is small compared to the
point cloud. The payload size is dependent on encoding and
actual codecs used might be different for other applications.
Similarly, to our previous work [22], the bandwidth capacity
of the link is 1 Gbps with an artificially introduced delay and
packet loss ratio, mimicking the bandwidth over-provisioning
scenario of the public Internet.

Fig. 2: Basic system diagram of the LiveScan3D holographical
teleportation platform

Each camera is locally connected to a computer called
client, which handles local data processing and continuous
frame production. The production server, depicted in the centre
of the diagram, is a specialised high-power computer node in
charge of rendering final frames based on raw frames received
from clients connected to the cameras surrounding that remote
object. The output of the production server is a 3D holographic
object that can be seen in 6DoF at the receiver side. It is also
worth noting that, thanks to Network Function Virtualisation
(NFV) [30] [31], the production server function can be virtu-
alised and deployed flexibly at any location of the network,
including a Multi-access Edge Computing (MEC) server in
5G. It is also important to have a time-synchronised network to
get the correct frame production timestamps at the client side
and to synchronise the frames at the production server. For
time synchronisation Network Time Protocol (NTP) is used
across all the connected devices. Figure 3 presents a more
generalised scenario of group-based holographic teleportation
operations in which multiple objects are teleported from
different remote sites. As previously stated, from a network
topology viewpoint, the production server becomes a central
aggregation point where raw frames received from individual
remote source clients are rendered on a per-object basis before
being served to the receivers. In this case, the rendered frames,
with full 3D views for each teleported object, are streamed in
real-time to the receiver side over 5G new radio (NR). As
a result, the receiver can see all the teleported objects in the
common view field while also manipulating and adjusting each
individual object, including its size, position, and orientation.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 3: 5G MEC for supporting Multi-source Holographic
Teleportation

In general, a MEC server is also responsible for synchronising
outgoing frames on a per-teleported-object basis. Paths from
multiple sources at different Internet locations to the MEC
server can be different due to network latencies and traffic
conditions. It is worth noting that the heterogeneous end-to-
end network latency from different network locations naturally
results in different data throughput performances, which can
further impact the time to deliver a frame to the MEC
server. In such a situation, the arrival times of raw frames
coming from various sources during a live teleportation session
are highly uncertain. In the context of 5G, the function of
frame synchronisation (along with production) across multiple
remote sources can be fulfilled by the MEC server in 5G,
and it is able to provide the synchronisation service to all the
potential receivers attached to it. [32]. Because of the more
deterministic content data delivery capability of 5G new radio,
once the frames are synchronised by the MEC node, there
is a very low risk of synchronisation disruptions along their
journey to the receiver’s UE [33]–[35].

B. The necessity of frame synchronisation

Fig. 4: Experimentation set-up for two sources

Now we justify the necessity for frame synchronisation
operations through experiments without such a mechanism,
as shown in Figure 4. The main purpose is to quantify the
motion misalignment effect across sources at different network
locations by natively streaming teleportation frames from
them. Two remote sources are connected to the MEC server
through emulated Internet paths with dedicated middleboxes

Fig. 5: Difference between frame pair with respect to increas-
ing delay

for introducing synthetic delay and packet loss, as shown in
Figure 4. We repeat the experiment with delay from 0ms
to 50ms, with a constant packet loss of 0.01% which is a
realistic setting in operational Internet environments [36] [37].
As shown in Figure 4, frames from the two sources, located
at different network distances (in terms of latency), arrive at
the MEC server before being forwarded to the user equipment
(UE).

Through the experiment, we made the following observa-
tions:

• The average time gap between the frames is 122 ms,
with a delay of 10ms on Source1 and 0ms on Source2,
as shown on the X-axis of Figure 5. With the exception
of (10ms, 10ms), the time gap between the frame pairs
grows. For more challenging scenarios, ranging from
(10ms, 30ms) to (10ms, 50ms), the average time gap in-
creases to a range of 980ms to 1400ms, or approximately
1 second to 1.5 seconds. In the worst-case scenario, the
gap can be more than 5 seconds, causing considerable
motion misalignment between the two teleported objects,
resulting in poor quality of user experience. The long
playback latency incurred during long-distance streaming
of holographic content was also observed in the state of
the art [22], with real network locations across the whole
Internet. The key reasons include the reduced end-to-end
TCP throughput for streaming holographic content with
long Internet distances, and the frame buffering mech-
anism for assuring FPS performances in long distance
cases.

• If the network distance is large, the motion misalignment
between sources can be on the order of seconds, as shown
in Figure 5, which is unacceptable in terms of user QoE.

• The above observations indicate that frame synchronisa-
tion is required for multi-source teleportation applications
in order to mimic group-like immersive experiences with
teleported objects at various network locations.

In addition to network delay, there can be other factors
such as transport layer mechanisms that may also affect

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 6: Difference between frame pair due to heterogeneous
TCP congestion control algorithms

the frame delivery performance at the receiver side. Today,
a number of transport-layer congestion control algorithms
are used in the public Internet. To understand the effect of
heterogeneous transport-layer congestion control mechanisms
on motion misalignment, we conducted the experiments on
the same set-up as shown in Figure 3, but the TCP congestion
control algorithms are different for Source1 and Source2. For
Source1, Bottleneck Bandwidth and Round-trip propagation
time (BBR) was set as the congestion control algorithm
and for Source2, CUBIC was set as the congestion control
algorithm. We conducted experiments by adding 10ms and
40ms delays with 0.01% packet loss for both the sources.
The observations are as follows. In Figure 6, for the first
case of (10ms, 10ms) network delay, the average frame pair
time gap is 297ms, and it increases significantly to 945ms
for the second case of (40ms, 40ms) delay. In the worst-case
scenarios, the frame pair time gap can be 2800 ms which is
expected to cause considerable motion misalignment between
frames, and thus severely damaging the user experience. It
indicates that if heterogeneous congestion control mechanisms
are applied to the different network devices, it may cause
motion misalignment between frames, even if the two sources
have the same network distances/latencies.

IV. DETAILED SPECIFICATION OF THE HOLOSYNC
FRAMEWORK

The terminologies and the frame synchronisation algorithm
of the HoloSync scheme are explained in this section. Key ter-
minologies related to synchronisation algorithm are explained
in Section IV-A. The synchronisation algorithm is explained
in full in Section IV-B.

A. Key terminologies

The terms used to specify the multi-source frame synchro-
nisation are described below.

Timestamp: It is carried by each frame and is used to
determine the time point when that frame is produced at the
source. Individual frame timestamps from various sources are

Fig. 7: Synchronisation window

required inputs for frame synchronisation on the MEC server
side.

Synchronisation window (∆): To eliminate user-perceived
motion misalignment, in the ideal case frames from different
sources should be shown together if they have the same frame
production timestamp. However, human eyes can tolerate
small transient time gaps between multiple sources. This
allows the teleportation system to wait for the frames that
originate simultaneously from different sources but arrive at
different times at the destination with a tolerable time gap be-
tween them. In particular, if two frames from different network
locations sharing the same frame production timestamp arrive
at different times because of network delay or other factors,
the early arrived frame can wait for the late frame within a
tolerable time window which we define as the synchronisation
window ∆. It is shown in Figure 7 that once the frame from
Source1 arrives, it waits for the frame from Source2. There
are three cases for this scenario:

• Case 1: The frame from Source2 arrives exactly at the
same time, and can be naturally paired with that from
Source1.

• Case 2: The frame from Source2 arrives late, but still
within the synchronisation window ∆, and can still be
paired with the corresponding frame from Source1 with
a tolerable delay gap between them.

• Case 3: The frame from Source2 arrives after the syn-
chronisation window expires, and hence it cannot be
paired with the corresponding frame from Source1.

Frame paring approximation threshold (γ): Cameras at
individual sources may produce discrete frames at different
time points (offset) even with fixed time intervals, in which
case there is no guarantee that frames from these sources will
share exactly the same frame timestamp in order to be paired.
Such an offset is more obvious if these sources have different
frame generation rates. As a result, we need an additional level
of approximation in order to pair the frames together which
have sufficiently small-time offset between their timestamps.
Specifically, if the timestamps between frames coming from
different sources are sufficiently close to each other (defined
by the threshold γ), then the synchronisation function will
treat them as if they have the same timestamp. In this sense,
γ is also referred as the approximation threshold in the rest of
the paper. For instance, if frames from the two sources have
timestamps x and y respectively, then the difference between

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

these two timestamps |x − y| is compared with γ. In case
the difference is smaller than the approximation threshold,
then the synchronisation function makes the approximation
that they have the same timestamp. Based on this, the
synchronisation algorithm is able to apply ∆ to determine
whether the two frames can be paired depending on their
arrival time at the MEC server.

B. Synchronisation mechanism

The proposed frame synchronisation algorithm in HoloSync
is executed at the MEC server on the receiver side in the
context of 5G. Frame production timestamps are used in
the synchronisation process. For the sake of simplicity, just
two sources, Source1 and Source2 are considered, but the
proposed synchronisation strategy can be used in a scenario
with more than two sources, which will be explained later.
In addition, the common practice of performing teleportation
with immersive experiences requires multiple (e.g. 4) cameras
surrounding the object to be teleported. To simplify the expla-
nation, we denote all these cameras with one source camera
from each remote location, as all of them share common
physical paths to the MEC server with the same network
treatment. We denote the latest frame production timestamps
of Source1 and Source2 as tS1 and tS2, respectively. For
example, if a frame from Source1 arrives first, it is referred
to as Frame1, and it waits for the frame from Source2 with the
same frame timestamp. Elapsed time is the amount of time that
passes after Frame1 starts waiting for a frame from Source2.
If in case the frame from Source2 does not arrive at the MEC
server, then previously cached frames from Source2 are paired
with the Frame1. The caching operation of incoming frames
is based on a simple moving window that makes sure that
the most recent incoming frames are transiently cached at the
MEC server, which are later deleted on becoming obsolete.

Frames which are processed by the synchronisation function
at the MEC server are delivered to the UEs (hololenses) at-
tached to the MEC server. These processed frames are retained
at the server and are referred to as cached frames. If the
expected frame from the second source does not arrive inside
the synchronisation window, the cached frame is coupled with
the waiting frame if the time gap is within the approximation
threshold. The timestamp of the most recent frame received
from Source2 is denoted by tS2, and the timestamp of the
previously cached frame from this source is denoted by (t′S2).
Frames may arrive late to the MEC server as a result of delays,
packet loss, bandwidth fluctuations, or other conditions along
the way. In that situation, a cached frame can be leveraged to
achieve motion alignment if it is within the specified time gap
γ.
We aim to increase the proportion of synchronised frames by
applying the synchronisation algorithm instead of having a
non-synced frame. The outcome of the frame synchronisation
operation can be classified into the following three categories:

• Fresh frames - Frames with the same timestamp that
arrive at the MEC server within the synchronisation

window (∆) from all connected sources.
• Half fresh frames - If a frame from one of the sources

does not arrive within the synchronisation window, in-
stead of discarding the frame, the system pairs a pre-
viously cached frame with the waiting frame. For in-
stance, consider that the latest frame from Source1 with
timestamp tS1 arrives, and it waits for the frame from
Source2. If the expected frame from Source2 does not
arrive within the synchronisation window, a previously
cached frame with a timestamp t′S2 is paired with it if
the time difference between the frame pair is less than or
equal to γ.

• Dropped frames - Frames that arrive at the MEC server
which are neither fresh nor half-fresh frames are dropped,
and are not used.

The basic working mechanism of HoloSync is as follows. It is
assumed that the frame from Source1 (Frame1) arrives first,
and is queued in the waiting queue. Now it waits for a frame
from Source2 (Frame2) with the ”same” timestamp as that
of Source1 (determined by γ). If the expected frame arrives
within the synchronisation window ∆, the algorithm checks
the time gap between the frame pair, and forwards the frame
pair if it is smaller than or equal to γ. Further, it caches the
frame pair for future pairing in case the next expected frame
does not arrive in time. If the synchronisation window expires,
and no latest frame from Source2 is received, the algorithm
searches for a cached frame from Source2 (Frame2’) which
is within the frame pair approximation threshold. If such a
cached frame exists, the algorithm checks whether the time gap
between Frame1 and the cached Source2 frame (Frame2’) is
within the γ threshold or not. If it satisfies the condition, then
Frame1 is cached, and the frame pair (Frame1 and Frame2’) is
forwarded. Otherwise, Frame1 is dropped for pairing, but it is
still cached. The proposed algorithm naturally supports more
general scenarios with more than two sources, with linearly
increasing complexity. Specifically, the algorithm only needs
to identify the earliest arrived frame (denoted by Frame 1),
and then iteratively apply the algorithm on the corresponding
(late) frame from each of the additional sources. That is, each
late frame can be denoted by Frame 2 in the algorithm above.

V. EXPERIMENT SETUP AND PERFORMANCE RESULTS

A. Experimentation Set-up
In this section, we evaluate the synchronisation performance

across two sources with different network contexts. In partic-
ular, we aim to study the sensitivity of the actual application
performance metrics to the two key control parameters ∆ and
γ. The experiments with the synchronisation function are still
based on the same setup as in Figure 4, apart from that the
HoloSync function is embedded at the MEC server side. The
set-up consists of the following elements:

• Two KINECT V2 sensor cameras, each connected to one
PC which works as a client to process and send the frames
to the MEC server using asynchronous Socket APIs.

• One MEC server for frame synchronisation on the re-
ceiver side. System configuration of clients and server is

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Algorithm 1 Synchronisation Algorithm

1: Assumption : Current frame from Source1 arrives first
(Frame1 with timestamp tS1)

2: Enqueued Frame1 into the waiting queue
3: Frame2← Current frame from Source2

(with timestamp tS2)
4: Frame2’← Previous frame from Source2

(with timestamp t′S2)
5: while ((ElapsedTime ≤ ∆) AND (Frame2.Arrived==

false)) do
6: Wait
7: end while
8: if ((Frame2.Arrived == true) AND (

∣∣tS1 − tS2

∣∣ ≤ γ))
then

9: Pair Frame1 with Frame2
10: Cache Frame1 and Frame2
11: Forward paired frames to user device
12: else if ((Frame2’.Exists == true) AND (

∣∣tS1 − t′S2

∣∣ ≤ γ))
then

13: Pair Frame1 with Frame2’
14: Cache Frame1
15: Forward paired frames to user device
16: else
17: Drop Frame1 for pairing
18: end if

as follows: Operating System (OS): Microsoft Windows
10 Pro Processor: Intel(R) Core(TM) i7-7700 CPU @
3.60GHz, 3600 Mhz, 4 Core(s), 8 Logical Processor(s).
Random Access Memory (RAM): 16 GB

• Two PCs for adding en-route synthetic delay and packet
losses are referred to as ’middleboxes’. At the middlebox,
a Netem script is used to add synthetic delay and packet
loss. Network routes are added to the routing table of the
clients to take the specified path to the server through the
middlebox. One middlebox is configured to add a delay
of 10ms and a packet loss of 0.01%. The other middlebox
is set to add a 50ms delay and 0.01% packet loss. This
focused testing case, shown in Figure 5, is effectively the
most challenging scenario, where the misalignment time
gap between the two sources can be more than 5 seconds
without any frame synchronisation mechanism in place.

• The transport-layer protocol is TCP, which is the default
for LiveScan3D, and the congestion control algorithm
applied is CUBIC when we evaluate the performance
with different network distances in sections V-B1 and
V-B2. In addition, we also investigate the scenario that
different sources apply different TCP-based congestion
control algorithms, and in this case, one source is based
on CUBIC and the other is based on BBR in section
V-B3.

• A local NTP server is used for time synchronisation
between all the clients and the MEC server. It is important
to have time synchronisation across all the entities in

order to ensure synchronisation based on accurate frame
production timestamps. To achieve that, NTP is used to
synchronise the system time of all the platform compo-
nents.

B. Performance Evaluation

Without loss of generality, our experiments include scenar-
ios with the same source FPS and different FPS at the two
sources. Specifically, the following scenarios are considered:

(1) Both the sources produce frames at 30 FPS, which can
be considered as the ideal scenario with the full FPS capacity
at the camera side.

(2) One source produces frames at 15 FPS, and the second
source produces frames at 30 FPS : Since one of the sources
produces frames at a lower rate i.e.,15 frames per second, it
causes a higher time gap between consecutive frames, and
fewer frames are available for pairing, thus affecting the
setting of γ in the algorithm. In both scenarios, experiments
were repeated for different approximation threshold (γ) values
of 10ms, 50ms and 100ms respectively. The synchronisation
window (∆) is changing from 5ms to 50ms for each value of
γ.

(3) Using heterogeneous congestion control mechanisms on
the two sources. Specifically, one source is based on BBR for
congestion control, and the other source is based on CUBIC.
Both sources produce frames at the full capacity of 30FPS.

As mentioned previously, the proposed synchronisation al-
gorithm is not designed for any specific codec, resolution,
or compression mechanism, but it can be applied generically
across different application configurations. In this paper, we
evaluate the relevant performance based on a particular appli-
cation scenario based on a fixed resolution level and without
introducing compression.

• Fresh/Half-fresh/Dropped frame ratios: This is the statis-
tical distribution of all the frames sent from the sources
into the three categories as the outcome of each experi-
ment instance.

• Pairing error: This is defined as the average time gap
between successfully paired frames. Ideally, two frames
having exactly the same frame production timestamp
should be paired to completely avoid the motion misalign-
ment. However, this is not possible in real life scenarios
as the frames are produced at specific time intervals at
different sources. Pairing error indicates the average error
while pairing the fresh and half-fresh frames based on
different approximations set by control parameter values.
Figure 8 considers five frames each from Source1 and
Source2. Let’s assume that the sources produce frames
at 30 FPS and consecutive frames from each source have
33ms of time gap between them. Ideally, the first frame
from Source1 should be paired with the first frame from
Source2 having the same timestamp. If it’s not possible
due to various reasons, the first frame from Source1 is
paired with the second frame from Source2, and the time
gap between the frame pair is 33ms. Similarly, if the first
frame from Source1 is paired with the third frame from

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Source2, the time gap will be 66ms i.e. 66ms pairing
error.

Fig. 8: Pairing error

• Playback Latency: This is defined as the actual time gap
between the frame production timestamp at the source
and the time point when it is displayed to the user.

1) Performance evaluation with 30 FPS from both sources:
For all values of γ and varying ∆, the average playback latency
and pairing error are shown in Figure 10 and 11 respectively.

Fig. 9: Statistical distribution of frames (γ=10ms)

Fig. 10: Average playback latency for γ values

Fig. 11: Pairing error for γ values

a) γ is set at 10ms: This is the most stringent scenario
of threshold setting for frame pairing approximation. With
a fixed γ, we evaluate the application performance against
different synchronisation window sizes ∆. It is observed in
Figure 9 that the number of fresh frames increases significantly
as the synchronisation window relaxes from 5ms to 50ms.
In particular, for the case of 5ms and 10ms, the proportion
of half fresh frames is almost equal to the number of fresh
frames. It is because the frames have a low time margin
to wait for frames from other sources, due to the stringent
synchronisation window, and after the synchronisation window
expires, the waiting frame searches and pairs with a qualified
cached frame based on the approximation threshold. On the
other hand, the proportion of fresh frames for the most relaxed
∆ of 50ms is only around 60%. It is because of the reduced
FPS at the receiver side, as one of the sources is 50ms
away. Stringent γ coupled with the reduced FPS affects the
performance of the application. As compared to the 10ms case,
the number of fresh frames increase by 157% for the 50ms
case. For a synchronisation window between 30ms to 50ms,
the proportion of fresh frames increases as the synchronisation
window increases. Figure 10 shows the average playback
latency values for three approximation threshold values (γ)
10ms, 50ms and 100ms with varying synchronisation windows
(∆) from 5ms to 50ms. As shown in Figure 10, the average
playback latency increases from 128ms to 138ms as the
synchronisation window increases. Average pairing error is
4.44ms as shown in Figure 11. It means that the user will
experience a motion misalignment of 4.44ms while using the
application.

b) γ is set at 50ms: For this case, the approximation
threshold is relaxed from 10ms to 50ms. As shown in Figure
12, there is a smaller number of half fresh frames as compared
to that in Figure 9. The number of fresh frames increases
significantly as compared to the previous case of 10ms ap-
proximation threshold. We conclude that the performance is
less sensitive to ∆ as compared to the previous case due to
relaxed γ. The proportion of fresh frames increases slightly
for higher values of ∆ like 40ms and 50ms. From Figure 10
it can be observed that the average latency increases from

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 12: Statistical distribution of frames (γ=50ms)

Fig. 13: Statistical distribution of frames (γ=100ms)

102ms to 119ms for increasing synchronisation windows of
5ms to 50ms. The average pairing error, i.e., average time
gap between the frames is 28.89ms as shown in Figure 11.
As compared to the previous case of γ = 10ms, pairing error
increases from 4.44ms to 28.89ms for 50ms γ.

c) γ is set at 100ms: As shown in Figure 13, there are
negligible amounts of half fresh frames, and almost all the
frames are fresh frames because of a higher approximation
threshold of 100ms i.e. higher number of feasible frames
for pairing. However, one of the sources is 50ms away,
causing reduced FPS at the receiver side. It indicates that
if the approximation threshold is set high enough, the size
of the synchronisation window does not matter. However,
there is a trade-off as the approximation threshold increases,
the pairing error also increases i.e., motion misalignment
increases, degrading the quality-of-experience of the user. It
is important to consider the pairing error before selecting the
approximation threshold value for the application. It can be
observed from Figure 10 that the average playback latency
increases from 94.26ms to 102.35ms when the synchronisation
window increases from 5ms to 50ms. Figure 11 shows that
the average paring error is 43.16ms, which is much higher
than that for 10ms and 50ms approximation thresholds. This
indicates that an approximation threshold of 10ms provides a
lower pairing error, that is, lower motion misalignment, and an
approximation threshold of 100ms provides a higher pairing

Fig. 14: Statistical distribution of frames (γ=10ms)

error, that is, higher motion misalignment. From Figure 10 we
conclude that average playback latencies are higher (green bar)
for lower values of approximation threshold. For instance, in
Figure 10, for a 5ms synchronisation window, average latency
for an approximation threshold of 10ms is 128.67ms, for 50ms
it is 102.96ms, and for 100ms it decreases to 94.26ms.

It is because, whenever the approximation threshold is
stringent like 10ms, there are very few frames that are qualified
to be paired with the waiting frame, and as soon as the
synchronisation window expires, the waiting frame needs to
look for a cached frame, which has a higher time gap with
the waiting frame as it is stored in the cached frames for
a long time. Although the synchronisation algorithm ensures
that the time gap between the paired frames lies within the
approximation threshold, for cases where the waiting frame
looks in the cached frames to find a suitable frame (i.e. within
the approximation threshold), the time gap is close to the
approximation threshold i.e. at the higher end. If there is a
higher number of half fresh frames, it will collectively increase
the playback latency.

2) Performance evaluation with different FPS from two
sources: Now we evaluate the same application performance
in a non-ideal environment where one of the sources has
a reduced FPS performance of 15, while the other source
remains constant at 30 FPS. For all values of γ and varying
∆, average playback latency and pairing error are shown in
Figure 15 and 16 respectively.

a) γ is set at 10ms: As shown in Figure 14, the
number of fresh frames increases as ∆ increases from 5ms
to 30ms. The number of half fresh and dropped frames is
almost constant for ∆ values from 5ms to 20ms, with the
∆ value of 30ms having the highest number of fresh frames.
For the cases of ∆ value between 40ms and 50ms, there is a
higher number of dropped frames and a lower number of half
fresh frames, because the waiting frame has a smaller number
of frames to match within the synchronisation window, and
even if the expected frame arrives, the time gap is above the
approximation threshold. Once the synchronisation window
expires, the waiting frame searches for the cached frames,
and does not find a suitable match. This is because a frame is
cached once it is paired with a suitable frame, and dequeued

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 15: Average playback latency for γ values

Fig. 16: Pairing error for γ values

for the next hop. As a result, for higher ∆ values, frames
are dequeued at a greater interval, implying that frames in the
cached frame list are much older than the waiting frame and do
not match. Consequently, the waiting frame is dropped instead
of being paired with the cached frame. We conclude that for a
stringent approximation threshold, higher values of ∆ do not
help. Instead, it has an adverse effect on the synchronised
frame proportion. This is because the system spends more
waiting time with higher ∆, and thus may waste time in
identifying a matching cached frame. It is also noted from
Figure 14 that the performance is less sensitive to ∆, since for
all the values of ∆ the maximum percentage of fresh frames
lies between 15% to 25% for fresh frames.

In Figure 15, average playback latency increases from
132ms to 151ms when the synchronisation window is relaxed
from 5ms to 50ms. It is observed from Figure 16 that user-
perceived motion misalignment, i.e. pairing error, is minimised
to 8.33ms. In case of FPS 30 scenario for γ of 10ms, the
pairing error was 4.44ms, which is almost half of the pairing
error of this error in Figure 16 i.e., 8.34ms. It shows that
different FPS at the sources have an effect on the performance
of the application.

b) γ is set at 50ms: It is observed from Figure 17 that
as ∆ increases, the proportion of fresh frames also increases
as the waiting frames have a higher margin to wait for the
expected frame. As compared to the previous case of 10ms γ,

Fig. 17: Statistical distribution of frames (γ=50ms)

there is a higher number of fresh frames for all the values of
∆. So, it can be inferred that due to a higher value of γ equal
to 50ms, there is a higher number of fresh frames as compared
to 10ms γ as shown in Figure 14, and the performance is less
sensitive to ∆. It is observed that the number of half fresh
frames and dropped frames decreases with increasing value
of ∆. However, for the cases 40ms and 50ms, the number of
half fresh frames decreases because there are fewer suitable
cached frames available. In Figure 15, the average playback
latency increases from 122ms to 129ms as the synchronisation
window relaxes. Figure 16 displays the average pairing error
of 25.7ms, and it decreases slightly with increasing value of
∆. It is because, as the synchronisation window increases, the
waiting frame has a higher margin to wait for the expected
frame, and the approximation threshold is also higher. Because
of these two reasons, the waiting frame is most likely to find
the suitable frame pair, resulting in a lower pairing error.
Effectively, the waiting frame does not have to look into the
cached frames for a suitable frame, which could increase the
pairing error.

Fig. 18: Statistical distribution of frames (γ=100ms)

c) γ is set at 100ms: As shown in Figure 18, there
is almost the same number of fresh frames irrespective of
the value of ∆. As compared to the previous cases of γ
value of 10ms and 50ms, the performance becomes even
less sensitive to ∆ in this case. Based on this observation,
We infer that γ is important for the application performance.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

However, increasing the value of γ would increase the pairing
error which would deteriorate the experience of the user while
using the application by adding higher motion misalignment.
It can be noted from Figure 15, that average playback latency
increases with increasing values of ∆ values. For instance,
in the case of 10ms γ and 5ms ∆, the playback latency is
132.2ms, and for the same value of γ and 50ms ∆, playback
latency increases to 147.5ms. It is due to the fact that the frame
waits for a longer period when ∆ is set to 50ms than when
∆ is 5ms. It can be observed from Figure 15 that for a lower
value of γ, the range of playback latencies is higher than for
higher values of γ e.g. 50ms and 100ms. It is because for a
lower value of γ, the approximation threshold is very stringent
and very few frames would qualify as a fresh frame, therefore
the waiting frame needs to look into the cached frame which
would be on the higher end of the approximation threshold,
which increases the playback latency. Average pairing error is
58.5ms, hence paired frames will have an average time gap
of 58.5ms. Pairing error, as shown in Figure 16, decreases
as ∆ increases because there is a greater number of suitable
frames available for the waiting frame. It can be observed from
Figure 16 that for the case of 10ms γ, pairing error gradually
increases as the value of ∆ increases because of the stringent
γ, there is a fewer or zero number of frames to match, and
as ∆ increases the frame waits even longer before looking
into the cached frames, resulting in an increased pairing error.
In contrast, for the case of 50ms γ, pairing error decreases
as ∆ increases and because of relaxed γ a higher number of
frames will be available to match, and the waiting frame does
not have to look into the cached frames. The same trend is
observed for 100ms γ.

3) Performance evaluation with heterogeneous congestion
control algorithms: Now, we evaluate the performance of
the synchronisation algorithm with ∆ = 5ms, which is the
most stringent setting for ∆, and relax it to 50ms. The
approximation threshold (γ) is set to 10ms, 50ms, and 100ms
for each ∆ value. Source1 and the middlebox connected to it,
use the BBR congestion control algorithm as shown in Figure
4. Source2, and the middlebox along the path, use CUBIC
congestion control algorithm. Synthetic delay added to the
routes on both sides is 40ms with 0.01% packet loss. Based
on this experiment setup, we focus on the synchronisation
performances based on different TCP congestion algorithms
at sources while they share the same or similar network
conditions (network delay and packet loss).

a) γ is set at 10ms: This is the most stringent scenario
for parameter setting. In Figure 21, almost all the frames are
dropped by the MEC server. For 50ms ∆, there are negligible
amounts of fresh (0.15%) and half fresh (0.09%) frames, and
there are no fresh frames for 5ms ∆. It is because none of the
frames could find a suitable match within the synchronisation
window or in the cached frames because of the low FPS
performance at the MEC server. The low FPS is due to the
network distances of the sources from the MEC server. Low
FPS means that consecutive frames have a higher time gap
between them, making it difficult for the waiting frame to find

Fig. 19: Average playback latency for γ values

Fig. 20: Pairing error for γ values

a suitable frame below the approximation threshold. It shows
that a stringent γ setting may damage the performance of the
application. Average playback latency for 50ms ∆, is 144ms,
and pairing error is 10ms. For 5ms ∆, there are no fresh or
half fresh frames. So, playback latency and pairing error can
not be calculated. Thus, we could not plot it in the figure for
comparison.

b) γ is set at 50ms: It is observed from Figure 22 that
the number of fresh frames significantly increases to 95% for
this case as compared to the previous case of 10ms γ. This
is irrespective of the value of ∆ i.e. whether it is 5ms or

Fig. 21: Statistical distribution of frames (γ=10ms)

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 22: Statistical distribution of frames (γ=50ms)

Fig. 23: Statistical distribution of frames (γ=100ms)

50ms, the number of fresh frames is almost the same. The
percentage of half fresh and dropped frames are approximately
4% and 1% respectively. Figure 19 shows that the average
playback latency for 5ms and 50ms ∆ is around 102ms. Figure
20 shows that the pairing error is 18ms for both values of
5ms and 50ms ∆. That means the user will perceive a motion
misalignment of 18ms. We conclude that the performance of
the application is less sensitive to the synchronisation window
setting as compared to the approximation threshold.

c) γ is set at 100ms: In Figure 23, it is shown that the
number of fresh frames is almost 100%. There are negligible
amounts of half fresh and dropped frames for 5ms ∆ and there
are no dropped or half fresh frames for 50ms ∆. Average
playback latency and pairing error for both cases of ∆ are
100ms and 19ms respectively as shown in Figure 19 and
Figure 20. In this case, it is observed that the performance
of the application is more sensitive to the approximation
threshold as compared to the synchronisation window.

C. Guidance on setting control parameters

According to the evaluations, there are two control param-
eters for synchronisation of frames, namely synchronisation
window (∆) and approximation threshold (γ). As far as γ is
concerned, its setting should take into account the frame rate
on the camera side. Specifically, if any camera side FPS is low,
then the time gap between consecutive frames becomes larger.

If a low (γ) value is set, it will lead to the failure of frame
pairing and γ needs to be relaxed to get higher user-perceived
FPS causing higher pairing error which degrades the quality
of user experience. In the case of setting γ, there is a trade-off
between user-perceived FPS and pairing error. Similarly, we
also observe that long network distances between the source
and the MEC server may also cause reduced FPS performance.
Again, in this case, γ should be relaxed to match the time gap
between consecutive frames on the source side. As a result,
the user will perceive higher motion misalignment.

According to the nature of the holographic applications, they
can be classified into interactive and non-interactive ones. As
far as the setting of ∆ is concerned, it will be dependent on the
playback latency requirements from the application. There is a
trade-off between average playback latency and user-perceived
FPS. Multi-party interactive applications require low average
playback latency. To achieve this, the setting of ∆ should be
sufficiently low so that early arrived frames do not have to
wait for a long time, and frames will be processed faster at the
MEC server. The application user will perceive lower playback
latency, i.e. faster responses from other application users. In
the case of non-interactive applications, ∆ could be relaxed
and the early arrived frames could afford to wait longer for
suitable frames to be paired, but it will increase the average
playback latency. The average playback latency is largely
dependent on ∆ but is also subject to FPS performance at
the receiver side. This is because, if FPS is lower, consecutive
frames have a higher time gap, and the early arrived frame
needs to wait longer to get the suitable frame within the
allowed ∆ setting.

Finally, the coordination between γ and ∆ is important to
achieve the desired synchronisation performances. If ∆ is set
to a low value and γ is set to a very higher value, then the
average playback latency is lower, but this is at the expense of
easily perceived motion misalignment which will degrade the
quality of user experience. Conversely, if ∆ is high while γ is
too low, then the average playback latency will be higher, but
the downside is potentially a high chance of having frames
dropped.

VI. CONCLUSION

In this paper, we proposed HoloSync, a novel frame syn-
chronisation scheme for supporting live holographic teleporta-
tion operations, involving multiple remote sources at different
network locations. The motivation is based on our observa-
tion of significant motion misalignment effects when remote
sources are teleported from different Internet locations. For the
very first time in the literature, our proposed scheme is able
to substantially reduce such misalignment in a controllable
manner in order to improve user experiences in such emerging
applications.

We showed that after applying the synchronisation algo-
rithm, motion misalignment decreases significantly. However,
it is dependent on various parameters like the synchronisation
window and the approximation threshold. To further inves-
tigate the sensitivity of the performance of the application

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

to these parameters, in terms of average playback latency,
pairing error, and frame statistics, we tested the holographic
teleportation platform with full and reduced FPS capacity at
the sources. The experimentation results show that there are
fewer synchronised frames for stringent approximation thresh-
old values, which can be increased by increasing synchro-
nisation window. The synchronisation window has a smaller
effect on frame statistics for higher approximation threshold
values. We guided on setting control parameters based on
the type of applications and user requirements. Last but not
least, we specifically analysed the trade-off between different
user-perceived performances with regard to the setting of
the synchronisation window and approximation threshold. In
our future work, we will carry out additional experiments
to evaluate the trade-offs between the synchronisation and
adaptation to the resolution and colour depth as part of the
subjective QoE analysis.

REFERENCES

[1] S. Mann, T. Furness, Y. Yuan, J. Iorio, and Z. Wang, “All reality: Virtual,
augmented, mixed (x), mediated (x,y), and multimediated reality,” 04
2018.

[2] A. Maimone, A. Georgiou, and J. Kollin, “Holographic near-eye displays
for virtual and augmented reality,” ACM Transactions on Graphics,
vol. 36, pp. 1–16, 07 2017.

[3] S. Orts-Escolano et al., “Holoportation: Virtual 3d teleportation in
real-time,” in Proceedings of the 29th Annual Symposium on User
Interface Software and Technology, ser. UIST ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 741–754.
[Online]. Available: https://doi.org/10.1145/2984511.2984517

[4] B. Han, Y. Liu, and F. Qian, “Vivo: visibility-aware mobile volumetric
video streaming,” 09 2020, pp. 1–13.

[5] J.-B. Jeong, S. Lee, I.-W. Ryu, T. T. Le, and E.-S. Ryu,
Towards Viewport-Dependent 6DoF 360 Video Tiled Streaming for
Virtual Reality Systems. New York, NY, USA: Association for
Computing Machinery, 2020, p. 3687–3695. [Online]. Available:
https://doi.org/10.1145/3394171.3413712

[6] F. Qian, B. Han, J. Pair, and V. Gopalakrishnan, “Toward practical
volumetric video streaming on commodity smartphones,” in Proceedings
of the 20th International Workshop on Mobile Computing Systems and
Applications, ser. HotMobile ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 135–140. [Online]. Available:
https://doi.org/10.1145/3301293.3302358

[7] J.-B. Jeong, S. Lee, I.-W. Ryu, T. T. Le, and E.-S. Ryu,
Towards Viewport-Dependent 6DoF 360 Video Tiled Streaming for
Virtual Reality Systems. New York, NY, USA: Association for
Computing Machinery, 2020, p. 3687–3695. [Online]. Available:
https://doi.org/10.1145/3394171.3413712

[8] R. Li, “Towards a new internet for the year 2030 and beyond,” Third
Annual ITU IMT-2020/5G Workshop and Demo Day Geneva, Switzer-
land July 18, 2018. [Online]. Available: https://www.itu.int/en/ITU-T/
Workshops-and-Seminars/201807/Documents/3 Richard%20Li.pdf

[9] R. Li and Y. Miyake, “New services and capabilities for network
2030: Description technical gap and performance target analysis,” Doc.
NET2030-O-027 in FOCUS GROUP ON TECHNOLOGIES FOR
NETWORK 2030 2019. [Online]. Available: http://handle.itu.int/11.
1002/pub/81444c78-en

[10] E. Ramadan, A. Narayanan, U. Dayalan, R. Fezeu, F. Qian, and Z.-L.
Zhang, “Case for 5g-aware video streaming applications,” 08 2021, pp.
27–34.

[11] S.-H. Jun and J.-H. Kim, “5g will popularize virtual and augmented
reality: Kt’s trials for world’s first 5g olympics in pyeongchang,” in
Proceedings of the International Conference on Electronic Commerce,
ser. ICEC ’17. New York, NY, USA: Association for Computing
Machinery, 2017. [Online]. Available: https://doi.org/10.1145/3154943.
3154947

[12] ITU-T Technical Report , “Representative use cases and
key network requirements for network 2030,” January
2020. [Online]. Available: https://www.itu.int/dms pub/itu-t/opb/fg/
T-FG-NET2030-2020-SUB.G1-PDF-E.pdf

[13] FG-NET-2030, “Network 2030 a blueprint of technology, applications
and market drivers towards the year 2030 and beyond.”
[Online]. Available: https://www.itu.int/en/ITU-T/focusgroups/net2030/
Documents/White Paper.pdf

[14] “Google VR – fundamental concepts.” [Online]. Available: https:
//developers.google.com/vr/discover/fundamentals

[15] J. Park, P. A. Chou, and J.-N. Hwang, “Volumetric media streaming for
augmented reality,” in 2018 IEEE Global Communications Conference
(GLOBECOM), 2018, pp. 1–6.

[16] J. Park, P. Chou, and J.-N. Hwang, “Rate-utility optimized streaming
of volumetric media for augmented reality,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. PP, pp. 1–1, 02 2019.

[17] S. Anmulwar, N. Wang, A. Pack, V. S. Ha Huynh, J. Yang, and
R. Tafazolli, “Frame synchronisation for multi-source holograhphic
teleportation applications - an edge computing based approach,” in 2021
IEEE 32nd Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), 2021, pp. 1–6.

[18] M. Kowalski, J. Naruniec, and M. Daniluk, “Livescan3d: A fast and
inexpensive 3d data acquisition system for multiple kinect v2 sensors,”
in 2015 International Conference on 3D Vision, 2015, pp. 318–325.

[19] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J.
Hwang, and Z. Ding, “A survey of multi-access edge computing in 5g
and beyond: Fundamentals, technology integration, and state-of-the-art,”
IEEE Access, vol. 8, pp. 116 974–117 017, 2020.

[20] Microsoft Hololens. [Online]. Available: http://handle.itu.int/11.1002/
pub/81444c78-en

[21] A. Clemm, M. T. Vega, H. K. Ravuri, T. Wauters, and F. D. Turck,
“Toward truly immersive holographic-type communication: Challenges
and solutions,” IEEE Communications Magazine, vol. 58, no. 1, pp.
93–99, 2020.

[22] I. Selinis, N. Wang, B. Da, D. Yu, and R. Tafazolli, “On the internet-
scale streaming of holographic-type content with assured user quality of
experiences,” in 2020 IFIP Networking Conference (Networking), 2020,
pp. 136–144.

[23] J. van der Hooft, T. Wauters, F. De Turck, C. Timmerer, and
H. Hellwagner, “Towards 6dof http adaptive streaming through point
cloud compression,” in Proceedings of the 27th ACM International
Conference on Multimedia, ser. MM ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 2405–2413. [Online].
Available: https://doi.org/10.1145/3343031.3350917

[24] J. van der Hooft, M. T. Vega, C. Timmerer, A. C. Begen, F. De Turck,
and R. Schatz, “Objective and subjective qoe evaluation for adaptive
point cloud streaming,” in 2020 Twelfth International Conference on
Quality of Multimedia Experience (QoMEX), 2020, pp. 1–6.

[25] N. K. Karn, H. Zhang, and F. Jiang, “User-perceived quality aware
adaptive streaming of 3d multi-view video plus depth over the internet,”
Multimedia tools and applications, vol. 77, no. 17, pp. 22 965–22 983,
2018.

[26] C. Perkins and T. Schierl, “Rapid Synchronisation of RTP Flows,” RFC
6051, Nov. 2010. [Online]. Available: https://www.rfc-editor.org/info/
rfc6051

[27] C. Perkins, M. Westerlund, and J. Ott, “Media Transport and Use
of RTP in WebRTC,” RFC 8834, Jan. 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc8834

[28] webRTC, 2022. [Online]. Available: https://www.w3.org/TR/webrtc/
[29] MPEG-DASH, 2022. [Online]. Available: https://mpeg.chiariglione.org/

standards/mpeg-dash
[30] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and

R. Boutaba, “Network function virtualization: Stateoftheart and research
challenges,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp.
236–262, 2016.

[31] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[32] ETSI White Paper, “MEC in 5g networks,” 2018. [On-
line]. Available: https://www.etsi.org/images/files/ETSIWhitePapers/
etsi wp28 mec in 5G FINAL.pdf

[33] F. W. Vook, A. Ghosh, E. Diarte, and M. Murphy, “5g new radio:
Overview and performance,” in 2018 52nd Asilomar Conference on
Signals, Systems, and Computers, 2018, pp. 1247–1251.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[34] “5g low latency requirements,” 2021. [Online]. Available: https:
//developers.google.com/vr/discover/fundamentals

[35] Qualcomm, “Everything you need to know about 5g,” 2019. [Online].
Available: https://www.qualcomm.com/5g/what-is-5g

[36] C. Ge, N. Wang, G. Foster, and M. Wilson, “Toward qoe-assured
4k video-on-demand delivery through mobile edge virtualization with
adaptive prefetching,” IEEE Transactions on Multimedia, vol. 19, no. 10,
pp. 2222–2237, 2017.

[37] “Sprint Network,” https://www.sprint.net/tools/sla-performance/sl.

Sweta Anmulwar received her M.Tech. degree in
wired and wireless communications from Savitribai
Phule Pune University in 2014. She is a PhD re-
searcher at the University of Surrey working on
frame synchronisation for holographic applications.
Sweta worked in computer networking, software
development, and wireless communication at C-
DAC, India from 2014 to 2019. She has published
in multiple venues including IEEE PIMRC, IEEE
WPMC, IEEE Transaction on Broadcasting, Else-
vier, and Springer and conducted various tutorials at

IEEE conferences. Her main research interests include extended reality, SDN,
IoT and future networks.

Ning Wang (SM’17) obtained his PhD degree in
Electronic Engineering from the Centre for Commu-
nication Systems Research at University of Surrey
where he has been working as a professor. Professor
Wang is currently leading a research team focusing
on 5G and beyond networking and applications. He
has published over 150 research papers at prestigious
international conferences and journals. His main
research areas include future networks, multimedia
networking, network management and control and
QoS/QoE assurances.

Vu San Ha Huynh received the B.Sc. (Hons) degree
in computer science from the University of Notting-
ham in 2016 and the PhD degree from the University
of Nottingham in 2021. He has authored in venues
including IEEE Transactions on Broadcasting, IEEE
Access, ACM MobiCom, CLOSER, PECCS, IEEE
WiMob, IEEE PIMRC, IEEE FMEC and IEEE
IWCMC. His research interests include intelligence
in the network transport layer, mobile edge cloud
and fog computing, distributed data caching services,
mobile heterogeneous opportunistic networks, large-

scale internet service architectures, Internet of Things and network science.

Stewart Bryant is a Visiting Professor at the Uni-
versity of Surrey. He is co-chair of the IETF PALS
working group and a former IETF Routing Area Di-
rector. Stewart is a specialist in Internet forwarding
and routing technologies. He is an author of 44 IETF
RFCs and an inventor of over 80 patents in this
area. Stewart’s current research interest is in mak-
ing packet switching networks provide deterministic
behaviour. In particular, he is working on MPLS
methods for adding ancillary data into the data plane.

Regius Rahim Tafazolli Fellow of the Royal
Academy of Engineering, IET, WWRF and Regius
Professor of Electronic Engineering; Professor of
Mobile and Satellite Communications; Founder and
Director of 5GIC, 6GIC and ICS (Institute for Com-
munication Systems) at the University of Surrey. He
has over 30 years of experience in digital communi-
cations research and teaching. He has authored and
co-authored more than 1000 research publications
and is regularly invited to deliver keynote talks and
distinguished lectures to international conferences

and workshops. He was advisor to the Mayor of London (Boris Johnson)
on London 2050 Infrastructure.

Jinze Yang , received his B.Eng. degree in Inter-
net of Things Engineering and the Ph.D. degree
in Electronic Engineering from the Queen Mary
University of London (QMUL) in 2015 and 2020,
respectively. He joined the Huawei Technologies
Ltd., China in 2020. He is currently a senior en-
gineer in Huawei Ltd. His research interests include
data centre networks, Internet of things networks,
information-centric networks, and ad-hoc networks.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3207280

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

